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Symmetry and Monotonicity Results
for Positive Solutions of
p-Laplace Systems

CELINE AzizieH )

SUMMARY. - In this paper, we extend to a system of the type:
—Apu=f(v) inQ, u>0 nQ, u=0 ondQ,
—Apv=g(u) mQ, v>0 nQ, v=0 ondQ,

where Q C RY is bounded, the monotonicity and symmetry re-
sults of Damascelli and Pacella obtained in [5] in the case of
a scalar p-Laplace equation with 1 < p < 2. For this pur-
pose, we use the moving hyperplanes method and we suppose that
f.g:R — R are increasing on R and locally Lipschitz contin-
uous on R and p1,p2 € (1,2) orp1 € (1,00),p2 = 2.

1. Introduction and statement of the main results

Let © C RY be a bounded domain with C! boundary and let f,g :
R — R be increasing on R, locally Lipschitz continuous on R and
such that f(z) > 0,g(z) > 0forallz > 0. Let (u,v) € C1(Q)xC(Q)
be a weak solution of

—Apu=f(v) nQ, v>0 inQ, u=0 ondQ,
—Ap,v=g(u) inQ, v>0 InQ, v=0 onoN.
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The main goal of this paper is to use the moving hyperplanes method
in view of extending to a system like (1) the monotonicity and sym-
metry results of Damascelli and Pacella contained in their very nice
recent article [5].

We will consider separately the cases p1 € (1,00),p2 = 2 (sim-
ilarly po € (1,00),p1 = 2) and p1,p2 € (1,2). The first case will
be treated in a quite classical way, by using partly some comparison
principles on small domains but also the Hopf Lemma and the strong
maximum principle for the p-Laplacian (cf. [9]). On the other hand
for the second case, we will establish some monotonicity results which
will be variants of some earlier theorems of Damascelli and Pacella
in [4, 5] by using the same ideas as in [5], but adapted in the case of
a system.

Before stating the monotonicity results, we first introduce some
notations used in [4, 5]. For any direction v € RV, |v| = 1, we define

a(v) := grelgfzzv.z/,
and for all A > a(v),
Q= {ze€Qfzv <A}(F#0D for A > a(v), A — a(v) small),
Ty = {zeQ|zrv=2A}L

Let us denote by Ry the reflection with respect to the hyperplane
Ty and by

¥ = RY(z)VzeRV,
@) = R,
Ai(v) = {p>a(v)|VXE€ (a(v),u), we do have (2) and (3)},
M) = supAi(v),

where (2), (3) are defined as follows:
)’ is not internally tangent to 992 at some point p ¢ T, (2)

v(z)w #0 forall z € 00 NTY, (3)
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where v(z) denotes the inward unit normal to 92 at z. Notice that
since for A > a(v) and if ) is close to a(v), (2) and (3) are satisfied
and Q is bounded, it follows that

A(v)#0 and A (v) < oo. (4)
Observe also that for all A > a(v), for all ¢ € Ty @) N O we have
dist(c,09Q) < X — a(v). (5)

We denote by C3(€2) the space {u € C1(Q) s.t. u =0 on 90}.
The monotonicity results are the following:

THEOREM 1.1. Let Q C RN be a bounded domain satisfying the inte-
rior sphere condition and let f,g: R — Rt be nondecreasing on RT
and locally Lipschitz continuous on R. Let (u,v) € C3(Q) x C}(Q)
be a weak solution of

-Apu = fv) mQ, w>0 inQ,
—Av = g(u) mQ, v>0 1inQ,

where 1 < p. Then, for any direction v € RN and for any X in the
interval (a(v), A\1(v)], we have

u(z) <wu(zy) and v(z) <v(z) Vel

Moreover
ov

The following result is the analogue of Theorem 1.1 from [5] for

a system with increasing right-hand sides.

THEOREM 1.2. Let Q C RY be a bounded domain with C' boundary
and let f,g : R — RT be strictly increasing on RY, locally Lipschitz
continuous on R and such that f(z) > 0,g(xz) > 0 for all z > 0. Let
(u,v) € CE(Q) x CH(Q) be a weak solution of

{ —Apu=f(v) inQ, u>0 inQ, o

-Apv=g(u) inQ, v>0 inQ,
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where p1,p2 € (1,2). Then we have
u(@) <ula) ond o) < o(a) 8)
for all z € QF, for allv € RN, for all X € (a(v), \1(v)].

In Theorem 1.2, the restriction p1,p2 € (1,2) is due to the fact
that if both pq, po are different from 2, we must use comparison prin-
ciples, and these are less powerful if p; or ps is greater than 2. On the
other hand, if p; (or p2) is equal to 2, then, as already mentioned, we
may partly use strong maximum principles, and this finally allows po
to take values greater or smaller than 2. Note that this restriction is
also present in the monotonicity result of [5] in the case of a single
equation. We emphasize that in Theorem 1.1, this condition is not
needed if py or po is equal to two.

REMARK 1.3. In [5], Damascelli and Pacella state Theorem 1.1 un-
der the hypothesis that §) is smooth. This condition is due to the fact
that they use a sophisticated method consisting of moving hyperplanes
perpendicularly to directions v in a neighborhood of a fized direction
vy. To be efficient, this method require the continuity of a(v) and the
lower semicontinuity of \1(v) with respect to v, and to insure this
continuity (and only for that reason), they assume 2 to be smooth.
It appears (see [2]) that this continuity is guaranteed for a domain
Q of class C*. To prove Theorem 1.2, we use the new technique of
Damascelli and Pacella, and so we require Q to be C1. Observe that
this condition does not appear if po = 2,p1 > 1. Indeed, in this case,
we can use the classical moving plane procedure consisting in moving
planes perpendicularly to a fized direction vyg.

We obtain as a consequence of Theorems 1.2 and 1.1 the following
symmetry result:

THEOREM 1.4. Let v € RN and Q ce RNV (N > 2) be a domain
with C' boundary symmetric with respect to the hyperplane Ty =
{z € RN |z.v = 0} and M\ (v) = M(—v) = 0. Assume that one of
the following conditions holds:

1. p1,p2 € (1,2) and f,g : R — R are strictly increasing func-
tions on R such that f(z) > 0,g(z) > 0 for all z > 0,
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2. p1 € (1,0),p2 = 2 and f,g : R — RT are nondecreasing on
R*.

Moreover suppose that f and g are locally Lipschitz continuous on R.
Then, if (u,v) € C}(Q) x C}(Q) is a weak solution of (7) it follows
that u and v are symmetric and decreasing. In particular, if Q is the
ball Br(0) in RN with center at the origin and radius R, then u,v
are radially symmetric. Moreover if f(z) > 0,g(x) > 0 for all z > 0,
then u'(r),v'(r) < 0 for r € (0,R), r = |z|.

Theorems 1.2 and 1.1 have also a relatively big impact in the
study of p-Laplace systems since they are used in [1] to prove by
blow-up some existence results and a-priori estimates for positive
solutions of the system

—Apu=f(lv]) inQ, wu=0 ondQ,
{ (9)

—Apv=g(ul) nQ, v=0 ondQ,

where 1 < p1,ps < N, Q is convex, f,g: R — RT are nondecreasing
locally Lipschitz continuous on (0, +00), continuous on [0, +0c0) and
satisfy

Culs|™ < f(s) < Cols|™,  Dils|® < g(s) < Dyfs|” Vs € R
(10)
for some positive constants C1, Co, D1, Dy and q1¢g2 > (p1—1)(p2—1).

