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Pointwise Versions of Solutions to
Cauchy Problems in L”-spaces

WOLFGANG DESCH AND KRisTA W. HoMAN *)

SUMMARY. - We consider a Cauchy problem

2 p(t,) = (Aplt, D)t >0, weQ,

©(0,w) = po(w), w e N,

and assume that it can be solved by a strongly continuous semi-
group on a Banach space valued function space LP(Q; X). For
fized t > 0 the solution @(t,w) is only defined almost every-
where on Q. Therefore it is not obvious what kind of regularity
t — (t,w) has for fired w € 2. We show that if the semigroup is
analytic, then there exists a version of ¢(t, -) such that for almost
every w € Q, t — p(t,w) is analytic in (0, 00).

1. Introduction and notations

Let (2, F,p) be a measure space, (X,|| - ||) a Banach space, and
1 < p < 0. For a function ¢ : @ — X we denote by [¢] the
equivalence class of functions v : 2 — X such that for almost every
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w € Q, Y(w) = p(w). Functions ¢ and 9 are called versions of the
equivalence class [¢]. Moreover, we denote

M(Q; X) = {[¢]; ¢: Q2 — X strongly measurable},
LP(QX) ={d:Q— X; ¢ strongly measurable and

[ 18P @) < oo},
LP(Q; X) = {[¢] € M( X); ¢ € LP(Q; X))}
In LP(Q; X') we consider the Cauchy problem

0
50(8,w) = (Ap(t, ))(w),t > 0, w €, (1)

W(Oaw) = SDO(W)a w € {),

where A : D(A) C LP(Q2; X) — LP(Q; X) is a linear operator. Fre-
quently, A is a partial differential operator with respect to w and
a domain in RV, but it need not be so. We assume that problem (1)
can be rewritten in LP(Q; X) as

Slo(t)] = Alp()t >0,
[£(0)] = [0,

where A : D(A) C LP(Q2; X) — LP(2; X) is the infinitesimal genera-
tor of a strongly continuous semigroup {e*};>o on LP(Q; X). Then
problem (2) admits a mild solution [p(t)] = e4[pg] and problem (1)
seems to be solved.

However, this is not the case, yet. Problem (1) requires for ¢ > 0
a version @(t, -) of [¢(t)]. If A is a partial differential operator and
{e!}4>0 exhibits some smoothing, then we simply choose ¢(t, +) to
be the unique version of [¢(t)] such that w — ¢(t,w) is smooth.

If A is not a partial differential operator, then the choice of a
version ¢(t, -) is less evident. To see that this is a nontrivial problem
we consider the example where {e*4 }+>0 is a strongly continuous 1-
periodic translation semigroup on L!(R; R) and where ¢y is such that
every version ¢(t, -) of [¢(t, -)] = e*4[po] has the property that for
almost every w € R, t — ¢(t,w) is discontinuous at every t > 0, see
Example 3.3.

(2)



POINTWISE VERSION OF SOLUTIONS etc. 123

It helps if {etA}tZO is an analytic semigroup. In this paper we
work out the consequences of a result of Stein, see [4, Lemma, page
72], stating that if ¢t — [¢(t)] is analytic from (0, 00) into LP(2; X)
with 1 < p < oo, then for every ¢ > 0, [¢(t)] has a version ¢(t, )
such that for almost every w € Q, t — ¢(t,w) is analytic from (0, co)
into X. More precisely, we prove the following theorem:

THEOREM 1.1. Let X be a complex Banach space. Let (2, F,p) be
a o-finite measure space and ¥ C C an open subset. Let for some
1<p<oo, ®:% — LP(Q;X) be an analytic function. Then there
exists a function ¢ : % x Q — X with the following properties:

(i) ¢ is strongly measurable;
(ii) For every w € Q, z — ¢(z,w) is analytic in X;

(iii) For every z € ¥ and j € {0,1,2,--- },
oI &
[@‘P(za )] = @CI)(Z)

Section 2 is devoted to the proof of Theorem 1.1. In Section 3
we show how Theorem 1.1 can be applied to the Cauchy problem
(1) in £P(Q; X). Finally, Section 4 gives an application to a semi-
group setting for an integral equation where A is a perturbation of
a multiplier rather than a partial differential operator.

