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On the Derivatives of a Family of
Analytic Functions

H.A. AL-KHARSANI AND R.A. AL-KHAL

SUMMARY. - For 6 <1, n=0,1,2,..., and —7 < a < 7, we let
M, (c, B) denote the family of functions f(z) = z+ --- that are
analytic in the unit disk and satisfy there the condition

1+ e
2(n+1)

where D™ f(z) is the Hadamard product or convolution of f with
z/(1 — 2)"*L. We prove the inclusion relations M, 1(a,3) C
M, (a, ), and My(a,3) < My(mw,B),5 < 1. Extreme points,
as well as integral and convolution characterizations, are found.
This leads to coefficient bounds and other extremal properties.
The special cases My(a,0) = Lo, My, (7, 3) = M, () have previ-
ously been studied [16], [1].

re{ (0npy + A0 | >

1. Introduction

Let A denote the family of functions f of the form
o
f(z)= z+2akzk (1)
k=2

that are analytic in the unit disk A = {z : |z| < 1}. Denote by
M, (a,0),6 <1, n=0,1,2,...,—7 < a < 7, the subfamily of A
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consisting of functions f of the form (1) for which

Re {(D"f)’ + mZ(D"f)”} > [ inA,

where D" f is the Ruscheweyh derivative [12] of f defined by

D"f(z) = 2(z" " f(2)) W /nl = f(2) % (2/(1 = 2)"H).

The operator * stands for the Hadamard product or convolution of

o o
two power series f(z) = Zakzk and and g(z) = Zbkzk, that
k=0 k=0
is, (f xg)(z) = f(2) % g(z) = Ypooarbez®. It is obvious that
M, (o, ) C My(a,v) if B > ~. We also know that M,41(0,5) C
M, (0,5) [9]. Alexander [3] showed that Mj(m,0) is a subfamily of
analytic univalent functions. Note that, for 5 < 0, M, («, 3) need not
be univalent in A. Singh and Singh [17] proved that the functions
in Mp(0,0) are starlike in A. Silverman and Silvia [16] found ex-
treme points, coefficient bounds, and convolution characterizations
for Mp(e,0),—m < o < m. Also Silverman [15] showed that for
f € My(m, 3), the partial sums S, (z, f) satisfy Re(Sn(z, f)) > .
Ahuja and Jahangiri [2] showed that the functions in M, (m, 3) are
invariant under convolution with convex functions and introduced a
convolution characterization for functions in M,,(m, §). Furthermore,
they found [1] v = 7y(n, 8) > [ so that for f and g in M, (7, 3), their
convolution is in M, (m,v). In this note we extend most of their
results to more general case M, («, ). Finally, we will state some
results as improvement to the previous results and we proved the
inclusion relation M, 11(«, 3) C M, (o, ).

2. Main results

THEOREM 2.1. M,,+1(a, B) C My(«, 3) for each n € Ny, 3 < 1, and
—nm<a<lm.

To prove this theorem we shall need the following lemma, which
is due to Jack [7].
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LEMMA 2.2. Let w be an analytic function in A satisfying w(0) =0
and |w(z)| < 1 for z € A. Then if |w| assumes its mazimum value
on the circle |z| = r at a point z1, we can write

2w (21) = kw(z1),
where k is real and k > 1.
Proof of theorem (2.1). Let f € My4+1(a, 3). Then

Re { (D"+1f(z))/ + m

z (D" f(z))”} > 6. (2)
We define an analytic function w(z) in A such that

1+ i )1+ (28— Du(z)

(D"f)l+mz(l7nf) = T Twl)

(3)

where w(0) = 0 and w(z) # —1 [10]. We shall show that |w(z)| < 1.
From (3) we have

2(n+1) [1+4 (26 = Dw(z)

Z(an)”: 1+€ia 1+U)(Z) _(an)/ . (4)
Using the known identity
2(D"f) = (n+1)D" " f —nD"f, (5)
we get
(profy = 2 IFCI D) 1Ry g

1+ e 14+ w(z) 1+ el
Now from (6) we conclude that

" __ 2 2(6 - 1)11)/(2’) 1-— em

n+1
(D) el (14 w(z))? T 1t eie

@omn" (1)