This paper is organized as follows. In section 2, we recall some
well known results concerning the p-Laplacian operator. In section 3,
we prove some weak comparison principles on small domains which
are some adaptations of Theorem 1.2 from [4] to systems. In section
3.1, we use these principles to prove the monotonicity results and
finally, we prove as a corollary Theorem 1.4.
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2. Preliminaries

Suppose that f,g are given positive continuous functions as in the
introduction.

DEFINITION 2.1. Let ¢ > 0. A function (u,v) € C}(Q) x C3(Q) is
said a weak solution of (1) if for any function ¢ € CZ°(Q2) we have

/|Vu|p12Vu.V<pd$: f)pdz,
f|Vu|p12Vu.V<pda::/ag(u)<pda:.
Q Q

We are interested in monotonicity results for weak solutions of

(1).

(1)

By the maximum principle and Hopf’s lemma of [9] for the p-
Laplacian, any weak solution (u,v) of (1) satisfies

>0 in €, @<0 on 012,
ov

v>0 1in (), @<0 on 02
ov

where v denotes the outward unit normal to 9.

In the present section we recall some well known properties of
the operator —A,. The following result is due to Damascelli ([4]).

LEMMA 2.2 (WEAK COMPARISON PRINCIPLE). Let p > 1. Ifu,v €
W (Q) are such that

/ |VulP?Vu.Veds < / |Vo[P2Vu.Vpdr Yo e CX(Q),9 >0
Q Q
(2)

and u < v on 9Q, then u < v on Q.

Next we state a strong comparison principle due to Damascelli
in [4] (Theorem 1.4).
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LEMMA 2.3 (STRONG COMPARISON PRINCIPLE). Let Q@ C RY be a
bounded domain and p > 1. Let u,v € C'(Q) satisfy

/|Vu|p_2Vu.V<pdx§/ |Vo[P~2Vu. Ve d,
Q Q

u<ov in €

for all ¢ € CX(Q),¢ > 0, and define Z := {z € Q||Vu(z)| +
[Vu(z)| =0} ifp#2, Z:=0 if p=2.

If zy € Q\ Z and u(zg) = v(xg), then u = v in the connected
component of Q\ Z containing x.

Finally we recall a lemma proved by Simon in [8] and Damascelli
in [4] which will be used later.

LEMMA 2.4. Let p > 1 and N € Ny. There exist some positive
constants c1,cy depending on p and N such that for all n,n' € RN
with |n| + |n'| >0

InfP~2n — 10" P=20'| < e[|+ [0'1)P~2|n — | (3)

(InlP=2n — ' P=20).(n — o) > eallnl + [0 )P0 =012 (4)
3. Weak comparison principles

Let © be a bounded domain in RY and let (u,v),(4,9) € Rt x
C1(9) x C1(Q) be solutions of
{ —Apu=f(v) onQ, ©w>0

(5)
—Ap,v=g(u) onQ, v>0

]
AV

0 6
. (6

<l
v

—Apu= f(v) onf,
—Ap,v =g(u) onf,

where f,g: R — Rt are locally Lipschitz continuous on R and non-
decreasing on RT. As mentioned above, our first aim is to prove
some comparison principles for solutions of (5), (6). We begin with
a result in case p1,p2 € (1,2) that will be an extension of Theorem
2.2 of [5] to systems with nondecreasing right hand side.
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For any set A C Q, we define My = Ma(u,%) := supy(|Vu| +
|Va|) and Mg = Ma(v,0) := supy(|Vv| + |Vo|). We shall denote
the measure of a measurable set B by |B].

THEOREM 3.1. Let ¥ be a bounded domain contained in RN_and
suppose that 1 < p1,ps < 2. Let (u,v),(4,9) € CH(Q) x CH(Q) be
two solutions of (5), (6). Suppose that

f,g:R—>R"

are locally Lipschitz continuous on R and nondecreasing on RT.
Then there exist o, M > 0 depending on N,p1,p2, f,9, ||, Ma,
Mq and the L™ norms of u,@,v,o such that if ' C Q is an open
set and if there exists measurable sets A, A; (1=1,2,3) such that

QI:A1UA2UA3:A1UA2U143

and - -
{ AL UAy, A1 U Ay  are open

AiﬂAj:Aiﬂfij:(b for alli#j

and

max{|A;|, |41]} < a,
max{MA2,MA2} <M,
u<u on As,
v<vU on Ag,

then we have the implication

uSﬂon@Q’U@({hU{lz) .
v < v on Q' UJ(A; U Ay) v

S

on .

IAIN

Proof. By multiplying the first equations of (5), (6) by (u — )" €
Wol’p1 () (cf. Theorem IX.17. and remark 20, p. 171-172 in [3])
and the second equations by (v — o)t € Wy**(€'), and subtracting
the resulting identities, we get

/ (VP ~2Vu — |ValP'~2Va).V (u — 4) da
'N[u>a]

7)
[ (-1 -a)ds,
Q' Nu>a)
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and
/ (Vo[ 2Vv — |V5[P22V5).V(v — 7) dz
QN[>0

®)
— [ (o)~ g@)o - 0)ds
Q'Nv>7]

By Lemma 2.4, the left-hand sides of (7), (8) are respectively greater
or equal to

02Mgl—2/ |V(u—u)|2dx+02Mﬁ12_2/ V(4 — )2 dz
Alﬂ[uZﬁ] Agﬂ[uZﬁ}
(9)
and
e ME2 2 / V(0 — )2 do + e I / V(o — o) da
Alﬂ[UZ’U} 2 AQO[’UZT_)]

where ¢y is a positive constant depending on p1,p2 and N. Since f
and g are nondecreasing, the right-hand side of (7) can be further
majorized with

/  (fo) = f(9)(u — @) dz,
Q'Nu>a]N[v>7]

and by the local Lipschitz property of f,g, this latter quantity is
smaller or equal to

A / (v — 5)(u — @)
Q' N[u>a]N[v>7]

< Alfl(v - 77)+||L2((A1UA2)0[UZQ]) [ (u — ﬂ)+||L2((A1uA2)n[vzz7])

< A = 9) ety vyl — 82t 040,

for some constant A > 0 depending on f and the L°*° norms of v, v
(cf.. remark 2.1 in [5]). Using a version of Poincaré’s inequality (see
Lemma 2.2 of [4]), this last term is smaller than

Aw;[Q/N|QI|1/N
AL 2N (0= 0) | a4y ey 2NV (0-0) ”Lz(/im[vzm)}
|A1|1/2N||V(U—ﬂ)||L2(Am[uza])+\Q|1/2N||V(U—’U)||L2(A2n[uzﬁ])} ;
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where wy denotes the Lebesgue measure of the unit ball in RY . The
same reasoning can be made with (8) (with another constant A’).
Adding both inequalities, we obtain

caMEB ||V (u = )32 4, rpuzal)
+ea MYV (u — >||iz<A2n[u>a])
+e ME 2|V (v — 3)||2,
P2 —2
+C2MA2 IV (v —

N[v>a])

[E)”L2 (A2N[v>a])