Throughout the paper we use the following notations. We write
N=1{1,2,...}, Ny = NU{0}, and

B(zp,7) ={2€C; |z— 20| <r},z0€C, r>0.
For F € F we define the function 1z : Q@ — R by
1, we€F,
1p(w) :=
0, we\F.
2. Versions of analytic functions in LP(Q; X)

The following lemma is essentially a result of Stein, see [4, Lemma,
page 72], rewritten for our convenience.
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LEMMA 2.1. Let (X, || - ||) be a complex Banach space. Let (2, F, )
be a finite measure space. Let zo € C, v > 0, and ¥ := B(zp,r).
Let ® : & — LY(Q; X) be a function with an analytic extension to a
neighborhood of 3. Then there ezxists a function ¢ : ¥ x Q — X with
the following properties:

(i) @ is strongly measurable;
(ii) For every w € Q, z — ¢(z,w) is analytic in X;

(iii) For every z € ¥ and j € Ny,
o &
e . = —Q .
et )| = e

Proof. Let E := L'(Q;X). Without loss of generality we assume
that zp = 0. First we construct a function ¢ : ¥ x @ — X. Since ®
is analytic in a neighborhood of ¥ there exists a sequence {Cy}$°
in E such that

X _k
VA —
2)=> 0z €3 (3)
k=0

Moreover, the power series in (3) has radius of convergence larger
than r and therefore

Xk

T
> 21 lCell < oo.

k=0

For every k € Ny we choose a representative ¢ : 2 — X of the
equivalence class Ck. Using Fubini’s theorem we then have

rk

/| Z )l u(d) Z = [ @l = 3 il < oo
k=0
This implies that there exists a nullset N C € such that
> Fles(e) | < cow € AN, @

k=0
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Now we define ¢ : ¥ x Q — X by

k
o(z,w) == dheo frck(w), z €%, we Q\N,
, 0, z€Y,weEN.

Note that (4) implies that ¢ is well-defined and hence, for every
w € Q, z+— p(z,w) is analytic in X, that is, ¢ has property (ii).

Now we show that ¢ has property (i). For every k € Ny, z — 2—]:
is Borel-measurable on ¥ and w + ¢;(w) is strongly measurable on
Q since Cy, € E. Thus for every k € Ny, (z,w) — zk—’;ck(w) is strongly
measurable on ¥ x 2 and therefore (z,w) — Y 72 Z—I?ck (w) is strongly
measurable on ¥ x Q\N as pointwise limit of finite sums. It follows
that ¢ is strongly measurable on ¥ x €.

To show that ¢ has property (iii) we fix j € Ny and observe that

o7

S
z

p (z,w) = E Hckﬂ(w),z €X, weQ\N.
k=0 "

For every n € N let ¢, : 3 X 2 — X be defined by

oo (@), z €T, weQ\N,
0, zZ€X, weN.

Yjn(z,w) = {

Now we also fix z € . On the one hand we have using (3),

. . L X\ 2k d’
Jim [pjn(z, )] = lim > 3 25Chyj =Y 50k = 759(2), (5)
k=0 k=0

where the convergence is in E. Note that the power series in (5) has
radius of convergence larger than r. On the other hand we have
li o Q
m @;n(z,w) = ——plz,w),w € §2,
Pin(5,) = 55(2,)

n—oo
where the convergence is in X. We can apply Lebesgue’s dominated
convergence theorem since

o0

n
|z|k Tk
lpjm(z, )| < o ek (@) < > willce+i(@)lw € AN, n € N,
k=0 k=0
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and, using Fubini’s theorem,

|3 Glles@lade) =3 5lCuslle < oo
N p—o ™ k=0 "
Thus we get
. o7
Jim. A Pin(2,w) = 55¢(zw)|| p(dw) =0
and hence,
. o7
Jim loanle ] = |50t ©

where the latter convergence is in F. By combining (5) and (6) we
obtain that ¢ has property (iii). O

We use Lemma, 2.1 to prove that the same result holds for any open
set X C C.