Suppose that for zg € A

max w(z)] = [w(z)| = 1.
|2]<] 20l
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Using the lemma and setting w(zp) = € in (6) and (7), we obtain

Re (Dn—Hf(Zo)), + m

20(D" T f(20))"

28— 1k et
n+1 e(1—i—ei90)2
(6 -1k
(n+1)(1 4 cosby)

:ﬁ+

:ﬁ+

See that (n + 1)(1 + cosfp) > 0 for each n and 6y # 7, then

Re |(D"*! f(20)) + At 1)

20(D" 1 f(z0))" = B| <0,

where 0 < 1,k > 1,n € Ny, which is a contradiction to our hypoth-
esis that f € My4+1(«, ). Thus |w(z)| < 1 and from (3) we conclude
that f € M,(«, ). O

LEMMA 2.3. [8] Let X be a function that is defined on A with Re\(z) >
0 for z € A. If p is analytic in A and Re[p(z) + A(2)zp/'(2)] > 0 for
z € A, then Rep(z) > 0 for z € A.

By taking p = (D" f) — 3 and A(z) = 21(2—1(;) in (2.3), we have

THEOREM 2.4. For eachn € Ny, -1 < a <m, <1, My(a,3) C
M, (7, B).

THEOREM 2.5. The extreme points of M,(«, 3) are

B > nl(k —1)! _
folz) =2+ 4(1=5) Z:: ktn— Dk +1+ (k- 1)eia)””k 2,
(8)

k=2
where |z| =1,z € A.

Proof. From the definition of M, («, ) it follows that f € M, («a, )
if and only if D"f € My(«, 3). Therefore the operator D™ is a lin-
ear homeomorphism from My(«, 5) to M, («, 3) and thus preserves
extreme points. Now to find the extreme points of clco My(«, 3).
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Let f € My(a,8), then Re{['(2) + H52f"(2)} > 8,2 € A8 <
1,—m < a < 7, so there exists a p € P, the class of functions in the
form p(z) = 1+ 72, cxz* and Re p(z) > 0,z € A, such that

1+eia 1_eia 1+eia

52z = —5— )+ (zf'(2))

= [+ (1-P)p(z), ze€A.

f'(z) +

It follows that (1555 ) f'(2) + (2/'(2)) = = {6+ (1 = B)p(2)}
which is equivalent to

c2“f'(2) + 2°(2f'(2)) = ZH{B+ (1= B)p(2)},

1+ ete

_eia .
where ¢ = ﬁ, « # 7. Then we can write

[“(=f'(2)] = B+ (1-B)p(2)} -

1+ eia
We conclude that
PG = ) [ BT a-opOrE O

From Hergoltz’s Theorem, see page 21 of [4], p € P if and only if

plz) = /X L )

1—2xz

for some probability measure p. Substituting this into (9) leads to

e =S [Ce|ara-n [ <1 + 22%’“15’“1) du(x)] .

k=2
Upon reversing the order of integration and integrating with respect
to &, we obtain

f’(2)=6+(1—6)/x

X c+1
k=1 _k—1
1—1—23_20_’_—]{36 z ]d,u(x),
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then

1
4 _
aF kzzzk[k—irl—l—(k—l)ela]

F(2) = BzA(1-B) /X

So the extreme points of clcoMy(«, 3) are given by

o
41-8 k1R =1,z€A.
z+ kz_;kk—i-l—i- 1)6104]35 2%, x| 2 €

Also, note that

D'f(z) = <z + Zakzk> * ﬁ

Thus the extreme points of clco M,,(«, 3) are given by

f) ktn—1\"" 1k
A =1 A
Z+Zkk+1+ ~Tyea] n T | =1,z €

which simplifies to (8). Since the family M, («,3) is convex and
therefore is equal to its convex hull, (8) gives the extreme points of
M, (c, 3). For the cases n =0,0=0,—1 < a <7 and n € Ny, [ <
1,a = 7, (2.5) gives the extreme points of My(c,0) and M, (7, 3)
obtained in [16] and [1], respectively. O

COROLLARY 2.6. f € My (o, 3) if and only if f can be expressed as

B)ni(k —1)!
:/ Z+Z[ /<:+n—1'/<:(k+1+(/<;_1)em)mk 24 dp(x),

where [ is a probability measure defined on the unit circle X.

