On the Derivatives of a Family of Analytic Functions

H.A. AL-KHARSANI AND R.A. AL-KHAL (*)

SUMMARY. - For $\beta < 1$, n = 0, 1, 2, ..., and $-\pi < \alpha \le \pi$, we let $M_n(\alpha, \beta)$ denote the family of functions $f(z) = z + \cdots$ that are analytic in the unit disk and satisfy there the condition

$$Re\left\{ (D^n f)' + \frac{1 + e^{i\alpha}}{2(n+1)} z (D^n f)'' \right\} > \beta,$$

where $D^n f(z)$ is the Hadamard product or convolution of f with $z/(1-z)^{n+1}$. We prove the inclusion relations $M_{n+1}(\alpha,\beta) \subset M_n(\alpha,\beta)$, and $M_n(\alpha,\beta) < M_n(\pi,\beta), \beta < 1$. Extreme points, as well as integral and convolution characterizations, are found. This leads to coefficient bounds and other extremal properties. The special cases $M_0(\alpha,0) \equiv \mathcal{L}_{\alpha}, M_n(\pi,\beta) \equiv M_n(\beta)$ have previously been studied [16], [1].

1. Introduction

Let \mathcal{A} denote the family of functions f of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1}$$

that are analytic in the unit disk $\Delta = \{z : |z| < 1\}$. Denote by $M_n(\alpha, \beta), \beta < 1, n = 0, 1, 2, \dots, -\pi < \alpha \leq \pi$, the subfamily of \mathcal{A}

^(*) Authors' address: H. A. Al-Kharsani and R. A. Al-Khal, Department of Mathematics, Faculty of Science, Girls College, P.O. Box 838, Saudi Arabia Keywords: Analytic functions, Hadamard product, partial sums, extreme points, convex hull.

AMS Subject Classification (1991): primary 30C45, secondary 30C50.

consisting of functions f of the form (1) for which

Re
$$\left\{ (D^n f)' + \frac{1 + e^{i\alpha}}{2(n+1)} z (D^n f)'' \right\} > \beta$$
 in Δ ,

where $D^n f$ is the Ruscheweyh derivative [12] of f defined by

$$D^{n} f(z) = z(z^{n-1} f(z))^{(n)} / n! = f(z) * (z/(1-z)^{n+1}).$$

The operator * stands for the Hadamard product or convolution of two power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ and and $g(z) = \sum_{k=0}^{\infty} b_k z^k$, that is, $(f * g)(z) = f(z) * g(z) = \sum_{k=0}^{\infty} a_k b_k z^k$. It is obvious that $M_n(\alpha, \beta) \subset M_n(\alpha, \gamma)$ if $\beta > \gamma$. We also know that $M_{n+1}(0, \beta) \subset M_n(\alpha, \gamma)$ $M_n(0,\beta)$ [9]. Alexander [3] showed that $M_0(\pi,0)$ is a subfamily of analytic univalent functions. Note that, for $\beta < 0, M_n(\alpha, \beta)$ need not be univalent in Δ . Singh and Singh [17] proved that the functions in $M_0(0,0)$ are starlike in Δ . Silverman and Silvia [16] found extreme points, coefficient bounds, and convolution characterizations for $M_0(\alpha,0), -\pi < \alpha \leq \pi$. Also Silverman [15] showed that for $f \in M_1(\pi, \beta)$, the partial sums $S_m(z, f)$ satisfy $\text{Re}(S_m(z, f))' > \beta$. Ahuja and Jahangiri [2] showed that the functions in $M_n(\pi,\beta)$ are invariant under convolution with convex functions and introduced a convolution characterization for functions in $M_n(\pi, \beta)$. Furthermore, they found [1] $\gamma = \gamma(n,\beta) \geq \beta$ so that for f and g in $M_n(\pi,\beta)$, their convolution is in $M_n(\pi, \gamma)$. In this note we extend most of their results to more general case $M_n(\alpha, \beta)$. Finally, we will state some results as improvement to the previous results and we proved the inclusion relation $M_{n+1}(\alpha,\beta) \subset M_n(\alpha,\beta)$.

2. Main results

THEOREM 2.1. $M_{n+1}(\alpha, \beta) \subset M_n(\alpha, \beta)$ for each $n \in N_0, \beta < 1$, and $-\pi < \alpha < \pi$.

To prove this theorem we shall need the following lemma, which is due to Jack [7].

LEMMA 2.2. Let w be an analytic function in Δ satisfying w(0) = 0 and |w(z)| < 1 for $z \in \Delta$. Then if |w| assumes its maximum value on the circle |z| = r at a point z_1 , we can write

$$z_1w'(z_1) = kw(z_1),$$

where k is real and $k \geq 1$.