LEMMA 2.2. Let X be a complex Banach space. Let (0, F,u) be
a finite measure space and let 3 C C be an open subset. Let ® :
¥ — LY(Q; X) be an analytic function. Then there exists a function
¢ : XX Q — X with the properties (i), (ii), and (iii) stated in Lemma
2.1.

Proof. As Y. is open in C it can be covered by countably many open
balls. For every k € Nlet 2z, € ¥ and 7, > 0 be such that B(zg, k) C
Y and ¥ = ;2 B(zk, k). It follows from Lemma 2.1 applied to
each @|p(,, ) that for every k € N there exists a strongly measurable
function @y : B(zg, ) X @ — X such that for every w € Q, z —
¢k (2, w) is analytic in B(zg, ) and

oI Y .
[ﬁgok(z, )] = yq)(z),z € B(zk, k), j € Np. (7)

We shall construct a function ¢ : 3 x Q — X. Therefore we define
for every z € X,

I :={k €N, z € Bz, i)}



POINTWISE VERSION OF SOLUTIONS etc. 127

and for every k, [ € I,

Nk,l,z = {w € Q; on(zaw) 7é (Pl(zaw)}'

It follows from (7) with j = 0 that for every z € ¥ and k, [ € I,
ok (z, )] = ®(z) = [@i(z, -)] and hence, Ny , is a nullset in . For
every z € % we define the nullset

Nz = U Nk,l,z-
keI,

Furthermore, let 3y C X be a countable dense subset and

N := U N,.

2EX

Note that for every w € Q\N,
vk(z,w) = ¢i(z,w),z € Xg, k,l € I,. (8)

We remark that (8) even holds for every z € X, since ¥ is dense in
¥ and for every k € N, z — @i (2,w) is continuous. Finally we define
p: 2 x0— X by

or(z,w), z€X, weQ\N, keI,
p(z,w) ==
0, zZ€EX, wEN.

By construction, ¢ is independent of the choice of k. Moreover, it
follows from (7) that ¢ satisfies

o Y .
[@ (z,w)] = yé(z),z €, jeN.

Now we show that for every w € Q, z — ¢(z,w) is analytic in every
zo € 3. As this is obvious when w € N, we fix any w € Q\N. Let
z0 € ¥ and k € I, so that zyp € B(z,7x) and hence, there exists
¢ > 0 such that B(zp,e) C B(zg, 7). Since z — ¢(z,w) = pr(z,w)
is analytic in B(zg,7x), in particular in B(zg,€), it follows that z —
¢(z,w) is analytic in z.
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To show that ¢ is strongly measurable we construct a disjoint
partition {Bj}7°, of ¥ such that |J;—, B = ¥ via

B(Zl,T‘l), k= 1,
By = k—1
B(zkark)\Ulzl B(ZlaTl)a k= 2737"' -

For every k € N we define @5 : ¥ x Q@ — X by

vk(z,w), 2z € By, w € Q\N,
(Pk(zaw) = 0; zZ € Bk, w € N,
0, z € ¥\ By, w € Q.

Note that
o
p(z,w) =Y Gpl(z,w),2 €3, w € Q.
k=1

We remark that for every k € N, ¢y, is strongly measurable on X x €2,
since ¢y, is strongly measurable on B(zg,7x) X €2, in particular on
By xQ\N. Therefore, p is strongly measurable on ¥ x {2 as pointwise
limit of finite sums. This proves that ¢ has the properties (i), (ii),
and (iii) in Lemma 2.1. O

The next lemma extends the result of Lemma 2.2 to o-finite measure
spaces. The assumptions in the lemma look rather technical, but
they essentially concern locally integrable functions.

LEMMA 2.3. Let X be a complex Banach space. Let (2, F,u) be
a o-finite measure space and {Q}7>, a sequence in F such that
Ure; Qs = Q. Let £ C C be an open subset. Let & : £ — M(Q; X)
be such that for every k € N the function &y : & — M (Q; X) given
by Dy (z) := ®(2)|q, for z € B, satisfies Ran(®;) C L'(Q; X) and
@ : % — LY(Q; X) is analytic.