IN

2max{A,A'}w1{}’ || v

{QAAD IV 0 = D)l 23,z 170 = Bl z2as s

HOUF [V = )| 24,z IV (= B 224

(AN [V (0 = D) 24, oz IV (= @)l 24 e

QAN IV 0 = )l 12,z IV (& = D2z § -
(10)

By Young inequality, the right-hand side of (10) is smaller or equal
to

=2 1 (5 L
2max{A, Abwd 1917 {4V IV (0 = ) 12204, s

1 _
H ANV (= D)2 4, sy + 1AV IV = D)3 (g

HOUN V(0 = )24, WUD}
From this we infer that if |4, |A;|, M4, and MA2 are small enough,
then

V(v — 77)||L2(/1m[v217]) =|V(u— ﬂ)HL?(Am[uzn])
= |IV(u = 0)l|r2(asnpuzay = IV = D)l 12 A0 50
_—

so that by Poincaré’s inequality, (u — u)* = (v —9)" = 0 in re-
spect~ively A1 U Ay and Ay U Ag, and finally on ' by definition of
Az, As. O
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We now give a weak comparison principle in the case p; € (1, +00),
pa =2 (or p; = 2,ps € (1,+00)). Let u,,v,9 € C*(Q) and A C Q.
Set

my = inf(|Vul + Vi), y = inf(|Vo| + Vo).

THEOREM 3.2. Let m > 0, Q C RY be a bounded domain and
(u,v), (@,7) € Rt x CHQ) x C1(Q) be two solutions of (5), (6)
where f,g : R — R" are nondecreasing on R™ and locally Lipschitz
continuous on R.

(i) If p1 € (1,2),pa = 2, then there exists 6 > 0 depending on
N,p1, Mq, f,g and the L*°-norms of u,u,v,v such that for any
open subset Q' C Q with || < §, u < @ and v < ¥ on IV
implies u < u and v < v on .

(ii) If p1 > 2,po = 2, then there exists § > 0 depending on N, p1,
m, f,g and the L* norms of u,u,v,v such that if such that if
ma > m, if Q' C Q is an open subset with || < 6, then u <@
and v < v on O implies u < 4 and v < v on .

(iii) If p1 = pa = 2, then there exists 6 > 0 depending on N, f,g
and the L*°-norms of u,u,v,v such that for any open subset
QO CQwith | <0, u <uandv < v ondY implies u < u
and v <7 on .

Proof. Let us prove (i). As in the proof of Theorem 3.1, we first
multiply the first equations of (5), (6) by (v — @)t € Wol’p1 (') and
the second equations by (v — )" € WO1 2(Q') and we subtract them.
In this way we obtain (7), while (8) is replaced by

[ We-ord= [ (g -g@)o-nd. ()
Q'Nv>7]

Q'Nv>7]

By Lemma 2.4, the left-hand side of (7) can be estimated with
CQMg’;—?/ V(u— ) da.
Q'N[u>a]

We then treat the right-hand sides of (7), (11) as in the proof of
Theorem 3.1. For this purpose we use Lemma 2.2 from [4] with
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A1 = Q', Ay = () and we add the obtained inequalities to get

-2
Mg 7|V (u — U) ||L2(Q’ HIV@ =) 12y
< dmax{A, A}y ¥ 2] (| V (u - 5)* 17200 TV @ = 0) 122 qy)-
So, if [©'| is sufficiently small, then necessarily ||V (u — @) "2y =
V(v —9)*|lL2(y = 0. By Poincaré’s inequality this implies (u —

)T =(w—-2)"T=0inQ,ie. u<uwand v <7 in Q.

Let us now prove (ii). We again obtain (7), (11) and by Lemma
2.4, the right-hand side of (7) is greater or equal to

compy 2/' . |V(u —a)|* d.
u>q

Writing as above the same estimates of the left-hand sides of (7),
(11), we get:

camiy ||V (u — @)t o + 190 =) Iz
< dmax{A, My ™ 1915 1V (1~ 8 22 H1 90— 9) 22

and we conclude as in the proof of (i).

Finally, we prove (iii). We get (11) while (7) is replaced by

[ Vu-oRdl= [ () - fE)w-nd. (2)
'Nu>a] 'N[u>a]

We estimates as in the proof of (i) the left-hand sides of (12), (11)
and we obtain

IV (u = @) * |72 @) F IV (0 =) 1 gy
< 4maX{AaA'}wNN | (V- a)t 72y HIVW = 0) 1122 (01)-

We conclude again as in the proof of (i). O



SYMMETRY AND MONOTONICITY etc. 79

3.1. Proof of the monotonicity results

Let us introduce some more notations used in [5]. For any direction
v e RN, |v| =1, we define

Ao(v) = {X > a(v) | (2;)" C Q for any u € (a(v), A]},

and, if AQ(I/) ;é @,
Ao(v) = sup As(v).
If a(v) < XA < Aao(v), z € QX, u,v € CH(), we set

ux(z) = u(zX), ox(z) = v(z),

Zx = z3(u) = {z € QX | Vu(z) = Vuj(z) = 0},
ZK = ZK(U) = {z € O | Vu(z) = Vv (z) =0}

and

Z

Z(u) = {z € Q| Vu(z) = 0},
Z 0

Z(v) = {z € Q| Vu(z) = 0}.

We also define

Ao(v) =
{Ae(a(v), A2 (v)]|u<uy, and v <v}, in Q) for any p€ (a(v), A]}

and if Ag(v) # 0, we set
Ao(v) =sup Ao(v).

As remarked in [5], we obviously have A\o(v) < A1 (v) < Aa(v).

We begin now to prove Theorem 1.1. In the proof we shall use
the weak comparison principles stated in Theorem 3.2 for the begin-
ning of the moving plane procedure, but afterwards it becomes quite
classical in the sense that it uses maximum principles and Hopf’s
lemma, for the usual Laplacian. That’s why the result is true for all
p2 € (0,+00), in opposition with Theorem 1.2.
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Proof of Theorem 1.1. Let us fix a direction v. If A < A(v), we
have v < u¥, v < v§ on 00 since u,» > 0 on Q, u =v = 0 on
0. If p; < 2, there exists § > 0 such that Theorem 3.2 (i) or (iii) is
applicable to the pairs (u,v), (@,7) = (u§,v¥) and Q = Q' = QX for
all A € (a(v), A2(v)). Since for A > a(v), A — a(v) small enough, we
have |Q5| < 6, we get v < u¥ and v < v§ on O for these values of .
If p; > 2, then, by the Hopf’s lemma (see [9]), there exists A > a(v)
and m > 0 such that moy > m for all A € (a(v), ). Moreover, as
above, for A > a(v), XA — a(v) small enough, it follows that |QX] is
small. So for these values of A\, we can apply Theorem 3.2 (ii) with
u, U= u¥,v,0:= 0%, Q=0 =0, to get u <} and v < v§ on 0.
This proves that Ag(v) # 0 as soon as Ag(v) # 0.

Suppose by contradiction that Ag(r) < A1(v). By the continuity
of u,v it follows that u < uKO(V) and v < vKO(V) on on(u)' Thus, by
Lemma 2.3, we have either v < vK (v) OL V= 'UK (v) o1 Q3 (v ) Since
(2) holds with A = A\y(v), we have 0 = v < U, () Om O
so that we are in the first case. Using the fact that gis non(('lecreasmg,
we obtain

—A(v — UKO(U)) <0 on¥ o)’

v — ’UKO(V) <0 on Q)\O(U),
v = UKO(V) on T)‘\’O(V)

Thus by Hopf’s lemma we have

a]j >0 on T)I\IO(U) n Q.