Proof of theorem (2.1). Let $f \in M_{n+1}(\alpha, \beta)$. Then

Re
$$\left\{ \left(D^{n+1} f(z) \right)' + \frac{1 + e^{i\alpha}}{2(n+2)} z \left(D^{n+1} f(z) \right)'' \right\} > \beta.$$
 (2)

We define an analytic function w(z) in Δ such that

$$(D^n f)' + \frac{1 + e^{i\alpha}}{2(n+1)} z (D^n f)'' = \frac{1 + (2\beta - 1)w(z)}{1 + w(z)},\tag{3}$$

where w(0) = 0 and $w(z) \neq -1$ [10]. We shall show that |w(z)| < 1. From (3) we have

$$z(D^n f)'' = \frac{2(n+1)}{1+e^{i\alpha}} \left[\frac{1+(2\beta-1)w(z)}{1+w(z)} - (D^n f)' \right]. \tag{4}$$

Using the known identity

$$z(D^n f)' = (n+1)D^{n+1} f - nD^n f, (5)$$

we get

$$(D^{n+1}f)' = \frac{2}{1 + e^{i\alpha}} \frac{1 + (2\beta - 1)w(z)}{1 + w(z)} - \frac{1 - e^{i\alpha}}{1 + e^{i\alpha}} (D^n f)'.$$
 (6)

Now from (6) we conclude that

$$(D^{n+1}f)'' = \frac{2}{1 + e^{i\alpha}} \frac{2(\beta - 1)w'(z)}{(1 + w(z))^2} - \frac{1 - e^{i\alpha}}{1 + e^{i\alpha}} (D^n f)''.$$
 (7)

Suppose that for $z_0 \in \Delta$

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Using the lemma and setting $w(z_0) = e^{i\theta_0}$ in (6) and (7), we obtain

$$\operatorname{Re}\left[(D^{n+1}f(z_0))' + \frac{1 + e^{i\alpha}}{2(n+1)} z_0 (D^{n+1}f(z_0))'' \right]$$

$$= \beta + \frac{2(\beta - 1)k}{n+1} \operatorname{Re} \frac{e^{i\theta_0}}{(1 + e^{i\theta_0})^2}$$

$$= \beta + \frac{(\beta - 1)k}{(n+1)(1 + \cos\theta_0)}.$$

See that $(n+1)(1+\cos\theta_0)>0$ for each n and $\theta_0\neq\pi$, then

$$\operatorname{Re}\left[(D^{n+1}f(z_0))' + \frac{1 + e^{i\alpha}}{2(n+1)} z_0 (D^{n+1}f(z_0))'' - \beta \right] < 0,$$

where $\beta < 1, k \ge 1, n \in N_0$, which is a contradiction to our hypothesis that $f \in M_{n+1}(\alpha, \beta)$. Thus |w(z)| < 1 and from (3) we conclude that $f \in M_n(\alpha, \beta)$.

LEMMA 2.3. [8] Let λ be a function that is defined on Δ with $Re\lambda(z) \geq 0$ for $z \in \Delta$. If p is analytic in Δ and $Re[p(z) + \lambda(z)zp'(z)] > 0$ for $z \in \Delta$, then Rep(z) > 0 for $z \in \Delta$.

By taking
$$p = (D^n f)' - \beta$$
 and $\lambda(z) = \frac{1 + e^{i\alpha}}{2(n+1)}$ in (2.3), we have

THEOREM 2.4. For each $n \in N_0$, $-\pi < \alpha \le \pi$, $\beta < 1, M_n(\alpha, \beta) \subset M_n(\pi, \beta)$.

Theorem 2.5. The extreme points of $M_n(\alpha, \beta)$ are

$$f_x(z) = z + 4(1 - \beta) \sum_{k=2}^{\infty} \frac{n!(k-1)!}{(k+n-1)!k(k+1+(k-1)e^{i\alpha})} x^{k-1} z^k,$$
(8)

where $|x| = 1, z \in \Delta$.

Proof. From the definition of $M_n(\alpha, \beta)$ it follows that $f \in M_n(\alpha, \beta)$ if and only if $D^n f \in M_0(\alpha, \beta)$. Therefore the operator D^n is a linear homeomorphism from $M_0(\alpha, \beta)$ to $M_n(\alpha, \beta)$ and thus preserves extreme points. Now to find the extreme points of $\operatorname{clco} M_0(\alpha, \beta)$.

Let $f \in M_0(\alpha, \beta)$, then $\operatorname{Re}\left\{f'(z) + \frac{1+e^{i\alpha}}{2}zf''(z)\right\} > \beta, z \in \Delta, \beta < 1, -\pi < \alpha \leq \pi$, so there exists a $p \in \mathcal{P}$, the class of functions in the form $p(z) = 1 + \sum_{k=1}^{\infty} c_k z^k$ and $\operatorname{Re} p(z) > 0, z \in \Delta$, such that

$$f'(z) + \frac{1 + e^{i\alpha}}{2} z f''(z) = \frac{1 - e^{i\alpha}}{2} f'(z) + \frac{1 + e^{i\alpha}}{2} (z f'(z))'$$
$$= \beta + (1 - \beta) p(z), \quad z \in \Delta.$$

