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A Riemann-type Minimal Integral for

the Classical Problem of Primitives
Luisa D1 P1azza )

SUMMARY. - Properties of the C-integral are given. In [3] it is
proved that the C-integral is the minimal integral which includes
Lebesgue integrable functions and derivatives. The proof of the
result in the general case is very involved and technical. In this
note it is sketched in a particular case.

Let F : [a,b] — R be a differentiable function. The problem of
recovering F' from its derivative by integration is called problem of
primitives.

To this end the Lebesgue integral is a good tool, when it works.
In fact the function F(z) = 2?sin, if 0 < 2 < 1, F(z) = 0 if
z = 0, is differentiable at each point of [0, 1], but its derivative is not
Lebesgue integrable.

In 1912 A. Denjoy provided a first solution of the problem of
primitives, based on an integration process, called totalization. A
second solution, based on the notion of major and minor functions
was given in 1914 by O. Perron. A third solution, based on genera-
lized Riemann sums was obtained indipendently by J. Kurzweil in
1957 and by R. Henstock in 1963. These three integration methods
are equivalent.

In 1986 A.M. Bruckner, R.J. Fleissner and J. Foran (see [4])
observed that the previous solutions possess a generality which is
not needed for this purpose. Indeed the function F(z) = z sz'nzl—Q, if
0<z<1, F(z) =0if £ =0, is a primitive for the Denjoy-Perron-
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Kurzweil-Henstock integral, but it is neither a Lebesgue primitive,
nor a differentiable function, or a sum of a Lebesgue primitive and
a differentiable function.

Therefore the following question arises: Is there a minimal inte-
gral which includes Lebesgue integrable functions and derivatives?

The descriptive version of this problem has been treated by Bruck-
ner, Fleissner and Foran still in [4]. Their approach is based on the
simple observation that for the required minimal integral, a function
F is the indefinite integral of f if and only if F/ = f almost every-
where and there exist a differentiable function H; and an absolutely
continuous function Hy such that F = H; + Ho.

In 1996 B. Bongiorno (see [1]) introduced a Riemann-type inte-
gration process, called C-integration, which integrates the derivatives
and falls exactly in between the Lebesgue integral and the Denjoy
integral.

In [3], in cooperation with B. Bongiorno and D. Preiss, I prove
that the C-integral integrates precisely the functions which are sum
of a derivative and of a Lebesgue integrable function. Then the C-
integral is the constructive minimal integral which includes deriva-
tives and Lebesgue integrable functions.

The proof of the result in [3] in the general case is very involved
and technical. In this note I sketch it in a particular case.

1. The C-integral

A “gage” on the interval [a,b] C R is a positive function defined
on [a,b]. Given a gage d, a “d-fine partition” of [a,b] is a collection
{(Ziyz;) :+ i =1,...,p} of pairwise nonoverlapping intervals I; C
[a,b] such that J}_, I; = [a,b] and I; C (z; — 6(zs),zi + 0(=;)). If

P I C [a,b], the collection {(I;,z;) : i = 1,...,p} is called a
“0-fine partial partition” of [a, b].

DEFINITION 1.1. (see [1]) Let f:[a,b] — R. It is said that f is C-
integrable on [a,b] if there ezists a constant A such that given € > 0
there is a gage § with

/4

Y flm)L - A

1=1

<e,
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for each d-fine partition {(I;,z;) : i = 1,...,p} of [a,b] satisfying
the condition

idist(wi,fi) < 1/e. (1)
=1

The number A is called C-integral of f on [a,b] and we write A =
b
@) fa f-

I note that each Lebesgue integrable function is C-integrable.
The easiest way to see this is to recall that the Lebesgue integral
is equivalent to the McShane integral and observe that the Mc-
Shane integral is included in the C-integral. I note also that the
C-integrability implies the Henstock-Kurzweil integrability (with the
same value of the integral).

2. Properties of the C-integral
(see [1, 2])

e The C-integral is linear, in particular the space of C-integrable
functions is a vector space.

e (C-integrability on an interval implies C-integrability on each
subinterval.

e HENSTOCK’S LEMMA: f is C-integrable if and only if for each
€ > 0 there exists a gage J§ such that

p
2
i=1

for each ¢-fine partial partition {(Z;, z;)}, ¢ = 1,-- -, p, satisfy-
ing the condition YF_, dist(z;, I;) < 1/e.

f@lEl-© [ f] <,

e ALL DERIVATIVES ARE C-INTEGRABLE

Proof. Let f(xz) = F'(z) for each z € [a,b]. Given £ > 0 we set

g2

(1+eb-a))

T =
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By the definition of derivative, for each z € [a,b] there exists

d(z) > 0 such that

F(y) — F(z) T
y_im—f(x) <3

bl

for all y € [a,b] with |y — z| < d(z).