Then there exists a function ¢ : X X Q — X with the following
properties:

(i) ¢ is strongly measurable;

(ii) For every w € Q, z — ¢(z,w) is analytic in X;
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(iii) For every z € X, [p(z, -)] = ®(2);

(iv) For everyz € ¥, j € Ny, and k € N,
o @
el o | = 5 u(a)

Proof. Without loss of generality we assume that {€2;}7° , is pairwise
disjoint in F and for every k € N, () < oo. It follows from Lemma
2.2 applied to each ®; that for every k € N there exists a strongly
measurable function ¢y : ¥ x Q — X such that for every w € Qy,
z — @r(z,w) is analytic in ¥ and

o ds .
[@‘Pk(za )] = @‘I’k(z)az €3, j€Ny. 9)

We define ¢ : ¥ x Q@ — X by
o(z,w) = Z(pk(z,w)llgk (w),z € X, w e .
k=1

Then ¢ is well-defined since {Q;}72, is pairwise disjoint, and ¢ has
properties (i) and (ii). Note that for every z € ¥ and k € N,
(2, )|, = @r(z, ). Hence, it follows from (9) that ¢ also has
property (iv). In particular if j = 0, then

[(P(za )|Qk] = q)k(za ) = (I)(z)‘ﬂkaz € 2, ke N
As Up2; Qr = Q, this implies that ¢ has property (iii). O

Note that if for some 1 < p < oo the range of & : ¥ — M(Q; X)
is contained in LP(Q2; X) and ® : ¥ — LP(Q; X) is analytic, then ®
satisfies the assumptions in Lemma 2.3. Therefore Theorem 1.1 is
proved.

3. Versions of solutions to Cauchy problems in
LP-spaces

In the next theorem we apply Theorem 1.1 to solve the Cauchy
problem (1). We assume that A satisfies the following hypothesis:
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HypPOTHESIS 3.1. Let X be a complex Banach space, (Q,F,p) a o-
finite measure space, and 1 < p < oo. The linear operator A :

D(A) C LP(Q; X) — LP(Q; X) has the following properties:

(i) If p1 € D(A) and @y € LP(; X) such that 1 = @9 almost ev-
erywhere, then gy € D(A) and Ap; = Aps almost everywhere.

(i) If {pn}32, is a sequence in D(A) and if there exzist ¢, ¢ €
LP(Q; X) and a nullset N C Q such that

Jim pn(w) = p(w),w € Q\N,

Jim (Apn)(w) = 9(w)w € NN,
Jim o] = [g],
Jim [Apn] = [¢],

where the convergence in the first two lines is in X and in
the last two lines in LP(Q; X), then ¢ € D(A) and for every

w € AN, 9(w) = (Ap)(w).
We remark that if A satisfies Hypothesis 3.1, then we can define
a linear operator A : D(A) C LP(; X) — LP(Q; X) by

D(A) := {® € LP(Q; X); there exists ¢ € D(A) such that [¢] = ®},

AD := [Ap],® € D(A). (10)
This operator is well-defined by Hypothesis 3.1(i).

THEOREM 3.2. Let (X, ||-||) be a complex Banach space. Let (2, F, )
be a o-finite measure space. Let for some 1 < p < oo, A: D(A) C
LP(QX) — LP(Q;X) satisfy Hypothesis 3.1. Let A : D(A) C
LP(; X) — LP(Q; X), defined by (10), be the infinitesimal gener-
ator of a semigroup {S(t)}i>0 on LP(Q2; X) that for some 0 <9 <7
has an analytic extension to

Y :={z € C\{0}; |Arg(z)| < 9}.

Let @y € LP(Q; X) and let the analytic function ® : ¥ — LP(Q; X)
be defined by

®(2) := S(2)[po],z € X.
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Then there exist a function ¢ : 3 x Q — X and a nullset N C Q
with the following properties:

(i) ¢ is strongly measurable;
(i

) For every z € X, [¢(z, )] = ®(2);
(iii) For every w € Q, z — ¢(z,w) is analytic in X;
)

(iv) For every z € ¥ and w € Q\N,
0
&(P(Z,LU) - (A(p(za ))(LU),

(v) If ¢o € D(A), then for every w € Q\N, limy o ¢(t,w) ezists
where the convergence is in X, and

et )| = lool

)

