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Asymptoptic Behaviour of
Sobolev Constants for
Thin Curved Rods or Pipes

SANJA MARUSIC )

SUMMARY. - We study the Sobolev imbedding inequality in a curved
rod or pipe with a smooth central curve v. Using the variational
approach and the two-scale convergence for thin domains we find
the limit of the Sobolev imbedding constant W™ — L1 as €, the
ratio between cross section diameter and the length of the rod,
tends to 0.

1. Introduction

The study of thin (or long) curved rods or pipes has been subject
of many papers due to their various applications (see e.g. [1], [2],
[4], [6]). Since the geometry of such objects is rather complicated
the main goal of most of those papers was to find the appropriate
1-dimensional models. For that purpose, the asymptotic analysis
with respect to the small parameter ¢, the ration between the width
and the length of the rod, was used. To establish the asymptotic
behaviour of the solution of some boundary value problem in such
domain it is very important to know the exact asymptotic behaviour
of the corresponding Sobolev imbedding constants for such domains.
In the present paper we prove that the imbedding constant C*(r, q)
for Wb < L with 1 < ¢ < * = 33TTT , 7 < 3 on the curved rod
P. , multiplied by €2/ =2/4, converges to the Sobolev’s imbedding
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constant C°(r, q) for WEZT(O,E) — Lf5|(0,£) 1| where |S| stands for
spaces defined with respect to the weighted measure |S(t)|dt, S(t) is
the cross section of the rod at level ¢ and |S(¢)| is its area. From that

result we can conclude that C¢(r,q) = e2/9=2/" (C°(r, ¢) + o(¢)).

2. The Geometry

We suppose that 7, the central curve of the rod, is a smooth generic
curve of class C*. For simplicity we assume that v is parameterized
by its arc length y; € [0,£]. We denote by x : [0,4] — R? its natural
parameterization. In each point x(y;) ,y1 € [0,£] of the curve ~
we define its curvature as k(y1) = [x"(y1)| and the Frenet’s basis,

t(y1) = x'(31) (the tangent), n(y;) = () 2
b(y1) = t(y1) X n(y1) (the binormal) . As usual, we denote by
7(y1) = —|b'(y1)| the torsion.

For a smooth 1-parameter family of subsets S(a) C R2 ( the cross
section at point x(«) ) and a small parameter 0 < ¢ < 1 we define

a straight rod as

Q ={y=(y1,y2,y3) ER*; y1 € [0,4], (y2,93) € eS(w1) }

such that, denoting z, = y?" , o = 2,3, the standard assumptions

/ z9 dZ2 dZ3 = / Z3 dZ2 ng =0
S(y1) S(y1)

hold (i.e. that the origin 0 is placed in the centroid of S(y1)). We
assume that Q. is locally Lipschitz. We define the mapping @ : 0, —
R3 by

(the normal) and

®(y) =x(y1) + y2n(y1) + ysb(y1) -
In order to have the local injectivity of ®, we suppose that ¢ is
sufficiently small, more precisely, we assume that

elk(a)| diamS(a) <1, a €[0,4], (1)

Indeed, it is easy to see (see e.g. [2] or [6]) that det V® = 1—yak(y1)
so that the supposition (1) assures the local injectivity of ®. We are

!¢ is the rod’s length

% Assuming that n is extended by continuity in points where curvature is 0
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now ready to define the curved rod with the central curve v and the
variable cross section € S(y;) by

P =®(%,) .

Obviously, the curve v is passing the centroid of each cross section
of the rod. For more details on the geometric tools see [2], [1] and
[6]. In particular an interesting generalization to nongeneric curves
was done in [2].

.

Figure 1: Curved rod or pipe

3. The Variational Approach

As in [3], we use the variational characterization of C*(r, ¢) and then
we study the convergence of the corresponding minima.