Let I = (a, B) C (x — 6(z),z + d(z)) and let F(I) = F(B) —

F(a). Then

| f@)] = F(I) | =|[F(B) - F(a)] = f(z)(6 — ) |
< |F(B) = F(z) — f()(B — )]
+F(a) = F(z) - f(z)(a — )]

< 518 =2l + Zla —al < r(dist(e, I) + |1)):

So, if {(I;,z;): i =1,...,p} is a é-fine partition of [a, b] satis-

fying the condition

ZdlSt zi, I;) < 1/e,

we have

Zf(xi)Ui' — (F(b) — F(a))

P

Z ()| i = F(1)]

< TZ(dist(a:i, L) + |L)
i=1

<7 (é + (b - a))

B €2 1+e(b—a)

- 1+¢e(b—a) €

= E&.

e THE C-PRIMITIVES
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DEFINITION 2.1. A function F is said to be AC. on a set E C
[a,b] if Ve > 0 there exist a gage § and a constant n > 0 such

that
S IF(L)| <e
i

for each 0-fine partial partition {(I;,z;) : i =1,...,p}, satis-
fying the conditions

p
zi€E, i=12--p Y |LI<m
=1

p
> dist(z, ;) < 1/e.
=1

F is said to be ACG,. if it is continuous and there exists a
sequence (E,) of measurable subsets of [a,b] such that [a,b] =
UnE, and F is AC. on each E,,.

THEOREM 2.2. F' is a C-primitive if and only if it is ACG..

THE C-INTEGRAL DOES NOT INCLUDE THE RIEMANN IM-
PROPER INTEGRAL

The function F(z) = zsiny if 0 <z < 1, F(z) =0 if 2 = 0,
is a Riemann improper primitive, but it is not A CG.,.

Indeed, let ap = (7+2hn)~"/2 and b, = (7/242hx)~'/2. Then
F(ap) = 0, F(by) = by, and > ap, = Y5, bp = co. Moreover
the intervals (ap, by) are pairwise disjoint, so Y, (bp, —ap) < oo.
Therefore, given 0 < ¢ < 1, for each gage d(z) and each n > 0
we can find n, p such that

(an+i,bn+i) C (0,5(0)), 7 = 1’ D,
n—+p n+p

€< Zah <z and Z(bh—ah) <.
n+1 n+1

Hence 0 % b, > S ay > e
NOW let I]_ = (an+1, bn+1), e ,Ip = (an+p, bn+p)' Then {(I]_, O),
..., (Ip,0)} is a o-fine partial partition with

n+p

p p
SOILI < n, Y dist(0,5;) = > a; < 1/e
=1 =1

n+1
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p p
and Y |F(bn+i) — F(ansi)| = D bnii > .
=1 =1

¢ MONOTONE CONVERGENCE THEOREM:

Let
fiLfel < fuloe f

If f,, is C-integrable on [a,b], n = 1,2,..., and if (C) ff fn—1
then f is C-integrable on [a,b] and

© [ 1=1m© [ 1

DOMINATED CONVERGENCE THEOREM:
Let f1, fo,.-., fn,--- be a sequence of Lebesgue measurable
functions and let g, h be C-integrable on [a, b]. If

— fo(z) — f(z) ae. in [a,b),
— g(z) < fn(z) < h(z) a.e. in [a,b],

then f is C-integrable on [a,b] and
b b
©) [ £=1m(C) [ fa
a a

VITALI’S CONVERGENCE THEOREM:

Let fi, fo,.--, fn,-.. be a sequence of C-integrable functions
such that

— fo(z) — f(z) a-e. in [a, b],

— the sequence Fy, Fy,..., F,,... of C-primitives is unifor-
mly ACG..

Then f is C-integrable and

© [ 1=1m© [ 1
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e THE MULTIPLIERS
If f is C-integrable in [a,b] and if ¢ is a function of bounded
variation, then fg is C-integrable in [a, b] and

© [ st =rals - @) [ g

where F' is the C-primitive of f and the second integral is the
Lebesgue-Stieltjes integral of F' with respect to g.