Proof. We apply Theorem 1.1. We obtain that there exists a strongly
measurable function ¢ : ¥ x 2 — X such that for every w € €,
z — ¢(z,w) is analytic in ¥ and

o d’ .
[@ (Z, ):| = @(I)(Z),Z € Ea J € NO' (11)
Thus ¢ has properties (i), (ii), and (iii). To show that ¢ has prop-
erty (iv) we fix any z € 3. Since ® is defined by an analytic semi-
group generated by A we observe that ®(z) € D(A) and d%@(z) =
A®(z). By definition of D(A) there exists ¢(z, -) € D(A) such that
[6(z, )] = ®(2) and AP(z) = [Ap(z, -)]. However, by (11) we
also have [p(z, )] = ®(z) and hence, ¢(z, -) = @(z, -) almost ev-
erywhere. Now Hypothesis 3.1(i) implies that ¢(z, -) € D(A) and
[Ap(z, )] = [A@(z, +)]. Using (11) we therefore have

| ople )] = 1 B(E) = AB() = [Ap(e. )] = Mot 9] (12

Let ¥y C X be a countable dense subset. For every zy € 3y we define

Ny im € 0 2 olenw) # (otao, e
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and let

Ny = U N,
20€X0

Since z € ¥ is fixed but arbitrary in (12) it follows that for every

2o € Xo, Ny, is a nullset in 2. Hence, Ny is a nullset as well and we
have

0

%go(zo,w) = (Ap(20, -))(w),z0 € Lo, w € Q\Np. (13)

We shall use (13) and Hypothesis 3.1(ii) to get

%(p(z,w) — (Ap(z, ) (w)w € 2\No. (14)

As ¥, is dense in ¥ there exists a sequence {2z, }5° ; in ¥y such that
limy, o 2, = 2. Since for every w € Q, z — ¢(z,w) is analytic in &
we have in particular

lim (2, w) = p(z,w)w € AN

n—00

and using (13),

lim (Ap(zn, )(@) = lim 2 g(zm,w) = 2z, w)w € AN,

n—»00 n—oo 0z 0z

where the convergence in both lines is in X. Furthermore, it follows
from (11), (13), and the analyticity of ® that

lim [p(2zn, )] = lim ®(z,) = ®(2) = [¢(z, -)]

n—o0 n—00
and
Jim [Ap(z, )] =

= lim [a%‘p(z’“ -)] = lim i<I>(zn) = i<I>(Z) = [gw(z, -)],

n—0o0 n—oo dz dz 0z

where the convergence is in LP(Q; X). It is a result of Hypothesis
3.1(ii) with ¢y, ©, 1, and N replaced by respectively ¢(z,, -), ¢(z, *),
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%(p(z, -), and Ny, that ¢(z, -) € D(A) and (14) holds. This shows

that ¢ has property (iv) with N replaced by Nj.

To show that ¢ has property (v) let {€;}2° | be a pairwise disjoint
sequence in Q such that (J;—, Qx = Q and for every k € N, pu(y) <
oo. We fix any k € N. Let ®; : ¥ — L'(€; X) be defined by

D (z) :== ®(2)|q,,z € . (15)

Using the analyticity of @, the fact that LP(Qz; X) — L'(Q4; X),
(11), and Fubini’s theorem, we have for any 7' > 0

0

—(P(t, w)

T
dt | pu(dw) =
INVAT ) viaa)
T o T
- gyt | wtaw ) ar = [
/0 (/Qk ot 0
This implies that there exists a nullset Ny C ; such that
T
J

Hence, for every w € Q) \ Ny, limy g ¢(t,w) exists in X. Since k € N
is fixed but arbitrary we can define

4t

di .
a4 < 00

L1(Q4;X)

(t,w)

ago dt < oo,w € Qp\N.

o0
No == | Ni
k=1

so that for every w € Q\Noo, limy g (t, w) exists. Now we show that

li Il = ; 1
[tlfg o(t, )] [¢o] (16)
By definition of ® and the analyticity of the semigroup we have
lim ®(z) = lim S(z)[po] = [¢o], (17)
z2—0 z—0
2EY ZEX

where the convergence is in LP(Q; X). Let {¢,}22; be a non-increasing
sequence in [0, 00) such that lim, o ¢, = 0. Then (17) and the def-
inition of @ in (15) imply that

lim ®(tn) = [po]lay;

n—00
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where the convergence is in L'(Q4; X). Furthermore, it follows from
(11) that