Hence 2% > 0 on Ty ()N Since Ao(v) < A1(v), we have v(z).v > 0
for all z € BQOBQKO(U). By Hopf’s lemma, for any = € BQHBQKO(V),
it holds that Vv(z) = ¢(z)v(z) for some function ¢(x) > 0, so that
% >0 on 02N 8QKO(V), and hence

(13)

v v re 2N
5 > O on TA()(U) n Q)\O(V).

Since we suppose by contradiction that A\o(r) < A1(v), by definition
of A\o(v) we infer that there exists a sequence (A,) C (Ao(v), A\1(v))
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such that A, — Ao(v) and a sequence (z,,) C Qf with the property
v(zn) > VX (zn) VneEN (14)

Indeed, if v < vy in Qf , then, due to the fact that f is nonde-
creasing, we would have u < uj in Qf . However this contradicts
An > Xo(v). Since (z,,) is bounded, there exists z € m such
that z,, — z. Passing to the limit as n — oo in (14) we obtain
v(z) > V3o () (z). As a consequence it follows that z € Ty ) By
(14), there exists a sequence (yn) C (T, (%5)5 ) (where (a,b) for
a,b € RV denotes here the open segment of extremities a and b)
such that %(yn) < 0. Clearly y, — z and then %(x) < 0, which
contradicts (13).

To prove (6), it suffices to apply the same reasoning as above to
the function v — v§ on Qf. Indeed we have —A(v —v§) < 0, v < v§
on Q% and v = v¥ on TV N Q. So we obtain 2%4) > 0 on TV N Q
and finally % > 0 on T{ N Q. Since on(u) = Ua()y<rcrow) (TX N Q),

we have (6). This completes the proof. O

Now we treat the case p1,p2 € (1,2). To prove Theorem 1.2, we
will follow the same steps as in [5], but adapted to our case. For
the sake of completeness and clarity, we will sometimes repeat some
arguments from [5].

Since the proof is quite long, we would like to give the main ideas
beyond it. We first prove Lemma 3.3, an extension to our system
of Theorem 3.1 from [5] (see also Theorem 1.5 from [4]). It asserts
that once we start the moving plane procedure along a direction v,
if Ao(v) < A2(v), then the set Z of critical points of u creates a
connected component C of 2\ Z symmetric with respect to T/’\jo(u)
and where u = uKO(V), and the same results holds for the function v

with a component C of Q \ Z. Hence our goal is to prove that such
sets C or C cannot exist.

A first step in that way is Lemma 3.4 which implies that if C
is defined as above and if w is constant on a connected subset of
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0C whose projection on T)’\’0 ) contains a relatively open nonempty
subset, then such a set C' cannot exists, and the analogue holds for
function v with a component C.

In fact, Lemmas 3.3 and 3.4 imply that if (u,v) is solution of (7)
and if A\o(v) < Ao(v), then there exist a connected component C”
of O ) \ Z3 vy and a component Cv of 0% \ Z” (») Such that

U= u)\ ) in C andv = v/\ W) in C¥. Soif we suppose moreover that
either u or v is constant on each connected component of respectively
Z or Z, then in the first case, C” would contain a set I' on which
Vu = 0, u is constant and whose projection on T y contains an
open subset of T No(v)? which will be impossible by Lemma 3.4.

At first sight, one could think that the assumption that u or v is
constant on respectively Z or Z is always satisfied by any C' func-
tion. In fact, this is not true and the question of finding sufficient
condition on a connected set of critical points of a C! function en-
suring that this function is constant there seems very complicated.
Some counterexamples are cited in [5] (see [10] and [7]), and they
show that this question is strictly related to Sard’s lemma and the
theory of fractal sets.

So, to prove that either u or v is constant on a connected set of re-
spectively OC or dC (where C and C are introduced above) and that
the projection of C on the hyperplane Ty () contains a nonempty
open set, some extra work is needed. To do that, we use the new
argument introduced by Damascelli and Pacella in [5] consisting in
moving hyperplanes orthogonal to directions close to v to prove that
the set C' (or C’) is also symmetric with nearby hyperplanes and
to show that on its boundary, there is at least one connected piece
where u is constant, Vu = 0 and whose projection on T)’\’O(V) contains
a nonempty open set.

IJ

We first give the analogue for our system of Theorem 3.1 from
[5]-

LEMMA 3.3. Let Q@ C RY be a bounded domain and let (u,v) €
Ci(Q) x CL(Q) be a weak solution of (5) where p1,p2 € (1,2), f,g
are strictly increasing on RT, locally Lipschitz continuous on R and
such that f(z) > 0,g(z) > 0 for all x > 0. For any direction v such
that Ao(v) # 0 we have that Ao(v) # 0. If moreover Ao(v) < Aa2(v),
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then there exist a connected component C¥ of Q” \Z)\ () and a
connected component C¥ of QKO(V) \ ZKO(V) such that u = uf ) in

CY andv = ’UKO(V) in C¥. For such components, we have

Vu(z) 20 YzeC”, Vu(z)#0 Vzel, (15)
{Vu()—O Vo € 9C¥ \ (T}, ) U 09), (16)
Vo(z) =0 Vze€dC”\ ( /\()UBQ)
Moreover, for any X € (a(v), Ao(v)), we have
u<uf inQ{\Z¥, v<v{ inQX\Z%, (17)
and
g:j( )>0 Voe® ,,\Z and %(m) >0 Vze,\2Z

(18)

Proof. The proof will follow the same steps as in the proof of Theo-
rem 3.1 in [5].

StEP 1: We take a direction v such that Ay(v) # 0 and we prove
that Ag(v) # 0. As in the proof of Theorem 3.1 in [5], we can
prove that if A\ > a(v), A — a(v) is small, then |Q¥| is small and
since u < uy, v < vy on 9QF, by Theorem 3.1, we get u < uf,
v < v¥ on Q4. So Ag(v) # 0. Here we have applied Theorem 3.1 to
the pairs (u,v) and (@,7) = (u¥,v¥) and with 4; = A = QX and
A2:A2:A3:A3:@.