Since the coefficient bounds are maximized at an extreme point,
as an application of (2.5), we have
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COROLLARY 2.7. If f € M, (v, 3), then

4(1 = Bynl(k — 1)
k+n—1)klk+1+ (k- ee]

Equality occurs for f.(z) defined by (8).

\ak\g( k>2, —t<a<m.

From (8) we see for f € M,(«a,3) and |z| =r < 1 that

[e.9]

f(2) <r+401-pB)

k=2

nl(k —1)! rk
(k4+n—1klk+14 (k—1)ee|

By letting r — 1 we obtain

o0

|f(Z) <1+4(1-P)

k=2

nl(k —1)!
(k+n—1kk+14 (k- 1|

(10)

Also, since for n > 1, -1 < a < 7, My (o, ) C My(m,[3), we let
n=1,a =7 in (10) to get

2
fEI<1+20-6) (5 -1).
This shows that the family M, («,3),n > 1,—7 < o < 7 is bounded
in A for all 8,8 < 1. For n =0, (10) becomes

1f(z)] < 14+4(1-p) (Z 1klk+1+ (k- 1)em|>

k=2
2(1 - 2
L2A=08) (")
cos(a/2) \ 6
So the functions in M, («, 3) are bounded in A for each —7 < a <
m, 3 < 1. The above result yields Theorem 7 by Silverman and Silvia
[16] for § = 0. Our next theorem is on the partial sums of the

functions in M, (a, 3) which for the case @« = 7 gives Theorem 2
by Ahuja and Jahangiri [1].

THEOREM 2.8. Let Sy,(z, f) denote the m-th partial sum of a func-
tion f in My(o,B). If f € My(a, B) and if 1 < n <4, then

2Bn—i—1—n>

Su(enf) € Moy (0 200
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To prove this theorem we shall need the following lemmas, the
first of which is due to Gasper [6].

LEMMA 2.9. Let R be the positive root of the equation
9t7 + 55t° — 1415 — 948t* — 3247% — 5013t — 3780t — 1134 = 0.
If =1 <t < R ~4.5678018, then

" cos ko 1
> — )
ki T 1+t

m=12,...

When t = 1, (2.9) confirms the estimate by Rogosinski and Szegd
[11].

LEMMA 2.10. Let —1 <t < R~ 4.5678018. Then

1
A.
<Zk+t—1> 110 €

LEMMA 2.11. Let p(z) be analytic in A, p(0) = 1, and Re p(z) > 1/2
in A. Then for any function F, analytic in A, the function p x F
takes values in the convex hull of the image of A under F'.

Proof of Theorem (2.8). Let f € M, («, 3) be of the form (1). Then
we have

re (0 e oo ERE ] (T )t 5
(11)

15 2 1+ ] (7 Y

2 _
- On+1 n
n+1
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For the m-th partial sum of f, we can write
1 + eia
2(n+1)

:1+ék[l+(k—1)(1+eia)] < k+n—2 >akzk—1

(D" Sz, £)) + 2(D" 1 S(, £))"

2(n+1) n

) (Hinzinl {H (k —2(171<i;eia)] ( bt )Mzkl)

Now an application of (2.11) to
1+ eia
2(n+1)

concludes the theorem. O

(D" Sz, f)) + 2(D" 1 S(z, £))"

Now we will denote the class

On(a, f) = {f € A:Re{(D”f)'Jr

eza

n—+1

z(D"f)”} >8, ze A}.

For the case n = 8 = 0, we get the class which was introduced by
Ruscheweyh [13]. Our next theorem gives a characterization condi-
tion for O, («, #) and M, («, 3) in terms of convolutions.
THEOREM 2.12. 1. A function f € A is in Op(a, 3) if and only
if
1 ez(1+ (1 —2p)z)
Res — | D™
oo (Trma—o

e v S | |

with —m < a <m,z € A,n e Ny.
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2. -t <a<mmnée Ny fe M) if and only if

Re{l [anu) " <<1 + )21+ (1~ B)2)

2+ (I -2 %

(2n +1—e)z(1 —2)'7P(1 - B2)
)]} >

where z € A.