Py (tn) = [p(tn, o] ,n €N

Therefore there exists a subsequence {t,,}72; such that for almost
every w € Qp,

lim ¢(tn;,w) = @o(w), (18)

j—o0

where the convergence is in X. Since Q = [Jz2 ; Q, (18) even holds
for almost every w € 2 and thus (16) holds. This shows that ¢ has

property (v) with N replaced by Ny, and the theorem is proved with
N := Ny Neo. 0

To finish this section we consider the example mentioned in the in-
troduction.

EXAMPLE 3.3. We use the notation

LI(R) = {p : R = R; ¢ Borel measurable, for every w € R,

oo+ 1) = plw), and | ()] do < oo},

Li(R) = {[¢]; v € LIR)}, [@]l| 1 ) =/0 lp(w)] dew.

Fort >0 let S(t) : L}(R) — LI(R) and S(t) : L1(R) — L}(R) be
given by respectively

(S()o) (W) = o(t + w)w € Q, po € L1(R),
S(#)[o] := [S(t)e0l, w0 € L(R).

Then there exists g9 € L1(R) with the following property: if ¢ :
[0,00) x R — R is a Borel measurable function such that for every
t >0, [p(t, -)] = S(t)[po), then for almost every w € R, limy g ¢(t,w)
does not exist.
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Proof. To construct oo let{p;}32,; be a sequence of functions in
L1(R) given by

w - [l e UZG'G-27%,5-27% + 272,
kW) =
i 0, w elsewhere in [0,1).

Note that ||[¢g]l| L1 &) = 2k . 272k = 27F g0 that the series Y po ; [¢k]
converges in L}(R). It follows from Lebesgue’s monotone conver-
gence theorem that fol Y roq ¢k(w) dw < co. Hence, for almost every

w € R, Y22, pr(w) is a convergent series. Now we define ¢ : R — R
by

Y peq ¢r(w), w such that the series converges,
po(w) =

0, elsewhere.

Fatou’s lemma implies that ¢y € L£1(R). Moreover, it is a result of
Lebesgue’s dominated convergence theorem that [po] = Y7o ; [k]-

We remark that for m, n € N such that 1 < m < n and w €
[j-27™,5-2"™+22"] we have ZZ;}n ¢k(w) = n —m. This implies
that for any M > 0 and any interval I C R there exists an open
interval J C I such that

wo(w) > Mw € J. (19)

To show that ¢y has the requested property let ¢ : [0,00) X R - R
be a Borel measurable function such that for every ¢ > 0, [¢(¢, -)] =
S(t)[po]- Then there exist a countable dense subset K C (0,00) and
a Borel nullset N C R such that

o(t,w) = @o(t + w),t € K, w € R\N. (20)

Seeking a contradiction we assume that there exists w € R\N such
that L := limy ) ¢(t,w) exists. If we can construct a nonincreasing
sequence {t,}5° ; in K such that lim,_,, ¢, = 0 and for every n €
N, ¢o(t, + w) > L + 1, then using (20) we obtain the following
contradiction:

L= lim ¢(tp,w) = lim @o(t, +w) > L+ 1,
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which would finish the proof. To construct {t,}°2; we use (19) with
M replaced by L+ 1. If I) = [w, 1), then there exist J; C (w,1) and,
by density of K, t; € K such that {1 +w € J; and ¢ (t1 +w) > L+1.
If Iy = [w,t; + w), then there exist Jo C (w, 1 + w) and ¢t € K such
that to + w € Jo and @o(t2 + w) > L + 1. Proceeding like this will
give the sequence {t,}°2 ;. O

4. An application

For an application of Theorem 3.2 we consider a homogeneous ab-
stract Cauchy problem in a Hilbert space of equivalence classes and
show that its solution has an analytic version. For the setting of
the problem we refer to [1] and [2]. In these papers we consider the
scalar Volterra integrodifferential equation of convolution type

d t
[ s 0, >0, o

u(t) = uo(t),t <0,

with a completely monotonic kernel a : (0,00) — R In the homo-
geneous case, that is, f is identically zero, we can rewrite problem
(21) to the homogeneous abstract Cauchy problem

Sap(t) = Ap(t),t > 0,
$(0) = o,

with a suitable A that we shall define later. Using an analytic semi-
group we find a solution % to (22) in a Hilbert space of equivalence
classes. From 1 we obtain a solution u to (21) by means of a linear
functional. To show that u is indeed a solution to (21) we need point-
wise interpretation of 1. It is at this point that we need a version of
1 that is at least differentiable.