STEP 2: By continuity of u,v , the inequalities u < uKO(V) and
v < ’UKO( ) hold in ©% ()" Moreover, by Lemma 2.3, since f,g are
nondecreasing on Rt we have that if C* and C” are connected com-
ponents of respectively (2 /\ W) \Z W) and Qf W) \Z;\’ W) ,then either
U <~ uKO( y or u = qu( ) in C¥ and either v < vy () OT V= ’UKO(V)
in C”. Assume now that )\0( ) < A2(v), and by contradiction that
u < uy ) in Q5. \Z - We first show that this implies v < v} )

on QKO(V) \ ZKO ) Suppose by contradiction this is not the case and
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that in a component C” of Q5 ) \ Z , we have v = vy ). Since

)\O(u) \ Z)\O(V is open, C" is also open Moreover int( )\O(V)) = Q.
Indeed, if ZY , contains an open set ', we have

|VulP'?Vu.Vodzr =0= [ f)pdz YoeCX(Q), (19)
(94 Q

which is impossible since v > 0 on ©Q and f(z) > 0 for all z >
0. So int(Zy (U)) = () and a similar reasoning would show that

znt(Z (V)) = (. Now if we assume by contradiction that in a com-
ponent C” of Q5 ) \Z U),

=05 () in Crn(X o) \ ) # (. Denoting C* N (¥ o) \ )
by A, this would imply

wehavev:fui() thenu<ug()and

/A|Vv|p2_2Vv.V<p dz = /A |V1)K0(V)‘p2_2V’UKO(V).V(p dz
for all ¢ € CX(A), and so

Ag(u)wdwzﬁg(UKo(u))wdw Vo € C°(A),

which is impossible since g is strictly increasing. So we also have
v <0y ) QY \ Z5 o)

As in [5], we can choose o, M > 0 independent from A € (a(v),
A2(v)] so that Theorem 3.1 applies in Q to the pairs (u,v) and
(4,7) = (uf,vy) and with Q = Q' = Qf. Following the same idea
as in [5], we take two open sets A, A with ZKO(U) C AC QKO(V)
and 77, C A C Qf ,, such that sup4(|Vu| + |VUK0(U)D <Y
sup 4 (|Vo| + [Vof ,)]) < 2. We also fix a compact set K C )
such that \SNZKO(V)\IQ < S . IHK\A#0, minK\A(uKO(V) —u)=m>0
and if K\ A # 0, minK\A(vKO(U) —v) = m > 0. By continuity of u, v,
there exists ¢ > 0 such that A\o(r) + & < A2(v) and such that for all
A€ (Ao(v), Ao(v) +e),

IQ5X\ K| < «, sup(|Vu|+ |Vu]) < M, sup(|Vv|+ |V§]) <M
A A

uK—u>%>O inK\A if K\A#0,
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and

vg—u>%>o inK\A if K\A#0.

For such values of A\, we have that u < uf and v < v} on respectively
O(Q5\(K\A)) and (25 \ (K \A)). Indeed, if 2y belongs to 9(QX\ (K'\
A)), then either zy € 995 where trivially u < u¥, or 2y € (K \ A),
where vy — u is positive. The same kind of reasoning works in the
case 1y € O( \ (K \ A)).

So we can apply Theorem 3.1 to (u,v), (4,7) = (u},v}), by taking
Q, = QK, A1~: A1 = QK\K, A2 = KﬂA, A2 = KNA and A3 = K\A,
Az = K\ A. We verify easily that 4; U Az = QF \ (K \ A) and
AjUAy = Q5 \ (K \ A) are open subsets contained in 5. We finally
conclude that v < u¥ and v < ¥ in Qf for X € (Ao(v), Xo(v) +¢€),
which contradicts the definition of A\y(v).

We prove (15) and (16) exactly as in [5] (they are simple consequences
of the definition of C* and C").

STEP 3: To prove (17), it suffices to prove
u<uy ImnOQY\Z if A€ (a(v), o(v)), (20)

and }
v<vy ImQY\Z ifXe (a(v), o)), (21)

as in [5]. Indeed, If (17) is false, and if (for example) u(zo) = u5(zo)
for some point o € Qf \ Z§, then by Lemma 2.3, u = u¥ in the
component of Qf \ Z¥ to which zo belongs, and this implies that
both |Vu(zg)| and |Vu§(zg)| are not zero, i.e. zg € Q5 \ Z, so that
(20) does not hold. The same reasoning also works for v.

Let us prove (20). The argument is the same as in [5]. We recall
it here for the sake of completeness. For simplicity of notations, we
assume that v = e; = (1,0,...,0) and we omit the superscript e; in
Q5 oler), aler),ut,... We write coordinates in RY as z = (y, 2)
with y € R, z € RV~L,

Arguing by contradiction, we assume that there exists p with
a < p < X and zo = (Y0,20) € Q \ Z such that u(zg) = uyu(zo)-
Since v < v, on {1, and f is nondecreasing, Lemma 2.3 implies
u = uy, in the component C of Q, \ Z, to which zy belongs. If A > u
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and A — p is small, (z¢)y = z, for some point z = (y, 29) € C with
y < yo. Since for A € (u,Ag], u < uy in Qy, we have u(y,zg) =
u(z) = u(z,) = u((zo)r) > u(zo) = u(yo,20). This implies that
u(y, z0) = u(yo,20) since by definition of Ay, u is nondecreasing in
the ej-direction in €2),. Therefore the set

U:= {y < Yo | (y’ZO) € 2 and u(y,zo) = u(yOaZO)}a

is not empty. If we set y; := inf U, we show that z1 := (y1,2¢) € 0.
Assume by contradiction that z; € Q and put A; := 3% By con-
tinuity of u, u(z1) = u(zg) and since (z1), = zo and Vu(zg) # 0,
we have z1 € Qy, \ Z),. By Lemma 2.3, u = u), in the component
of Qy, \ Z), to which z; belongs, which implies that Vu(z1) # 0 as
above. Repeating the previous arguments with u, x¢ substituted by
A1,x1, we obtain that u(y,z0) = u(yo, 29) for some y < y1, y1 — y
small, and this contradicts the definition of y;. So z; € 99 and
u(z1) = 0 = u(zg) > 0, a contradiction. This proves (20) and hence
(17) for u. The proof of (21) is similar.

The proof of (18) can be made as in [5] using the usual Hopf’s
lemma. O

The following result is the analogue of Proposition 3.1 in [5].

LEMMA 3.4. Suppose that (u,v) € C}(Q) x C§(Q) is a weak solution
of (7) where p1,p2 € (1,2) and f,g satisfy the hypotheses of Lemma
3.3. Then for any direction v, the set QKO(V does not contain any
subset I' of Z on which u is constant and whose projection on the
hyperplane T)’\’0 L) contains a non empty open subset of T)’\jo(u) rela-
tively to the induced topology. Similarly, for any direction v, the set
on(u) does not contain any subset T' of Z on which v is constant
and whose projection on the hyperplane T)’\jo(u) contains a non empty

open subset of T/{’O(V).

Proof. The proof is identical to that of Proposition 3.1 of [5], case 2.
We give it here for the sake of completeness.
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For simplicity of notations, we take v = e; = (1,0,...,0) and
denote a point z € RN as z = (y,2) with y € R,z € R¥~1. We omit
the superscript v = e; in Qf, uj, ...

Arguing by contradiction, we assume that €2y, contains a set '
with the properties:

(i) there exists v > 0 and zp € RY~! such that for each (A, z) €
T\, with |z — 2| < 7y, there exists y < Ao with (y,z) € T,

(ii) Vu(z) =0forall z € T,
(iii) u(z) =m >0 forall z €T

Observe that T satisfies the same properties as I' and that by (iii)
(or (ii)), TN OQ = 0. Let w = w, be the (N — 1)-dimensional ball
centered at zy with radius v. We consider the cylinder R X w and
denote by ¥ the intersection (Rx w)Ny,. We then define the “right
part of 3 with respect to I'”

Y ={(y,2) € 2|z €w,0(z) <y < Ao},

where
o(z) :=sup{y € R|(y',2) ¢ T for all 4 < y}.