It follows that $\left(\frac{1-e^{i\alpha}}{1+e^{i\alpha}}\right)f'(z) + \left(zf'(z)\right)' = \frac{2}{1+e^{i\alpha}}\left\{\beta + (1-\beta)p(z)\right\}$, which is equivalent to

$$cz^{c}f'(z) + z^{c}(zf'(z))' = \frac{2}{1 + e^{i\alpha}}z^{c} \{\beta + (1 - \beta)p(z)\},$$

where $c = \frac{1 - e^{i\alpha}}{1 + e^{i\alpha}}, \alpha \neq \pi$. Then we can write

$$[z^{c}(zf'(z))]' = \frac{2}{1 + e^{i\alpha}}z^{c} \{\beta + (1 - \beta)p(z)\}.$$

We conclude that

$$z^{c+1}f'(z) = (c+1)\int_0^z \xi^c \left\{ \beta + (1-\beta)p(\xi) \right\} d\xi. \tag{9}$$

From Hergoltz's Theorem, see page 21 of [4], $p \in \mathcal{P}$ if and only if

$$p(z) = \int_X \frac{1+xz}{1-xz} d\mu(x)$$

for some probability measure μ . Substituting this into (9) leads to

$$f'(z) = \frac{c+1}{z^{c+1}} \int_0^z \xi^c \left[\beta + (1-\beta) \int_X \left(1 + 2 \sum_{k=2}^\infty x^{k-1} \xi^{k-1} \right) d\mu(x) \right] d\xi.$$

Upon reversing the order of integration and integrating with respect to ξ , we obtain

$$f'(z) = \beta + (1 - \beta) \int_X \left[1 + 2 \sum_{k=2}^{\infty} \frac{c+1}{c+k} x^{k-1} z^{k-1} \right] d\mu(x),$$

then

$$f(z) = \beta z + (1 - \beta) \int_X \left[z + 4 \sum_{k=2}^{\infty} \frac{1}{k[k+1 + (k-1)e^{i\alpha}]} x^{k-1} z^k \right] d\mu(x).$$

So the extreme points of $clco M_0(\alpha, \beta)$ are given by

$$z + 4(1 - \beta) \sum_{k=2}^{\infty} \frac{1}{k[k+1+(k-1)e^{i\alpha}]} x^{k-1} z^k, \quad |x| = 1, z \in \Delta.$$

Also, note that

$$D^{n}f(z) = \left(z + \sum_{k=2}^{\infty} a_k z^k\right) * \frac{z}{(1-z)^{n+1}}$$
$$= z + \sum_{k=2}^{\infty} {k+n-1 \choose n} a_k z^k.$$

Thus the extreme points of clco $M_n(\alpha, \beta)$ are given by

$$z + \sum_{k=2}^{\infty} \frac{4(1-\beta)}{k[k+1+(k-1)e^{i\alpha}]} \left(\begin{array}{c} k+n-1 \\ n \end{array} \right)^{-1} x^{k-1} z^k, \ |x| = 1, z \in \Delta$$

which simplifies to (8). Since the family $M_n(\alpha, \beta)$ is convex and therefore is equal to its convex hull, (8) gives the extreme points of $M_n(\alpha, \beta)$. For the cases $n = 0, \beta = 0, -\pi < \alpha \le \pi$ and $n \in N_0, \beta < 1, \alpha = \pi$, (2.5) gives the extreme points of $M_0(\alpha, 0)$ and $M_n(\pi, \beta)$ obtained in [16] and [1], respectively.

COROLLARY 2.6. $f \in M_n(\alpha, \beta)$ if and only if f can be expressed as

$$f(z) = \int_X z + \sum_{k=2}^{\infty} \left[\frac{4(1-\beta)n!(k-1)!}{(k+n-1)!k(k+1+(k-1)e^{i\alpha})} x^{k-1} z^k \right] d\mu(x),$$

where μ is a probability measure defined on the unit circle X.

Since the coefficient bounds are maximized at an extreme point, as an application of (2.5), we have

COROLLARY 2.7. If $f \in M_n(\alpha, \beta)$, then

$$|a_k| \le \frac{4(1-\beta)n!(k-1)!}{(k+n-1)!k|k+1+(k-1)e^{i\alpha}|}, \quad k \ge 2, \ -\pi < \alpha \le \pi.$$

Equality occurs for $f_x(z)$ defined by (8).

From (8) we see for $f \in M_n(\alpha, \beta)$ and |z| = r < 1 that

$$|f(z)| \le r + 4(1-\beta) \sum_{k=2}^{\infty} \frac{n!(k-1)!}{(k+n-1)!k|k+1+(k-1)e^{i\alpha}|} r^k.$$

By letting $r \to 1$ we obtain

$$|f(z)| \le 1 + 4(1 - \beta) \sum_{k=2}^{\infty} \frac{n!(k-1)!}{(k+n-1)!k|k+1 + (k-1)e^{i\alpha}|}.$$
 (10)