Let 7 € [1,3] . Due to the Sobolev theorem there exist constants
C*(r,q) such that

lelLap,y < C(r, q)lelwrr(p.) (2)

for allg € [1,7*], r* = ;’—Tr Here, and in the sequel we denote

lplwir oy = lelor ) + Vel o) -
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Relich-Kondrachev’s theorem implies that the above imbedding
WT(P.) — LI(P.)

is compact for all ¢ € [1,7*[. In that case C*(r,¢) can be seen as an
eigenvalue on the nonlinear problem

gt =t [ ewinny, o 20l L ()
|<P|Lf1(PE)

Such C%(r,q) is sharp. Indeed, we have:

LEMMA 3.1. The infimum in (3) is attained and C%(r,q)~ > 0.

Since the mapping ¢ — |@|w1r(p,) is convex and ¢ — |p|rqe(p,)
is continuous in W17 (P.) topology, the proof of this lemma is an
elementary exercise from the calculus of variations and can be found
in [3].

We can now state our main result:

THEOREM 3.2. Let
Co%rq) ' =

. LISCHMT plir .ot ISCIMT @ ler. 1,r
_an{ |‘S(,)|1/q W‘Lq(o,l) ) SDEW (036)1(107&0 (4)

Then Co(r,q)~! > 0 and
lim e2- =200 (r, q) = C°(r,q)

e—0

The interesting part is that only the arc length of our curve ~y
turns out to be important in the asymptotic study of C*(r,q). In-
deed, there are no effects of the curvedness of v and the limit of
the Sobolev constant for the curved rod P. is the same as for the
Sobolev constant for the straight rod €2.. The effects of curvedness
are expected in some higher order correctors.

To prove that the above result has a sense we first have the following
lemma:

LEMMA 3.3. The infimum in (4) is attained and C°(r,q)~! > 0.

The proof is the same as the proof of lemma 3.1.
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4. Proof of Theorem 3.2

4.1. Geometric tools

In this section we study the curve v and we recall some basic geomet-
ric tools that are used in our method. The basic idea for studying
the asymptotic bahaviour of curved thin structures, used in [1], [2],
[4] or [6], is to define the appropriate curvilinear coordinate system
in P. and write the variational problem (3) in such coordinates.

We start with covariant basis which is, in fact, the gradient of the
mapping D, i.e. it consists of the vectors a;(y) = g—;(y). In our case,

we have

ai(y) = [1—yes(y1)lt(y1) —yam(y1)n(y1) + y27(y1)b(y1)
= t(y1) +0(e) , (5)

while as(y) = n(y1) , as(y) = b(y1) . The covariant metric tensor
[M]z’j = gij = a; - a; is now easily computed as

M(y) =
1—2ysk(y1) +ya6(y1) 2 +ya7(y1) 2 +y37(y1)*  —y37(y1) yer(y1)
—y37(y1) 1 0 =
Yo7 (Y1) 0 1

=I+0(¢)

and its determinant equals

ge(y) = det M(y) = [1 — yar(y1)]* =1+ O(e) .

The contravariant metric tensor M(y) = [¢%] is defined by M(y) =
M(y)~, so that M(y) = I+ O(e).

Let ¢(y) = (p o ®)(y) = ¢(z). We need the expression for V, ¢ o ®.
We have

3 8¢
V,pod= ke 2 a, . 6
@ ;k 9" Gy 2 (6)
After noticing that

/() d:c:/ (f 0 ®)(y) vz dy
P, e
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our problem (3) can be written in the form

Co(r,q) ' =
:inf{|{(V;c90)°‘1)}h§|u(95)+|(‘P°‘§)h§|u(ns) L peW(P), }:
[(p o ®) hl|a(a.) T p#0
_ inf{ | Zz,gzl gkt a%ae helpr oo hlir@.) ¢ e Wi () ,}
¢ Bl La(.) T 9#0 ’

(7)

where hT = (g.)'/?" .

4.2. Two-scale convergence

We recall the definition of the two-scale convergence from [5] :

DEFINITION 4.1. Let
Q= {(ylaz) € R3 y U1 E]O,é[, z = (22,23) € S(yl) } .