3. Main Property of the C-integral

THEOREM 3.1. (see [3]). A function f : [a,b] :— R is C-integrable
if and only if there exist a derivative fi and a Lebesgue integrable
function fo such that

f=f+f

or, equivalently, f:[a,b] — R is C-integrable if and only if there exist
a differentiable function Hi and an absolutely continuous function
Hy such that (Hy + H2)'(z) = f(z), a.e. in [a,b)].

Sketch of the proof: The C-integral integrates the derivatives and
the Lebesgue integrable functions and is linear. Then the “if” part
follows immediately. O

Let f be C-integrable on [a,b]. For the proof of the “only if”
part we need the following notion and lemma.
An interval [o, ] C [a,b] is said to be f-regular if there exists a
derivative h such that f — h is Lebesgue integrable in [a, (].
Denote by G the union of the interior of all f-regular intervals and
let P = [a,b] \ G. From now on, in order to avoid the use of many
integrals, every integral will be understood as Denjoy integral.

LemMA 3.2. If o, 8 € P and

1) f is Lebesgue integrable on P N [a, f],

2) Y, sup{|[; f| : J C n*® connected component of (a, )\ P} <
00
then [a, B] is f-regular.
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Assume P N (a,b) # 0. Then, being f Denjoy integrable, there
exist @, € P such that PN (o,8) # 0 and conditions 1), 2)
hold. Therefore [o, 5] is f-regular, which is in contradiction with
PN (a,B) # 0. Therefore P = {a,b} and, by a final application of
Lemma, the interval [a,b] is f-regular.

The proof of the Lemma in the general case is very involved and
technical. Therefore I prefer to report it only in a special case.

Lemma’s sketch of proof in the special case P = {a,b}. Assume f(a)
= f(b) = 0. Take

1 . >
O<€n<§ with Zen<+oo, (2)

n=1
and let §, be a gage corresponding to € = &, in the Henstock’s

Lemma. Assume also

for all » and z. (3)

() < bua(2) < 5

Set
Iy =[a+ d1(a),b — 01(b)]-

Then, by induction, define a family I, = [y, Ynt1], n = £1,£2,. ..,
of nonoverlapping intervals such that

e (a,b) = UyIy,
o limy, ooy =a, limy, 00y =0,
and such that there exists k,, with
I, C (a,a + 6, (a)], %fn<0, (4)
I, C [b— 0, (b),b), ifn>0,
‘ / f‘ = ey, dist(Zn, {a, b}), (5)

and
dist(Jy, {a,b}) = dist(I,, {a, b}), (6)

for a suitable interval J, C I,.
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Now, since I, is f-regular there exists a derivative h,, such that
/ \f — hn| < ex, dist(In, {a,b}), and hn(z) =0, Yz & (I,)".
In

So
o0
h= > hy
n=—oo
is a derivative. Then, to finish the proof, it needs to show that f — h
is Lebesgue integrable in [a,b]. Set Ty, = {n : k, = k}. Therefore

/ablf—hlz 5 /In|f—hn|

n=—oo
o
=X [ -t
k=1neT, /I
(e e]
< Zsk Z dist(1,, {a,b}).
k=1 neTy

Assume, by contradiction, that

> dist(I, {a,b}) > 2.

neTy

Then there exist a finite set T}, C T} and 7 € T}, \ T}, such that

> dist(Iy, {a,b}) <2 (7)
neTy,
and
> dist(I, {a,b}) + dist(Iz, {a,b}) > 2. (8)

ne’f“k

Moreover, for each n € T by (5) there exists J, C I, such that
dist(Jy, {a, b}) = dist(I,, {a, b}) and

/ f‘ — epdist(L,, {a, b}). (9)
JIn
Therefore, by (4) the collection

{(Jn, a)}ne:ﬁk,n<o UA{(Jn, b)}nefk,n>0
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is a 0g-fine partial partition and by (2) and (7) it satisfies the condi-
tion

> dist(Jy, {a,b}) < i

ne’fk
So, by (9), by Henstock’s lemma and by condition f(a) = f(b) = 0,

it follows
en Y dist(h, fabh) = Y | f‘ < ep
nETk ne’fk In
Hence
> dist(In, {a,b}) < 1.
ne’fk
Then, by (3)

1
> dist(I, {a,b}) + dist(lz, {a,0}) <1+ <2,

’nETk
which is in contradiction with (8). Therefore

> dist(In, {a,b}) < 2.

neTy
Thus
b o0
/ F-h <23 e < oo
a k=1
O

Final remark. A careful reading of the previous Theorem’s proof
in [3], shows that replacing in the requeriment (1) of the definition
of C-integral the function 1/¢ with any positive function of ¢ one
obtains an integral equivalent to the C-integral.
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