Also, since for $n \geq 1, -\pi < \alpha \leq \pi, M_n(\alpha, \beta) \subset M_1(\pi, \beta)$, we let $n = 1, \alpha = \pi$ in (10) to get

$$|f(z)| \le 1 + 2(1 - \beta) \left(\frac{\pi^2}{6} - 1\right).$$

This shows that the family $M_n(\alpha, \beta), n \ge 1, -\pi < \alpha \le \pi$ is bounded in Δ for all $\beta, \beta < 1$. For n = 0, (10) becomes

$$|f(z)| \le 1 + 4(1 - \beta) \left(\sum_{k=2}^{\infty} 1/k|k + 1 + (k-1)e^{i\alpha}| \right)$$

 $\le 1 + \frac{2(1 - \beta)}{\cos(\alpha/2)} \left(\frac{\pi^2}{6} - 1 \right).$

So the functions in $M_n(\alpha, \beta)$ are bounded in Δ for each $-\pi < \alpha < \pi, \beta < 1$. The above result yields Theorem 7 by Silverman and Silvia [16] for $\beta = 0$. Our next theorem is on the partial sums of the functions in $M_n(\alpha, \beta)$ which for the case $\alpha = \pi$ gives Theorem 2 by Ahuja and Jahangiri [1].

THEOREM 2.8. Let $S_m(z, f)$ denote the m-th partial sum of a function f in $M_n(\alpha, \beta)$. If $f \in M_n(\alpha, \beta)$ and if $1 \le n \le 4$, then

$$S_m(z, f) \in M_{n-1}\left(\alpha, \frac{2\beta n + 1 - n}{n+1}\right).$$

To prove this theorem we shall need the following lemmas, the first of which is due to Gasper [6].

Lemma 2.9. Let R be the positive root of the equation

$$9t^7 + 55t^6 - 14t^5 - 948t^4 - 3247t^3 - 5013t^2 - 3780t - 1134 = 0.$$

If $-1 < t \le R \simeq 4.5678018$, then

$$\sum_{k=1}^{m} \frac{\cos k\theta}{k+t} \ge -\frac{1}{1+t}, \quad m = 1, 2, \dots$$

When $t=1,\,(2.9)$ confirms the estimate by Rogosinski and Szegö [11].

Lemma 2.10. Let $-1 < t \le R \simeq 4.5678018$. Then

$$Re\left(\sum_{k=2}^{m} \frac{z^{k-1}}{k+t-1}\right) > \frac{-1}{1+t}, \quad z \in \Delta.$$

LEMMA 2.11. Let p(z) be analytic in Δ , p(0) = 1, and Re p(z) > 1/2 in Δ . Then for any function F, analytic in Δ , the function p * F takes values in the convex hull of the image of Δ under F.

Proof of Theorem (2.8). Let $f \in M_n(\alpha, \beta)$ be of the form (1). Then we have

$$\operatorname{Re}\left(1 + \sum_{k=2}^{\infty} k \left[1 + \frac{(k-1)(1 + e^{i\alpha})}{2(n+1)}\right] \binom{k+n-1}{n} a_k z^{k-1}\right) > \beta$$
(11)

or

$$\operatorname{Re}\left(1 + \sum_{k=2}^{\infty} \frac{2kn}{n+1} \left[1 + \frac{(k-1)(1+e^{i\alpha})}{2(n+1)}\right] \binom{k+n-1}{n} a_k z^{k-1}\right) > \frac{2\beta n + 1 - n}{n+1}.$$

For the m-th partial sum of f, we can write

$$(D^{n-1}S_m(z,f))' + \frac{1+e^{i\alpha}}{2(n+1)}z(D^{n-1}S_m(z,f))''$$

$$= 1 + \sum_{k=2}^m k \left[1 + \frac{(k-1)(1+e^{i\alpha})}{2(n+1)} \right] \binom{k+n-2}{n} a_k z^{k-1}$$

$$= \left(1 + \sum_{k=2}^\infty \frac{2kn}{n+1} \left[1 + \frac{(k-1)(1+e^{i\alpha})}{2(n+1)} \right] \binom{k+n-1}{n} a_k z^{k-1} \right)$$

$$* \left(1 + \sum_{k=2}^m \frac{n+1}{2(k+n-1)} z^{k-1} \right).$$

For $1 \le n \le 4$, it is clear by (2.10) that

Re
$$\left(1 + \sum_{k=2}^{m} \frac{n+1}{2(k+n-1)} z^{k-1}\right) > \frac{1}{2}, \quad z \in \Delta.$$

Now an application of (2.11) to

$$(D^{n-1}S_m(z,f))' + \frac{1 + e^{i\alpha}}{2(n+1)}z(D^{n-1}S_m(z,f))''$$

concludes the theorem.

Now we will denote the class

$$O_n(\alpha, \beta) = \left\{ f \in \mathcal{A} : \operatorname{Re} \left\{ (D^n f)' + \frac{e^{i\alpha}}{n+1} z (D^n f)'' \right\} > \beta, \ z \in \Delta \right\}.$$

For the case $n = \beta = 0$, we get the class which was introduced by Ruscheweyh [13]. Our next theorem gives a characterization condition for $O_n(\alpha, \beta)$ and $M_n(\alpha, \beta)$ in terms of convolutions.