Let a : (0,00) — R be a completely monotonic kernel such that
fol a(t)dt < oo and a(0+) = +o00. Let v be the unique nonnegative
Borel measure on [0, 00) such that

(22)
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see Bernstein’s theorem [5, Theorem 12b, page 161]. Let p be the
nonnegative Borel measure on [0, 00) given by

p(dw) = (w + 1) v(dw).

Note that if N C [0,00) is a p-nullset, then N is a v-nullset. Let H
and H denote respectively

H= EQ(([Oa o), B0, 00), p1); C),

H = L*((0, 00), B[0, 00), 4); ©).
We define the linear functional J : D(J) C H — C by

D(J) :={® € H; there exist u € C and ¢ € H such that
[¢] =@ and w — u — wp(w) € H},

J(®) :=u,® € D(J).

Then J is well-defined, see [2, Lemma 4.4]. Note that if & € D(J)
with w € C and ¢ € H such that [p] = ® and w — u — wp(w) € H,
then for every ¢ € H such that [¢] = ® we have w — u—wP(w) € H.
We define the linear operator A: D(A) C H — H by

D(A) := {® € D(J); if p € H is such that [p] = @, then

| @)~ wpw)) vidw) - o} ,
[0,00)

AD = [w— J(P) — wp(w)],® € D(A).

Then A is well-defined since H — L((]0, ), B[0,00),v);C), see
[2, Lemma 4.2]. Moreover, A is the infinitesimal generator of a
strongly continuous semigroup {S(¢)};>0 on H and there exists 0 <
¢ < m such that {S(¢)}>¢ has an analytic extension to ¥ := {z €
C\{0}; |Arg(z)| < ¥}, see [2, Theorem 3.4]. We define the linear
operator A:D(A) CH — H by

D(A) := {w € H; [p] € D(J) and /[0 ) (7(lp]) — wo(w)) v(dw) = 0},
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(Ap)(w) := J([¢]) — wp(w),p € D(A), w > 0.
From the definition of A and A it follows that
D(A) = {® € H; there exists ¢ € D(A) such that [p] = &} (23)
and
Alp] = [Ag],p € A. (24)
Note that this implies that A could have been defined by (10).

LEMMA 4.1. Operator A satisfies Hypothesis 3.1.

Proof. First we show that A satisfies Hypothesis 3.1(i). Let ¢; €
D(A) and @9 € H be such that ¢1 = @9 p-almost everywhere. Then
[p2] = [¢1] € D(J) and in particular ¢; = ¢y v-almost everywhere.
Therefore we have

/ (7 ([2]) — wip2(w)) v(dw) = / (7 ([1]) — w1 (w)) v(dw) = 0.
[0,00)

[0,00)

Thus @2 € D(A) and for p-almost every w € [0, 00),

(Apa)(w) = J([p2]) — wpa(w) = J([¢1]) — w1 (w) = (Ap1)(w)-

Now we show that A satisfies Hypothesis 3.1(ii). Let {¢n}52; be a
sequence in D(A), let ¢, 9 € H, and let N C [0,00) be a p-nullset
such that

Jim g (w) = p(w),  w € [0,00)\N, (25)
Jim (Agp)(w) = 9(w),  w € [0,00\N, (26)
Jim [on] = [g], (27)