3. A function f € A is in My («a, 3) if and only if

o) {(z +n22)(1 — (=€) ey, 2
1[f(z)*<(1+ (= + )((f_i)nig))ﬂ 5 )2}

) N (1—26—x)z(1—z)"+3>] 40

(1 _ Z)n+3

with |z| =1,z € A, -7 < a < 7.

Proof of Theorem (2 12), 1. We know that f € O, («, 3) if and only
if Re{(D"f)’ n+1 (D"f)”} > B forallme Ng,—7m<a<mpf<
1. On the other hand,

)+ gy = (1= 25 ) P )

n eia z eia zZ '
- (o (-75) =5 et )

B n ez 4+ (n4+1—e)z(1 — z)l_ﬁ !
- (o S )

For F' and G normalized by F(0) = G(0) = F'(0)—1 = G'(0)—1 = 0,

we have that (FxG) = (F*ile) The result now follows upon taking

€24 (n+1—et)z(1—2)1—8
F = f, G(Z) = (7(1_’_1)(1_2,))2((175))

21+ (1=20)2) +(n+1—ez(1 —2)"P(1 - p2)
(n+1)(1 — 2)3-28 '

, and noting that

2G'(2) =
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Proof of Theorem (2.12), 2. We know that f € M, («, ) if and only
if Re {(D”f) Lie' (D"f)”] > (3. Furthermore, since (D" f)" +

2(n+1) ©
sy A (D) = B (DY + 5Ty (2(D" )Y, it follows that
1+ et
Dn / Dn 2
(D"f) + gy A"

n 2n + 1 — e z 1+e@ z ,
MGEHE = e e )

B (an . [(m +1 = (eyiaj-zl()l(l_j)zl)Qﬁ(li_ﬁ()l + eia)zb/

this is equal to

L, ((A+e)z(1+(1-B)2)
Z{D U < 2(n + 1)(1 — 2)3-27
2n4+1—e)z(1—2)'78(1 - B2)
RS TS e >}

and (2.12), 2 follows. O
Proof of Theorem (2.12), 3. Let f € M,(«,3), then

1 +6ia
2(n+1)

Re [(D” £+ Z(D" f)”] >3

or

Re [<1+2em> prtiy ! emD"f] > 8.

2e" e /
Since [H'TED”“J” + 1_Tean] = 1 at the origin, we can write
f € My, (a, B) if and only if

(£ D4+ (D) — 3 P
1-7 z+1

This is equivalent to

(1+z) [(#) DL+ (%) D"f}/ (1-28—2z) # 0. (12)

|| =1,z € A.
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Writing g(2) = 2/(1 — 2)"*!, we observe that
(0%

=z

z[ 1+26i >Dn+1f—{— <1—26m>an]

:z<<1+26m> (f*lf) n <1_2€m>(f*g)>
1+ el g ! 1 — el ,

=3 <f*z<:>>+ 5 (fxzg").

From this and (12), we conclude that f € M, («, ) if and only if

e (555 () w0 (5)

—|—(1—2ﬁ—x)z}] £0,

or if and only if

l[f* {(1 + x)z[(1 +nz)(1 - (#)z) 4 (#)z]

L (=26 a)z(1 )t H 40

(1 _ Z)n+3

which implies the theorem.

For the cases n = 0,3 = 0, Theorem (2.12) 1-2, gives Theorem 3
obtained in [16]. And for a = 7, Theorem (2.12) 3, gives Theorem
2.6 obtained in [2].

THEOREM 2.13. 1. Let 0 < v < 1. If B < fy = 2227 and if
n>mng= w, then My (a, B) C K(v), where K(7) is the
well-known class of convex functions of order ~.