THEOREM 2.12. 1. A function $f \in A$ is in $O_n(\alpha, \beta)$ if and only if

$$Re\left\{\frac{1}{z}\left[D^{n}f(z)*\left(\frac{e^{i\alpha}z(1+(1-2\beta)z)}{(n+1)(1-z)^{3-2\beta}}\right.\right.\right.\right.\right.\right.\right.\right.\right.\right\} > \beta,$$

$$\left.\left.\left.\left.\left(\frac{(n+1-e^{i\alpha})z(1-z)^{1-\beta}(1-\beta z)}{(n+1)(1-z)^{3-2\beta}}\right)\right]\right\} > \beta,$$

with $-\pi < \alpha \le \pi, z \in \Delta, n \in N_0$.

2. $-\pi < \alpha \le \pi, n \in N_0, f \in M_n(\alpha, \beta)$ if and only if

$$\begin{split} Re \bigg\{ \frac{1}{z} \bigg[D^n f(z) * \bigg(\frac{(1+e^{i\alpha})z(1+(1-\beta)z)}{2(n+1)(1-z)^{3-2\beta}} \\ & + \frac{(2n+1-e^{i\alpha})z(1-z)^{1-\beta}(1-\beta z)}{2(n+1)(1-z)^{3-2\beta}} \bigg) \bigg] \bigg\} > \beta, \end{split}$$

where $z \in \Delta$.

3. A function $f \in \mathcal{A}$ is in $M_n(\alpha, \beta)$ if and only if

$$\frac{1}{z} \left[f(z) * \left(\frac{(1+x)\{(z+nz^2)(1-(\frac{1-e^{i\alpha}}{2})z)+(\frac{1+e^{i\alpha}}{2})z^2\}}{(1-z)^{n+3}} + \frac{(1-2\beta-x)z(1-z)^{n+3}}{(1-z)^{n+3}} \right) \right] \neq 0,$$

with $|x| = 1, z \in \Delta, -\pi < \alpha \le \pi$.

Proof of Theorem (2.12), 1. We know that $f \in O_n(\alpha, \beta)$ if and only if $\operatorname{Re}\left\{(D^n f)' + \frac{e^{i\alpha}}{n+1} z(D^n f)''\right\} > \beta$ for all $n \in N_0, -\pi < \alpha \le \pi, \beta < 1$. On the other hand,

$$(D^{n}f)' + \frac{e^{i\alpha}}{n+1}z(D^{n}f)'' = \left[\left(1 - \frac{e^{i\alpha}}{n+1}\right)D^{n}f + \frac{e^{i\alpha}}{n+1}z(D^{n}f)'\right]'$$

$$= \left(D^{n}f * \left[\left(1 - \frac{e^{i\alpha}}{n+1}\right)\frac{z}{(1-z)^{1-\beta}} + \frac{e^{i\alpha}}{n+1}\frac{z}{(1-z)^{2(1-\beta)}}\right]\right)'$$

$$= \left(D^{n}f + \frac{e^{i\alpha}z + (n+1-e^{i\alpha})z(1-z)^{1-\beta}}{(n+1)(1-z)^{2(1-\beta)}}\right)'.$$

For F and G normalized by F(0)=G(0)=F'(0)-1=G'(0)-1=0, we have that $(F*G)'=\frac{(F*zG')}{z}$. The result now follows upon taking $F=f, G(z)=\frac{e^{i\alpha}z+(n+1-e^{i\alpha})z(1-z)^{1-\beta}}{(n+1)(1-z)^{2(1-\beta)}}$, and noting that

$$zG'(z) = \frac{e^{i\alpha}z(1 + (1 - 2\beta)z) + (n + 1 - e^{i\alpha})z(1 - z)^{1 - \beta}(1 - \beta z)}{(n + 1)(1 - z)^{3 - 2\beta}}.$$

Proof of Theorem (2.12), 2. We know that $f \in M_n(\alpha, \beta)$ if and only if $\operatorname{Re}\left\{(D^n f)' + \frac{1+e^{i\alpha}}{2(n+1)}z(D^n f)''\right\} > \beta$. Furthermore, since $(D^n f)' + \frac{1+e^{i\alpha}}{2(n+1)}z(D^n f)'' = \frac{2n+1-e^{i\alpha}}{2(n+1)}(D^n f)' + \frac{1+e^{i\alpha}}{2(n+1)}(z(D^n f)')'$, it follows that

$$(D^n f)' + \frac{1 + e^{i\alpha}}{2(n+1)} z (D^n f)''$$

$$= \left(D^n f * \left[\frac{2n + 1 - e^{i\alpha}}{2(n+1)} \frac{z}{(1-z)^{1-\beta}} + \frac{1 + e^{i\alpha}}{2(n+1)} \frac{z}{(1-z)^{2(1-\beta)}} \right] \right)'$$

$$= \left(D^n f * \left[\frac{(2n + 1 - e^{i\alpha})z(1-z)^{1-\beta} + (1 + e^{i\alpha})z}{2(n+1)(1-z)^{2(1-\beta)}} \right] \right)'$$

this is equal to

$$\frac{1}{z} \left\{ D^n f * \left(\frac{(1+e^{i\alpha})z(1+(1-\beta)z)}{2(n+1)(1-z)^{3-2\beta}} + \frac{2n+1-e^{i\alpha})z(1-z)^{1-\beta}(1-\beta z)}{2(n+1)(1-z)^{3-2\beta}} \right) \right\},$$

and (2.12), 2 follows.

