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Cardinal Invariants for
Function Spaces

ANNAMARIA MIRANDA (*)

SUMMARY. - Several function space topologies can be generated by
a procedure defined by two parameters: a network on the domain
and a topology on the hyperspace of the range. Results about
cardinal functions and metrizability for a particular class of such
spaces are given.

1. Introduction

Let X,Y be topological spaces, CL(Y) the set of all closed nonempty
subsets of Y and C(X,Y") the set of all continuous functions from X
to Y. Any network  in X and any hypertopology 7 on CL(Y’) induce
on C(X,Y) a topology 7, by requiring : “A net {fy} in C(X,Y) 7o-
converges to f € C(X,Y) iff the net {f)(A)} T-converges to f(A) in
CL(Y) for all A € @”. In other words 7, has the following subbasic

open sets:

[A:G]={feC(X,)Y): f(A) € G}

where A € a and G is open in T.
This is a general method to produce function space topologies by
using hypertopologies (see [8]).
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In particular, given the well known Vietoris topology 7 on CL(Y),
any network « on X produces a topology on C(X,Y), which we
denote by 7, . The function space having this topology is denoted
by Co,v(X,Y) or simply Cy v (X) when Y =R

If o contains the singletons, a typical subbasic open set in 7,y is

[A:V]={feCX,)Y): f(A) CV}

where A € @ and V is open in Y (see [4]).

A topology on C(X,Y) is called “set-open” provided there is
some closed network « such that the family {[4,V]: A€ aand V is
open in Y}, where [A, V] ={f € C(X,Y) : f(A) C V}, is a subbase
for the topology (see [7]).

This function space is usally denoted by Cu(X,Y) (Cu(X) when
Y =R).

The relations between C,(X,Y) and Co,v(X,Y) depend essen-
tially on the choice of the network «. For example, if a is compact
they coincide.

McCoy and Ntantu in [7] give results about relations between some
cardinal functions on C, (X) and the domain X when « is a compact
hereditarily closed network and Y = R.

Trying to prove such relations for Cy, 1/ (X), we find results that
have as corollaries not only those obtained by McCoy and Ntantu
but also fundamental theorems about countability properties of the
most famous set-open topologies, such as the uniform convergence
topology on compact sets and the pointwise convergence topology
(see [2]). In this case the function spaces having these topologies are
denoted respectively by Cx(X) and Cp(X).

Furthermore simple necessary and sufficient conditions on metriz-
ability of C,,v(X,Y) are given. As corollaries we obtain the well
known theorems about metrizability of Cp(X) and Ck(X) (see [1]).

Throughout this paper all spaces are assumed to be Hausdorff
and all networks to contain singletons.

We refer the reader to [5] for notations and terminology not ex-
plicitly given.
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2. Preliminaries

Let X,Y be topological spaces, CL(Y') the set of all closed nonempty
subsets of Y and C(X,Y") the set of all continuous functions from X
to Y. A nonempty family o of nonempty subsets of X is a network
on X if for every z € X and for every open neighbourhood U of z
there exists an A € a such that x € A C U.
It is called closed (compact) provided each member is closed (com-
pact). A closed network is called hereditarily closed iff every closed
subset of a member is a member.

A network @ on X and a topology 7 in CL(Y') induce in C(X,Y’)
a natural convergence which topologizes C(X,Y’) by requiring: {f\}
Ta-converges to f in C(X,Y) iff {f\(4)} T-converges to f(A) in
CL(Y) for each member A in « (see [4] and [8]).
The method establishes the correspondence (o, 7) — 7,. Clearly,
given a topology 7 on CL(Y) the choice of the network a plays an
important role to construct the associated function space topology.
This role is emphasized by introducing the following definitions:

DEFINITION 2.1. A network « is Y-closed iff for every function f €
CX,)Y)and Aca f(A)=f(A).

For example a compact network on X is Y-closed when Y is a
Hausdorff space. There exist Y-closed networks, with Y Hausdorff,
that are not compact.

DEFINITION 2.2. A network « is Y-compact iff for every function

feC(X,Y) and A € a, f(A) is compact.

If X =Y = R the set of bounded intervals of X is a Y-compact
network on X which is neither compact nor Y-closed.
Clearly, if Y is compact then every network on X is Y-compact.

DEFINITION 2.3. A network a on X is functionally separating iff for
every A € a and B nonempty closed in X such that AN B= () there
ezxists a continuous function f : X — [0, 1] such that f(A) = {0} and

f(B) = {1}.

If X is completely regular (normal) then every compact (closed)
network on X is functionally separating.
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DEFINITION 2.4. A network o on X is reqular with respect to 'Y iff
for every A€ a, f € C(X,Y) and V open in'Y such that f(A) CV
there exists an open set U in'Y such that f(A) CU CU C V.