One can see that Y, is open and well defined and by the monotonicity
of u in Q),, we have u(z) > m for all z € 3,. We claim that u # m
in X,. Indeed if this is not the case i.e. w = m in X, then Vu =0
in ¥, which is impossible since f(z) > 0 for all zx > 0 and v > 0 in
Y.r. Furthermore,

—Ap (u—m)=—-Apu>0 onX,.

One can see as in [5] that there exists ' on 8%, N T at which the
interior sphere condition is satisfied. At such a point, we have that

u(z') = m = ming-u. By the Hopf’s lemma, we conclude that

g—’s‘(w' ) > 0 for an interior directional derivative, which contradicts

(ii) for T.

The same arguments can be used to prove the nonexistence of a
set I'. O
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Before giving the proof of Theorem 1.2, we introduce some more
notations. We denote by F, (resp. F,) the collection of the con-
nected components C* of Qf ) \ZKO(V) (resp. C¥ of Q0 \ZKO(U))
such that v = wf ,, in C¥, Vu # 0 in C¥ and Vu = 0 on oc” \

(TXo(v) U ) (xesp. v =3, in C¥, Vv # 0 in C” and Vv = 0 on

aC” \ (Ty, Y 09) ). Then we define

Cc" = (", (22)

if Vu(z) = 0 for all z € 9C", or, if there are some points z €
oCY NTY ) such that Vu(z) # 0, we define

c":.=Cc"ucyucy, (23)

where CY = Ry (,)(C), C3 = {z € 9C" N Ty, | Vu(z) # 0}. As
in [5], we can check that C" is open and connected, with

Vu#0 inC", Vu=0 ondoC". (24)

We define in the same way C" with u replaced by v. Finally we
define F,, := {C" |CY € F,} and F| :={C"|C" € F, }.

REMARK 3.5. We have the analogue of remark 4.1 from [5] for u and
v: if v, v are two directions, then either C""t = C™2 or C"'1NC"™2 =
0. Indeed, if C* € Fy,,C" € Fop, £ C" NC™ # § and C™ £ C™,
then 0C""*NC™2 # () or C"*NOC™2 # () by Corollary 4.1 of [5], which
is impossible since Vu # 0 in C"i, Vu = 0 on 9C"i for i = 1,2. So
necessarily, either C™* = C'™2 or C"* N C"2 = (). In a similar way,
if C' € F,,,C» € F,,, then either C"* = C"™2 or C"' N C"> = ().

Proof of Theorem 1.2. The proof will follow the steps of that of The-
orem 1.1 from [5].
If v is a direction and ¢ > 0, we denote by I5(v) the set

I(v) = {u € BY [|u] = L, |u — ] < 8}.
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As in the proof of Lemma 3.3, we can fix o, M > 0 such that Theorem
3.1 applies to any direction v and any set Q' C Qf for all A €
(a(v), M ().

Suppose by contradiction that v is a direction such that Ag(rg) <
A1(v). Since A1(vo) < Aa(vp), then Ag(rp) < A2(vp) and by Lemma
3.3, F,, and .7-",,0 are non empty. Since RY is separable and since
each component of F,, and F,, is open, F,, and F,, contain at
most countable many sets, so F,, = {C°|i € I C N} and F,,, =
{C¥|i € I C N}. In case I is infinite, since the components are
disjoint, we have that Y :°; |C/°| < ||, so we can choose ng > 1 for
which

o0

> lor< g,

t=no+1

and the same remark holds for I with a number 7g. If I and T
are finite, let ng and 7o be their cardinality. We then choose two
compacts Ky C (QK‘(’)(VO) \ UierC;°) and Ky C (QK‘(’)(VO) \ UZEfCVO)
such that

14 AV o (67
(925 >\0 o) \UZEIC ")\ Kol < ¢ and |(Q)\?J(Vo)\UiEI~CiO)\K0| < 6

Then we take some compact sets K; C C;°,i = 1,...,n9 and K; C
C/°,i=1,...,7, such that

67 .
|C;/0\KZ|<% 1=1,...,n9

and
= -~ o . ~
|CZVO\KZ|<% Z:].,...,’TL().

So we have decomposed Q)\ (vo) in the sets Ko, K1,..., Ky, and in

a remaining part with measure less than §, and the same remark
holds with the sets K;.

We define then A := {z € Q (o) HVu( )| + |VUA0(V0)( z)| < ¥}
and A := {z € QAo(uo | |Vo(z)| + |Vv)\0(y0 (z)] < ¥}. Clearly, the
sets Ko \ A and Ky \ A are compact. By Lemma 2.3 and since

K, C (9 o (vo) \UzeIC %) and Ky C (Q”O )\UzelC °), we have that
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u < ugin Ko\ A Ko\ A # 0 andv <vy,, in Ko\ A if
f(o \ A # 0. So there exists m > 0 such that

—u>m>0 inKog\A if Ko\A#0,

“,\?)(uo)
and
)—v2m>0 in Ko\A if Ko\A#0.

Vo
v
Ao (vo

Since Q is of class C!, a(v) is continuous and A;(v) is lower semi-
continuous (see [2]). By continuity, there exists g, dy > 0 such that
if [A = Xo(v)| < ep and |v — | < dp, then

Al (1/) > Ao(lj()) + €o, (25)

|Vau| +|Vuy| < Mon A and |Vo|+|Vo¥| < Mon A, (26)
K;cQy fori=0,...,ny,

K; cQf fori=0,...,70,

R (K;) C R(C{°) fori=1,...,ny,
RY(K;) C R{(C?°) fori=1,...,7g,
Q5 \ UKl <o and  |QF\ U?:Ooffi\ < a,

and finally

uy —u > in Ko\ A.  (27)

% in Kg\A and o —v>

SE

We now proceed in several steps in order to show that there exists
i1 € {1,...,no}orj1 € {1,...,7p} and a direction v; € I, such that
C;* € F], for any direction v in a suitable neighborhood I5(v1) of
v1 and 9C;° contains a set ' as in Lemma 3.4 (with respect to the
direction v1) or such that C’;’:" € F!, for any direction v in a suitable

neighborhood I5(v) of v; and Bé’;’l 0 contains a set T as in Lemma,
3.4. This together with Lemma 3.4 would lead to a contradiction
and end the proof.

STEP 1: We show that A\g(v) is continuous at vy with respect to v
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i.e. for all € € (0,&¢), there exists § € (0,dp) such that if v € I5(vp),
then
(Z) )\0(1/0) —e< A()(I/) < Ao(l/()) + €.

Moreover, for all v € Is,)(v0), we have

(i7) (Fi € {1,...,no} such that C’;"O €F)
or

(3i € {1,...,7i0} such that C,"° € F1).

PROOF OF STEP 1: Let 0 < € < gy be fixed. By definition of
Ao(rp), there exists A € (Ao(v0), Ao(vo) +€) and = € Q)° such that
u(z) > u’(z) or € Q3° such that v(Z) > v°(Z). Suppose we are
in the first case. Then by continuity, there exists d; € (0,dg] such
that for all v € I5, (1), = belongs to Qf and u(z) > u¥(x). This
implies that for all v € I, (1p), we have Ao(r) < A < Ao(vp) + . We
conclude in the same way if we are in the second case.