2. Op(a, B) C Ny Mn(a, B).
3. For each a, —m < o < m, 0 # 0, My, (v, B) — K () is nonempty.

To prove this theorem we shall need the following lemma, which
is due to Ahuja and Jahangiri [2].
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LEMMA 2.14. Let 0 <~y < 1. If B < Gy = 41;5# and if n > ng =
Wa then Mn(ﬁ) C K(,}/)

Proof of Theorem (2.13), 1. From (2.4) we found that M, (a, ) C
M, (m, 3), and using Lemma (2.14) [2], the result follows. O

Proof of Theorem (2.13), 2. If f € O,(a, 3), then

n—+1

Re {(D"f)’ - z(D”f)"} > 3

14-et

2(n+1)
tmnRe{Qny+gﬁ$%4Lva}>¢3mpzeA,—w<cxgw.W@
conclude that f € ", Mn(a, 3). O

for all z € A. Since

< 1 for all -7 < a < m, it follows

Proof of Theorem (2.13), 3. Consider the function

1-08 ,
— 2.
3+e

falz) =2+
Since

A ey

(D) = =

2(1— B)(n + 1) [HL)]

-+ == 2n +1

fo € My (a, B) — K(3). Because |31J;€a‘ > # for a # 0. O

The following theorem gives the necessary and sufficient condi-
tion for the integral operator (n+1) foz t"~Lf(t)dt to bein M, 1(c, ).

zn

THEOREM 2.15. et J : A — A be an integral operator defined by

Zn

Jp(z) = Y /O (). (13)

Then Jf(z) € Myy1(a, B) if and only if f(z) € Mp(a, ).
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Proof. Tt is sufficient to show that
D"f(z) = D" (2)
From (13) we get

1 z
D"Jf(z):nz—: /Ot"—lD"f(t)dt.

By differentiating (15) and using (5) we obtain (14).

THEOREM 2.16. M, («,3) is closed under convolution with convex

functions.

For proving this theorem we shall use the following lemma which

is due to Ruscheweyh and Sheil-Small [14].

LEMMA 2.17. If ¢ € K(0) and if g € A is starlike in A, then the
Junction (¢ = gF) /(¢ * g) takes values in the convex hull of F'(A) for

every function F in A.

Proof of Theorem (2.16). Let g(z) = z and

=[5 ()]

Then for ¢ € K(0), we have

o el ()]

bxz z

(o-[(5=) s i)

((”T) D" (g f) + (1 _jm) D" (6 f)>/-

By (2.17), we conclude that

{(%) D (¢ f) + (1 ‘2€m> D™(¢ f)} € Mo(r, ).

This means that ¢ x f € M, («, 3). So the proof is complete.

O
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The last theorem is on the convolution of functions in M, («a, ()
with functions in M, (7, 3). We shall use the following lemma, due to
Fejér [5], to prove this theorem. A sequence {cj}32, of non-negative
real numbers is said to be a convex null sequence if ¢, — 0 as k — oo,
and co—c1 >cp—cp > Zcp1—cp = 2 0.

LEMMA 2.18. Let {ci}72, be a convex null sequence. Then the func-
tion p(z) = L+ >0 k2”2 € A, is analytic and Re p(z) > 0
in A.

THEOREM 2.19. Let f € M, (m,3) and g € My(c,3). Then fxg €
My(a, ) if
n(2B+1)+48 -1

2(n+1) = (16)

Proof. For ¢y =1 and

1
= nt E>1

(k+1)<k:”>’ o

we see that {c;}7°, is a convex null sequence. Therefore, by (2.18),
we have

o0
1
Re 1+Z nt Pt SN

k2k<k+n_1>
n

Let g(2) = 2+ Y 5oy bxz* be in M, (a, 8). By (11) we have

e (G

(17)

DO =

Now we convolve (17) and (18) and apply (2.11) to obtain

- (k=D +e)], 4
Re<1+kzzz(n+1)[1+ St ]bkzk 1>>5

1 e I
RelY 4 +e zg' — g >n+ﬁ
z 2(n+1) z n+1

or
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or

g 14+¢€® (z2d—g 268 +n—1 1
Re{? . -
e{z+2(n+1)< 2 ) Snt1) J 2

Since Re(D"f) > 3, we once again use (2.11) to obtain

re (05 £+ o (5) - Ty ]) =9

el 5y (ir- )

n(26+1)48 -1
2(n +1) B

or

Using the fact that

(D"(f=g) = (D"f) = (g(2)/2)
2(D"(fxg)" = z((D"f) *(9(2)/2))
= (D) %z (9(2)/2)

conclude the theorem. O

For a = 7, (2.19) gives the corresponding result in Theorem 4 by
Ahuja and Jahangiri [1].
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