Proof of Theorem (2.12), 3. Let $f \in M_n(\alpha, \beta)$, then

Re
$$\left[(D^n f)' + \frac{1 + e^{i\alpha}}{2(n+1)} z (D^n f)'' \right] > \beta$$

or

$$\operatorname{Re}\left[\left(\frac{1+e^{i\alpha}}{2}\right)D^{n+1}f + \frac{1-e^{i\alpha}}{2}D^nf\right]' > \beta.$$

Since $\left[\frac{1+e^{i\alpha}}{2}D^{n+1}f + \frac{1-e^{i\alpha}}{2}D^nf\right]' = 1$ at the origin, we can write $f \in M_n(\alpha, \beta)$ if and only if

$$\frac{\left[\left(\frac{1 + e^{i\alpha}}{2} \right) D^{n+1} f + \left(\frac{1 - e^{i\alpha}}{2} \right) D^n f \right]' - \beta}{1 - \beta} \neq \frac{x - 1}{x + 1}, \quad |x| = 1, z \in \Delta.$$

This is equivalent to

$$(1+x)\left[\left(\frac{1+e^{i\alpha}}{2}\right)D^{n+1}f + \left(\frac{1-e^{i\alpha}}{2}\right)D^{n}f\right]'(1-2\beta-x) \neq 0. (12)$$

Writing $g(z) = z/(1-z)^{n+1}$, we observe that

$$\begin{split} z & \left[\left(\frac{1 + e^{i\alpha}}{2} \right) D^{n+1} f + \left(\frac{1 - e^{i\alpha}}{2} \right) D^n f \right]' \\ & = z \left(\left(\frac{1 + e^{i\alpha}}{2} \right) \left(f * \frac{g}{1 - z} \right) + \left(\frac{1 - e^{i\alpha}}{2} \right) (f * g) \right)' \\ & = \frac{1 + e^{i\alpha}}{2} \left(f * z \left(\frac{g}{1 - z} \right)' \right) + \frac{1 - e^{i\alpha}}{2} (f * z g'). \end{split}$$

From this and (12), we conclude that $f \in M_n(\alpha, \beta)$ if and only if

$$\frac{1}{z} \left[f * \left\{ (1+x) \left(\frac{1+e^{i\alpha}}{2} \right) z \left(\frac{g}{1-z} \right)' + (1+x) \left(\frac{1-e^{i\alpha}}{2} \right) z g' + (1-2\beta-x)z \right\} \right] \neq 0,$$

or if and only if

$$\frac{1}{z} \left[f * \left\{ \frac{(1+x)z[(1+nz)(1-(\frac{1-e^{i\alpha}}{2})z)+(\frac{1+e^{i\alpha}}{2})z]}{(1-z)^{n+3}} + \frac{(1-2\beta-x)z(1-z)^{n+3}}{(1-z)^{n+3}} \right\} \right] \neq 0$$

which implies the theorem.

For the cases $n=0, \beta=0$, Theorem (2.12) 1-2, gives Theorem 3 obtained in [16]. And for $\alpha=\pi$, Theorem (2.12) 3, gives Theorem 2.6 obtained in [2].

Theorem 2.13. 1. Let $0 \le \gamma < 1$. If $\beta \le \beta_0 = \frac{41+23\gamma}{64}$ and if $n \ge n_0 = \frac{15+\gamma-16\beta}{1-\gamma}$, then $M_n(\alpha,\beta) \subset K(\gamma)$, where $K(\gamma)$ is the well-known class of convex functions of order γ .

- 2. $O_n(\alpha, \beta) \subset \bigcap_{\alpha} M_n(\alpha, \beta)$.
- 3. For each $\alpha, -\pi < \alpha \leq \pi, \alpha \neq 0, M_n(\alpha, \beta) K(\beta)$ is nonempty.

To prove this theorem we shall need the following lemma, which is due to Ahuja and Jahangiri [2].

LEMMA 2.14. Let $0 \le \gamma < 1$. If $\beta \le \beta_0 = \frac{41+23\gamma}{64}$ and if $n \ge n_0 = \frac{15+\gamma-16\beta}{1-\gamma}$, then $M_n(\beta) \subset K(\gamma)$.

Proof of Theorem (2.13), 1. From (2.4) we found that $M_n(\alpha, \beta) \subset M_n(\pi, \beta)$, and using Lemma (2.14) [2], the result follows. \square

Proof of Theorem (2.13), 2. If $f \in O_n(\alpha, \beta)$, then

Re
$$\left\{ (D^n f)' + \frac{e^{i\alpha}}{n+1} z (D^n f)'' \right\} > \beta$$

for all $z \in \Delta$. Since $\left|\frac{1+e^{i\alpha}}{2(n+1)}\right| \leq 1$ for all $-\pi < \alpha \leq \pi$, it follows that $\operatorname{Re}\left\{(D^n f)' + \frac{1+e^{i\alpha}}{2(n+1)}z(D^n f)''\right\} > \beta$ for $z \in \Delta, -\pi < \alpha \leq \pi$. We conclude that $f \in \bigcap_{\alpha} M_n(\alpha, \beta)$.