We then show that there exists do € (0,dp] such that \o(v) >
Xo(vg) — € for all v € Is,(1p). Suppose that this is false. Thus
we can find a sequence v, — vy with A\o(r,) < Ao(vp) — € for all
n € Ny. Passing to a subsequence still denoted by v,, we have
Xo(vn) = X < Xo(wo) — . Since \g(vn) > a(vy) and a(vy) — a(wp)
by the smoothness of 92 (see [2]), we also have a(ry) < A. In fact,
this inequality is strict since by Theorem 3.1 and by definition of
Ao(vn), 19257, )| > o thus we also have [Q°] > 0 which implies

A > a(vp). Since A < A\g(1g), by (17) of Lemma 3.3, we have
u<wuy in QL\ ZL°, (28)
v<wog® in QL\ Z3° (29)

Now we make the same reasoning as in step 2 of the proof of Lemma

3.3. We can construct open sets A, A C Q;O and a compact set
K C Q5 such that

M
Z3° C A, sup(|Vul + [Vul’|) < —,
A 2

(0%
14
2 \K| < .

- - M
Z5° C A, sllip(|Vv| +|Vvi)) < B
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and

u? —u>y>0 in K\A if K\A#,
WO —v>y>0 in K\A if K\A#,

for some v > 0. By continuity of u,v and their gradients, there exist
r,d > 0 such that

sup(|Vu|+|Vus|) < M, |B\K|<a, u5—u> % >0 in K\A,
A

sup(|Vo| + |VoX|) < M, o —v > % >0 inK\A
A

for all v € I (vp) and A € (A — 4, A +6). We then apply Theorem 3.1
to the pairs (u,v) and (@,7) = (u¥,v%), with Q' = Q¥, A; = 4; =
Y\ K, Ay =KNA,Ay=KnNA, A3 = K\ A, A3 = K \ A and we
obtain

u<u¥ and v<v{ on€Qy WveI(v), Ve (A—26X+0).

Taking v = v, A = Ao(vy,) + n for n large and n > 0 small, this
contradicts the definition of A\y(v,) and proves (i). Notice that ev-
erything above has some sense since A < A;(v) for A close to A
and v close to vy by the lower semicontinuity of A\;(r) and since
A < A1(vo) — €. Remark also that the proof of (i) does not use the
fact that A\o(v0) < A2(vp), even when we use Lemma 3.3, so that the
continuity of Ag(v) is in fact insured at all v not necessarily equal to
.

Observe that since ¢ < gy and § < Jp, by (i) and (25), we
have A1(v) > Ao(v) for all v € Is)(vo) and (26)-(27) are true
for v € I(g(go)(l/o), A= )\0(V).

Let us now prove (ii). We fix a direction v € I5.,)(0). Sup-
pose that there exist 7 € {1,...,n0} and a point z; € K; such
that u(z;) = Uow) (z;). Since Vu(z;) # 0, by Lemma 2.3, we have
u = uio(u) in the component C¥ of F, to which z; belongs. Since

K; CC/° C C’Z{"O it follows that z; € C'"" N C;”O, hence by the ana-
logue of remark 4.1 of [5], it holds that C"” = C""°. As a consequence,



SYMMETRY AND MONOTONICITY etc. 93

we conclude that (ii) holds with an index i € {1,...,n0}. The same
argument works for v: if there exists ; € K; for some i € {1,...,70}
such that v(z;) = Vo) (;), then C*° € F,.

Next we analyze the case when u < uKO(V) on U K; and v <
¥ ) O UR2 Ki. If we take X > Xo(v), |A — Ao(v)| small, then by
(26)-(27), we also have u < uf on U2 K; U (Ko \ 4), v < v} on
Uity Ki U (Ko \ A), supgona(|Vul + [Vul[) < M, supg i (Vo] +
|[VvY|) < M, and finally |Qf \ U2 K;| < @ and |QF \ U2 K| < o
Applying Theorem 3.1 to the pairs (u,v), (4,v) = (uf,v), with
Q' =Qf and

A= O\ UK, A= 05\ UK,
Ay = KgN A, Agzkoﬂ;l,
A3 = U2 KU (Ko \ 4), A3 = UK U (Ko )\ 4),
we get u < vy and v < v§ on 2, which contradicts the definition
of Ao(v). So we conclude that the case u < uy ,, on U’ K; and

v <V () On U K; is impossible. This proves (ii).

STEP 2: We prove that there exist v1 € I5(,)(0) and a neighbor-
hood I, (v1) such that either there exists an index i1 € {1,...,n0}
such that

Cro e F, Vvel;(n),

or an index j; € {1,...,79} such that
CleF, Vvels(n).

Observe that in the proof of (ii) of step 1, we have seen that if

v E I(j(go)(l/o) and if there exists z; € K; for some ¢ € {1,...,n¢}
such that u(z;) = ui‘;(uo)(mi), then u = ui‘;(,}o) = u}, ) in K and

C"° € Fl,. Soforany v € I5(cy)(v0) and each i € {1,...,n0}, we have
the alternative: either u = uKO(U) in K; and C;"° € F,, or u < uKO(U)
in K; (by Lemma 2.3, using the monotonicity of f and the definition
of A\g(v)). In the latter case, since K; is compact, uKO(V) —u>m>0
in K; for some m, and since the function v — A\y(v) is continuous
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by step 1, we get that the inequality u < uﬁo(m holds in K; for

all 41 in a suitable neighborhood I(v) of v and so C;*° ¢ F,, for all
p € I(v). The same remark holds for v and any component C’;”O for
jE€ {1,...,?7[,0}.

We start by taking two sets in ¥, and .7:",L0, say C}"° and C}"°
and we argue as follows. If C{° € F, for any v € Is,q)(ro) or
O € F! for any v € I5(co)(10), then the assertion is proved. Other-
wise, for what we explained above, for some u; € Ig(EO)(Z/()), we have
Cy° ¢ F,, and u < uﬁé(m) in K1, and so C{"° ¢ F, for any p in a
suitable neighborhood Ij, (u1) of 1 which can be chosen such that
Is, (u1) C I5(y)(v0). I mg = 7ig = 1, then by (ii) of step 1, C’{"O € ﬁL
for any p in Iy, (u1) and the assertion is proved. So we can suppose
ng + 79 > 3. Now, by (ii) of step 1, there exists i € {2,...,n0}
such that C."° € Fp, or j € {l,...,79} such that C~’]'-”° € ]:"l'“. Let
us denote by Ay this set C.*° or C~'J'-”° and suppose Ay € F), (the
argument is similar in the other case Ay € .7:"1'“) If Ay € .7-",2 for all
p € Is5 (p1), then the assertion is proved. Otherwise, there exists
p2 € Is (p1) such that Ay ¢ F,, and as above, this implies that
Ag ¢ F), for all y in a suitable neighborhood I, (u2) which can be
chosen such that Iy, (u2) C Iy, (p1). If ng + ng = 3, by (ii) of step
1, this implies that there exists a set A3 in F, or .75,',0 (A3 = C7™ if
Ay € F,,) with A3 € F), for all y in I, (u2) (or Az € .7?; for all p
in Iy, (u2)) and the assertion is proved. If ng + 79 > 3, we proceed
as before taking a set Az in F, (or F ) such that A5 € F, (orin
.7:7;2) Arguing as we did before, after k£ < ng + 7 steps we get a set
Ay, in Fl, (or F}) with Ay € F!, for all po in I5, | (k1) (or Ay € F,
for all pu in I5, _, (pk—1)) proving the assertion, or after ng+ g steps,
we get a direction finyiig € Is(eo)(0) such that C;*° ¢ F, for

N N ng+iig
alli € {1,...,n0} and C}° ¢ F,
tradiction with (ii) of step 1.

no b0 for all j € {1,...,70}, a con-

STEP 3: Here we prove that if step 2 is satisfied with a set C"° € F}, ,
then the set QKO ,y contains a subset I" of Z on which u is constant
and whose projection on the hyperplane T)’\’O(V) contains an open sub-

set of T)'\’O(U) relatively to the induced topology. In the same way, if
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step 2 is satisfied with a set C/"° € F!