Jim [Aep,] = [¢], (28)

where the convergence in the last two lines is in H. From (24) and
(28) it follows that
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Since A is a closed operator, (27) and (29) imply that [¢] € D(A) and
Alp] = [¢]. This has two consequences. Firstly, by (23) there exists
¢ € D(A) such that [¢] = [¢] and hence, by Hypothesis 3.1(i) we
have ¢ € D(A). Secondly, using (29) we have lim,,_,o, A[ppn] = A[y].
Combined with (27) we therefore have lim,_,[¢n] = [¢] where the
convergence is in the Banach space D(A) endowed with the graph
norm || - [[pca)- As Jlpa) : (D(A), ] - [pay) = C is continuous, see
[2, Lemma 4.8], it follows that lim,_, J([¢n]) = J([¢]). Together
with (25) this implies that for every w € [0,00)\N,

(Apn)(@) = lim (J([pn]) ~ won(w)) = T(i¢)) — wi(w) = (Ap)(w).

lim
n—oo

In combination with (26) this shows that

P(w) = (Ap)(w),w € [0,00)\N.
Thus A satisfies Hypothesis 3.1(ii) and the lemma is proved. O

Let the function ug : (—o0,0] — R have the following properties:

(i) wo is Borel measurable;
(ii) There exist M; > 0 and o > 0 such that
|u0(t)| S Mleat,t S O;

(iii) There exist My > 0 and 0 > 0 such that
luo(0) — uo(t)| < Malt|,—6 <t <0;

(iv) %—; o ffoo a(t — s)u(s)ds = 0.
We define the function ¢y : [0,00) — C by
[e.e]
wo(w) ::/ e “lug(—t) dt,w > 0.
0

Then ¢y € D(A), see [2, Lemma 5.1], and with @y := [¢y] we have
®y € D(A). We consider the following homogeneous abstract Cauchy
problem in H:

—®(t) = AD(¢),t > 0,
®(0) = Po.

(30)
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DEFINITION 4.2. A strict solution to (30) in [0,00) is a function ® :
[0,00) — H such that for every T > 0, ® € C([0,00); H1) (N C([0,00); H)
and

We define the function @ : [0,00) — H by ®(t) := S(t)®¢ for
t > 0. Then @ is the unique strict solution to (30), see [3, Theorem
4.3.1(ii), page 134]. Furthermore, ® has an analytic extension to 3.

THEOREM 4.3. There ezist a function ¢ : [0,00) x [0,00) = C and
a p-nullset N C [0, 00) with the following properties:

(i) ¢ is Borel measurable;
(ii) For everyt >0, [o(t, -)] = ®(t);

(iii) For every w € [0,00)\N, t — ¢(t,w) is continuous in [0, 00)
and has an analytic extension to %;

(iv) For everyt >0 and w € [0,00)\N,

%W,w) — J(D(t)) — weplt,w);

(v) For every w € [0,00)\N, ¢(0,w) = @o(w).

Proof. We are in position to apply Theorem 3.2 with X = C, Q =
[0,00), F = B[0,00), and p = 2. Thus there exist a Borel measurable
function ¢ : ¥ x [0,00) — C and a p-nullset N C [0, 00) such that
for every w € [0,00), z — @(z,w) is analytic in ¥ and for every
w € [0,00)\N, limyo $(t,w) exists with [limyyo (¢, -)] = g, where
the latter convergence is in 7. Moreover, we have

[p(2, )] = @(2),2 €% (31)

and

%(ﬁ(z,w) = (A@(z, -))(w),z € Z, w € [0, oo)\]\7 (32)
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Now we define ¢ : [0,00) x [0,00) = C by

o(t,w), t>0,we|0,00),
o(t,w) = { limg o ¢(s,w), t=0,w €0, oo)\]\7,
0, t=0,weN.

Then ¢ is well-defined and has properties (i), (ii), and (iii) with N
replaced by N. Using (31) and (32) we have for every ¢ > 0 and
w € [0,00)\N,

2 o(t,0) = o (t,0) = (AP(L, )(w)
= (Pl ) - 0t w) = (@ (D) ~ wplt ).

Hence, ¢ has property (iv) with N replaced by N. To show that ¢
has property (v) we observe that

(000, 9] = [t pls, )] = @0

Thus there exists a p-nullset Ny C [0, 00) such that
(0, w) = ¢o(w),w € [0,00)\Np.

Finally we define the p-nullset N := N|J Ny and the theorem is
proved. ]
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