Proof of Theorem (2.13), 3. Consider the function

$$f_{\alpha}(z) = z + \frac{1 - \beta}{3 + e^{i\alpha}} z^2.$$

Since

$$(D^n f)' + \frac{1 + e^{i\alpha}}{2(n+1)} z (D^n f)'' - \beta =$$

$$(1 - \beta) + \frac{2(1 - \beta)(n+1)}{3 + e^{i\alpha}} \left[1 + \frac{1 + e^{i\alpha}}{2(n+1)} \right] z,$$

$$f_{\alpha} \in M_n(\alpha, \beta) - K(\beta)$$
. Because $\frac{1-\beta}{|3+e^{i\alpha}|} > \frac{1-\beta}{4}$ for $\alpha \neq 0$.

The following theorem gives the necessary and sufficient condition for the integral operator $\frac{(n+1)}{z^n} \int_0^z t^{n-1} f(t) dt$ to be in $M_{n+1}(\alpha, \beta)$.

Theorem 2.15. et $J: \mathcal{A} \to \mathcal{A}$ be an integral operator defined by

$$J_f(z) = \frac{(n+1)}{z^n} \int_0^z t^{n-1} f(t) dt.$$
 (13)

Then $J_f(z) \in M_{n+1}(\alpha, \beta)$ if and only if $f(z) \in M_n(\alpha, \beta)$.

Proof. It is sufficient to show that

$$D^n f(z) = D^{n+1} J_f(z) \tag{14}$$

From (13) we get

$$D^{n}J_{f}(z) = \frac{n+1}{z^{n}} \int_{0}^{z} t^{n-1}D^{n}f(t)dt.$$
 (15)

By differentiating (15) and using (5) we obtain (14). \Box

THEOREM 2.16. $M_n(\alpha, \beta)$ is closed under convolution with convex functions.

For proving this theorem we shall use the following lemma which is due to Ruscheweyh and Sheil-Small [14].

LEMMA 2.17. If $\phi \in K(0)$ and if $g \in \mathcal{A}$ is starlike in Δ , then the function $(\phi * gF)/(\phi * g)$ takes values in the convex hull of $F(\Delta)$ for every function F in \mathcal{A} .

Proof of Theorem (2.16). Let g(z) = z and

$$F(z) = \left[\left(\frac{1 + e^{i\alpha}}{2} \right) D^{n+1} f + \left(\frac{1 - e^{i\alpha}}{2} \right) D^n f \right]'.$$

Then for $\phi \in K(0)$, we have

$$\begin{split} \frac{\phi*zF}{\phi*z} &= \frac{\phi*z\left[\left(\frac{1+e^{i\alpha}}{2}\right)D^{n+1}f + \left(\frac{1-e^{i\alpha}}{2}\right)D^{n}f\right]'}{z} \\ &= \left(\phi*\left[\left(\frac{1+e^{i\alpha}}{2}\right)D^{n+1}f + \frac{1-e^{i\alpha}}{2}D^{n}f\right]\right)' \\ &= \left(\left(\frac{1+e^{i\alpha}}{2}\right)D^{n+1}(\phi*f) + \left(\frac{1-e^{i\alpha}}{2}\right)D^{n}(\phi*f)\right)'. \end{split}$$

By (2.17), we conclude that

$$\left\{ \left(\frac{1 + e^{i\alpha}}{2} \right) D^{n+1}(\phi * f) + \left(\frac{1 - e^{i\alpha}}{2} \right) D^n(\phi * f) \right\} \in M_0(\pi, \beta).$$

This means that $\phi * f \in M_n(\alpha, \beta)$. So the proof is complete. \square

The last theorem is on the convolution of functions in $M_n(\alpha, \beta)$ with functions in $M_n(\pi, \beta)$. We shall use the following lemma, due to Fejér [5], to prove this theorem. A sequence $\{c_k\}_{k=0}^{\infty}$ of non-negative real numbers is said to be a convex null sequence if $c_k \to 0$ as $k \to \infty$, and $c_0 - c_1 \ge c_1 - c_2 \ge \cdots \ge c_{k-1} - c_k \ge \cdots \ge 0$.

LEMMA 2.18. Let $\{c_k\}_{k=0}^{\infty}$ be a convex null sequence. Then the function $p(z) = \frac{c_0}{2} + \sum_{k=1}^{\infty} c_k z^k$, $z \in \Delta$, is analytic and $\operatorname{Re} p(z) > 0$ in Δ .