We say that a sequence {v®}esqo, such that v¢ € L"(S;) , L"-two-
scale converges to a function V € L"(Q) (we use the notation L™ —2s
convergence in the sequel) if

= [ st Dy [ Vi Dot ndz v/ = (.

€
| (8
for any ¢ € L" (), where 1/r+1/r' =1if1<r<ocandr' =1 if
r=o0, 7 =00 ifr=1.

We, also, say that a sequence {v®}.~0, such that v € L" () strongly
L' -two-scale converges ( notation s—L"—2s) to a function V € L" ()

if
!
Egl/r |’UE (y) - V(yla Y

Dliran =0 - ©

For the properties of such convergence we refer to [5]. Theorem
1 from [5] and proposition 3 from [3] contain the compactness result
that will be needed in the sequel:
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PROPOSITION 4.2. Suppose that the sequence {p.} , . € WHT(Q,)
r < 3 is such that

5_2/r|‘P6|W1,T(Q5) <C. (10)

Then there exists a subsequence, denoted for simplicity by {¢:}, and
0o EWLT(0,8) , Yo €Y ={tp € L"(Q) ; V,2p € L™ () } such that

3r
11
5 (11)

0
Vo, —» Pe 1V, LM —2s (12)
8?/1

where Vb = af;’ e+ afo es.

Furthermore, 1y can be chosen such that

e >y s—L1—2s , 1<qg<r'=

/ Po(y1,2) n(y1,2) dS, =0 for (a.e.) y1 €]0,£] , (13)
aS(y1)

where n(y1, -) is the exterior unit normal on 0S(y1).

4.3. Proof of theorem 3.2
Let F, be defined by

d
| 3ok o1 9™ 52 ahl 1 ()6 hEl Lo, pEWT(Q)

F.(¢)= |¢ hdl Lo, T ¢F#0
400 otherwise
and Fy by
SO @i+ SO @'liroy  oeWir(0,0),
Fy(p)= 1S9 0l Lao,e) " p#0

+o00 otherwise

We begin by noticing that both infima of F, and of Fj are attained
at some points ¢. € WIT(Q,.) and ¢g € WI7(0,£), respectively.
Furthermore, due to the homogeneity of F, we can assume that

e pelwrrony =1 -
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Using the asymptotic behaviour of g = 6, + O(e), and a; = t +
O(e), a simple computation gives

20 I (ge) < X9 T EL () = Fo(po) + ofe)

so that
limsup €2 " D F.(¢.) < Fo(yo) - (14)

e—0

Due to the proposition 4.2, there exist p € W (0,£) , w € Y such
that

¢5_>p s— L7 —

Voo P e 4+ Vow L7 —2s
3291

and (13) holds for w. The convexity of L" norm implies that
L | < liminf e~ 2/" | | =1
|p|L’(Q) + |8—y1 (S5 2W Lr(Q) = 11611351 9 e|lWir(Q:) = .

The strong two scale convergence implies that

e | La(a.) = Pl = | 1S1Y9 | a0,

As

T

—e;+ V,w =
‘391 1 L7(Q)

e; + V,w|" >
//s(yl)|3y1 ' |

0
/ (_p e+ V,w)dz
S(y1)

S(yn)|""dy, =
m 1S (y1)|""dyr

[
/ ISl

= (condition (13)) = ‘ |S|Mr Op
Y1 lLr(0,)

r

o
Sl 52 ert [ w(un.z) ny,2)dS. | dn =
n 95(y1)
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we obtain

t-rh) F.(¢:) < lim sup62(q_l_r_1) F.(¢:) <

e—0

Fo(p) < liminfe?(d”
e—0
< (due to (14)) < Fo(po) -

Thus

COr,q)~' = Fo(p) = Fo(po) = 21_1)1(1) Fo(¢e) =

= lim X O ()
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