1 2
T of Z on which v is constant and whose projection on the hyperplane
T/’\’0 ) contains an open subset of T/{’O - In both cases, we arrive to a
contradiction with Lemma 3.4 and Theorem 1.2 is proved. We shall
proceed exactly as in step 3 of the proof of Theorem 1.1 from [5].
We recall the argument for the sake of completeness.

then QKO(V) contains a subset

Suppose step 2 is satisfied with some set C;° € F, (the same
reasoning can be made in the other case, replacing v by v in what
follows). Let us assume that v4,4;,d; are as in step 2 and denote by
C the set C;° from step 2. We assume moreover for simplicity that
v1 =e; =(1,0,...,0) and we omit »; in AO(Vl)’QK:)(ul)’T:\/;(ul)" ..

By step 2 and definition of C’ (see (22,23)), we have that for each
v E It51 (61),

u=uj ) in C' and C'eF,. (30)
Since C' is open (see the definition of C'), RKO(V)(C') N Ry (C') #0
if v is sufficiently close to e;. Moreover, by (24), Vu = 0 on 9C’
which implies by (30) that

Vu =0 on BRKO(U)(C") for all v € Iy, (e1). (31)

Arguing as in Remark 3.5, if R o) (CNRy,(C") # 0 and RKO(V)(C')
# R),(C"), then by Corollary 4.1 from [5], ( KO(V)(C')) NRy,(C") #
0 or RKO(V)(C') N A(Ry,(C")) # B, which is impossible by (24), (30)

and (31). Thus, we get that
R3,)(C') = Ry, (C)

for v sufficiently close to ey, say for v € Is,(e;) for some 0 < d2 < ;.
Then we take a point z = (g,z) in 0C N ), and consider T’ :=
(2X0 — ¥, Z), the symmetric of Z with respect to the hyperplane Ty, .
By reflecting z’ through the hyperplanes T/‘\’O(U) for v € Ij,(e1), we
obtain the points

AWv) = (y),2(v)) =7 +2(No(v) — 7' vy,

which, for what we remarked before, belong to dC' . Indeed, Z €
0C Ny, soz € IC', ' € 9(Ry,(C")) = B(RKO(V)(C')) and so
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A(v) € 9C'. Since T € ),, we can suppose, taking dy smaller
if necessary, that for each v € I, (e1), the point A(v) belongs to
), and that A\o(v) — Z'.v < 0 (since Z'.e; > Ao and v — Ao(v) is
continuous). So A(v) € 9C for v € Is,(e1) (see the definition of C
and C'). Observe that by the continuity of v +— A\y(v), the function
v +— A(v) is also continuous and it is injective as it is easy to see.

By (30), u(Z) = u(Z') = u(A(v)) for each v € Iy, (e1), so that
the function u is constant on the set I' := {A(v) |v € I5,(e1)}. Since
A(v) € 0C Ny, C 9C'" for all v € Ij,(e1), we have by (24) Vu =0
on I'. We will prove that the projection of I' on the hyperplane T),
contains an open subset of T}, this will lead to a contradiction with
Lemma 3.4 and the proof of Theorem 1.2 will be concluded.

Let us now write the generic direction v€ SN 1:={veRN ||v| =
1} as v = (v, v,), with vy € R, v, € RV7L. If v is close to e, then
vy = /1 — v, %

We take now 8 > 0 small and consider the set

K = {V: (vy,v2) | vz € Bg, vy = m}’

where Bg = {z € RV ™! | |z| < B} is the closed ball in RV ™! centered
at the origin with radius .

By construction, K is a compact neighborhood of e; in the metric
space SV~1, and if B is small enough, then K is contained in I, (e1).
We will show that if A(v) = (y(v), 2(v)) then the set {z(v)|v € K}
contains an open set in RV-1.

By definition of A(v), z(v) = z' + 2(A\o(v) — T'.v)v,, where v =
(v/1—-|v.]%,v;) € K, v, € Bsg. We will prove that the image of the
function

F(v,) :=2N\o(v) -3 Vv, v, € Bg, v=(1-|v,% )

contains a (N — 1)-dimensional ball centered at the origin. This will
imply that {z(v)|v € K} contains an open set.

Let us consider a point [ € S¥=1 := {z € R¥=1||z| = 1} and
the segment S; := {tl||t| < 8} C Bg. By definition of F and since
F is continuous, the image F'(S;) is a segment contained in the line
passing through the origin with direction [ in R¥~1. Moreover, since
M(v) —z'.v < 0 for all v € K and since S; contains points v, =
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with £ both positive and negative, the origin is an interior point of
F(S;). Hence we can write

F(S) ={tl[t € [d(1),d2(D]}  di(l) <0 <da(l),

for all I € SV ~! and for some functions d; (1), d2(I). By the compact-
ness of K and the continuity of A\g(v) with respect to v, there exists
d € (0,1) such that \y(v) — Z'.v < —§ < 0 for all v € K, so that
di(l) < —B6 and dy(l) > 36 for all | € S¥—2. Thus the set

{z € RN~ ||2| < B6} = Bgy C F(Bp),

which ends the proof. O

A direct consequence of Theorem 1.2 is the following symmetry
result (Theorem 1.4 of the introduction).

COROLLARY 3.6. Let v € RY and Q C RY be a domain with C*
boundary symmetric with respect to the hyperplane

T(')’z{mE]RN|a:.V=O}

and A\ (v) = M(—v) = 0. Assume that one of the following condi-
tions holds

1. p1,po € (1,2) and f,g : R — R* are strictly increasing func-
tions on RT such that f(z) > 0,g(x) > 0 for all z > 0,

2. p1 € (1,0),p2 = 2 and f,g : R — RT are nondecreasing on
R*.

Moreover suppose that f and g are locally Lipschitz continuous on R.
Let (u,v) € C}(Q) x CL(Q) is a weak solution of (7), then u and v
are symmetric and decreasing in the v direction in Q. In particular,
if Q is the ball Bg(0) in RN with center at the origin and radius R,
then u,v are radially symmetric. If moreover f(z) > 0,g(x) > 0 for
all z > 0, then u'(r),v'(r) <0 for 0 <r < R, r = |z|.
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Proof. The symmetry of u, v is a direct consequence of Theorems 1.1
and 1.2. Suppose that 2 is a ball. If r € (0,R) and G := Bg \ B,
then m := u(r) is the maximum of « in G and the minimum of u in
B,. Since f(z) > 0,g(z) > 0 for all z > 0,

—Ap (u—m)=—-Apu>0 in B,

and by Hopf’s lemma, u'(r) < 0. A similar result shows that v'(r) <
0in B,. 0
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