THEOREM 2.19. Let $f \in M_n(\pi, \beta)$ and $g \in M_n(\alpha, \beta)$. Then $f * g \in M_n(\alpha, \gamma)$ if

$$\gamma = \frac{n(2\beta + 1) + 4\beta - 1}{2(n+1)} \ge \beta. \tag{16}$$

Proof. For $c_0 = 1$ and

$$c_k = \frac{n+1}{(k+1)\binom{k+n}{n}}, \quad k \ge 1,$$

we see that $\{c_k\}_{k=0}^{\infty}$ is a convex null sequence. Therefore, by (2.18), we have

$$\operatorname{Re}\left(1 + \sum_{k=2}^{\infty} \frac{n+1}{k\binom{k+n-1}{n}} z^{k-1}\right) > \frac{1}{2}.$$
 (17)

Let $g(z) = z + \sum_{k=2}^{\infty} b_k z^k$ be in $M_n(\alpha, \beta)$. By (11) we have

$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}k\left[1+\frac{(k-1)(1+e^{i\alpha})}{2(n+1)}\right]\binom{k+n-1}{n}b_kz^{k-1}\right)>\beta.$$
(18)

Now we convolve (17) and (18) and apply (2.11) to obtain

Re
$$\left(1 + \sum_{k=2}^{\infty} (n+1) \left[1 + \frac{(k-1)(1+e^{i\alpha})}{2(n+1)}\right] b_k z^{k-1}\right) > \beta$$

or

$$\operatorname{Re}\left\{\frac{g}{z} + \frac{1 + e^{i\alpha}}{2(n+1)} \left(\frac{zg' - g}{z}\right)\right\} > \frac{n + \beta}{n+1}$$

or

Re
$$\left\{ \frac{g}{z} + \frac{1 + e^{i\alpha}}{2(n+1)} \left(\frac{zg' - g}{z} \right) - \frac{2\beta + n - 1}{2(n+1)} \right\} > \frac{1}{2}$$
.

Since $Re(D^n f)' > \beta$, we once again use (2.11) to obtain

$$\operatorname{Re}\left((D^n f)' * \left\lceil \frac{g}{z} + \frac{1 + e^{i\alpha}}{2(n+1)} \left(\frac{zg' - g}{z}\right) - \frac{2\beta + n - 1}{2(n+1)} \right\rceil \right) > \beta$$

or

$$\operatorname{Re}\left\{\left((D^n f)' * \frac{g}{z}\right) + \frac{1 + e^{i\alpha}}{2(n+1)} \left((D^n f)' * \frac{zg' - g}{z}\right)\right\}$$
$$> \frac{n(2\beta + 1)4\beta - 1}{2(n+1)} = \gamma.$$

Using the fact that

$$(D^{n}(f * g))' = (D^{n}f)' * (g(z)/z)$$

$$z (D^{n}(f * g))'' = z ((D^{n}f)' * (g(z)/z))'$$

$$= (D^{n}f)' * z (g(z)/z)'$$

conclude the theorem.

For $\alpha = \pi$, (2.19) gives the corresponding result in Theorem 4 by Ahuja and Jahangiri [1].

References

- [1] O. P. Ahuja and M. Janangiri, n the derivatives of a family of analytic functions, Math. Japonica 47 (1998), no. 1, 67–72.
- [2] O. P. Ahuja and M. Janangiri, On a class of bounded analytic functions, Scientiae Mathematica 1 (1998), no. 1, 85–88.
- [3] J. W: Alxander, Functions which map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12–22.
- [4] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1980.
- [5] L. Fejér, Uber die positivitat von summen, die nach trigonometrischen order, Ac. Sc. Szeged (1925), 75–86.
- [6] G. Gasper, Nonnegative sums of cosine, ultraspherical and Jacobi polynomials, J. Math. Anal. Appl. 26 (1969), 60–68.
- [7] I. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469–474.

- [8] S. S. MILLER AND P. T. MOCANU, Univalent solution of briotbouquet differential equations, Differential Equations 56 (1985), 297– 310.
- [9] K. I. NOOR, On some applications of the Ruscheweyh derivatives, Math. Japonica **36** (1991), 109–115.
- [10] K. Padmanabhan, On the radius of univalence of certain classes of analytic functions, J. London Math. Soc. 1 (1969), 225–231.
- [11] W. ROGOSINKSI AND SZEGÖ, Uber die abschimlte vol potenzreihen die in ernein kreise be schrarikt bleiben, Math. Z. 28 (1928), 73–94.
- [12] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115.
- [13] S. Ruscheweyh, Extension of Szëgo's theorem on the sections of univalent functions, Siam J. Math. Anal. 19 (1988), 1442–1449.
- [14] S. Ruscheweyh and T. B. Sheil-Small, *Hadamard products of schlicht functions and the Dólya-Schoenberg conjecture*, Comment. Math. Helv. **49** (1973), 119–136.
- [15] H. SILVERMAN, A class of bounded starlike functions, Internat. J. Math. and Math. Sci. 17 (1994), no. 2, 249–252.
- [16] H. SILVERMAN AND E. M. SILVIA, Characterizations for subclasses of univalent functions, Math. Japonica 50 (1999), no. 1, 103–109.
- [17] R. SINGH AND S. SINGH, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), 145–152.

Received August 21, 2000.