If Y is normal then every network on X is regular with respect
toY.

If 7 is the Vietoris topology, these networks produce various func-
tion space topologies.
Each topology is denoted by 7, and the related function space by
Ca,V (X ’ Y) :
The Vietoris topology 7 on CL(Y') has as subbasic open sets

V- = {EeCLY):EnV # 0}
Wt = {E€CLY):ECW}

where V, W are open sets in Y.
We may think of 7y as obtained by joining the topologies v~ and
Ty+ generated taking as basic open sets the family {V ™~ : V open in
Y} and {W™ : W open in Y} respectively (see [3]).

If Y is metrizable then CL(Y) can be metrized by Hausdorff
metric. Recall that if d is a compatible metric on Y, for every A, B €
CL(Y) the metric

dup (A, B) = max{supd(a, B),supd(b, A)}
a€A beB

is the Hausdorff metric on CL(Y).

Recall also that if & is a family of compact subsets of Y then 7y co-

incides with the topology induced by Hausdorff metric on S (see [3]).
If we endow the hyperspace of Y with 7+ we can costruct a

topology on C(X,Y) in the following way: for every A belonging to
a network « and open set V in Y, define

[A:V]={feC(X,Y): f(A) eV}

equivalently

[A:V]={feCX,)Y): f(A) CV}
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The family {[A: V] : A € o,V open in Y} is a subbase for a topology
on C(X,Y).

If Y is regular or a contains the singletons of X, then this topology
is exactly 74,y (see [4] Proposition 1.2).

For almost any natural topology on C'(X,Y’) the topological prop-
erties of X and Y interact with the topological properties of C(X,Y").
So after comparing Cy v (X,Y) with Co(X,Y), introduced in [7], we
deduce results about these interactions for Co v (X,Y).

3. Comparison between C,v(X,Y) and C,(X,Y)

In [7] Co(X,Y) is a topological space generated taking as subbasic
open sets the following sets:

[A,V]={feC(X,)Y): f(4A) CcV}

where A € « and V is open in Y.

Clearly, if a is Y-closed then Cf y(X,Y) = Co(X,Y’). In particular
if « is the network of all compact subsets of X and Y is Hausdorff
these spaces coincide both with Ci(X,Y’). In general C,(X,Y) is
distinct from Cfy v (X,Y).

PROPOSITION 3.1. If o is a regular network on X then Co v (X,Y)C
Co(X,Y).

The next example shows that this is a strict inclusion when Y =
R and a = CL(Y).

ExXAMPLE 3.2. Let X =Y = R equipped with the natural topology
and a = CL(Y'). There ezists a Cy-open set that is not open in 7oy .

Consider the function f : X — Y defined by f(z) = arctg = for

every r € X. If A= [§,+oo[and V =] — F, T[, then f € [A4,V], but

every T,,y-open set containing f is not contained in [A,V]. Infact,

let Aq,..., A, be elements of o and Vi,...,V,, open sets in Y such
n

that f S n [Az : ‘/Z]
=1
' n n

We distinguish two cases: 1) 5 € f(UU 4:); 2) 5 ¢ f(U 4i).
i=1 i=1
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n
It can be shown that in both cases it results ( () [4; : V;])\[4, V] # 0.
=1
1) If § € f(UA;) there exists 7 € {1,...,n} such that § € f(4;),
so A; has no upper bounds. Suppose that it is the only element
of {A; : i =1,...,n} to have no upper bounds. Then there exists

o € [§, +ool such that (| A;) N [zo, +oo[= 0.

i#]
Let p =sup{z € R:z € |J A4;}. The function
i#]
flz) s €] = 00,3)
glz) =49 Z+ 555_0]:(5) (x —x9) = € [p,x0]
fz T € [zg, +00[

where fr denotes the constant function related to 7,
N[A4; : V;T but it does not belong to [A4, V].
Observe that if A; is not the only unbounded element of the set
{A1,..., A} we can take their intersection and procede as in the
previous way. If all A;’s have no upper bound the function f x belongs
to N[A4; : V5] but it does not belong to [4, V].

2) If § ¢ f(UA;) then for every ¢ € {1,...,n} A; is upper bounded
so there exist o € R such that o > maxU}! ;A;. Let g : (UA;) U

{zo} = Y be defined by

belongs to

and let G be a continuous extension of g on X. Clearly G €
n
N [A4i : Vi\[4, V].

=1

4. Main results

Let X,Y be topological spaces and let a be a network on X. Before
showing the interaction between cardinal functions on X and on
Ca,v(X,Y) we need to recall the following definitions:
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DEFINITION 4.1. [7] An a-network  on X is a family of nonempty
subsets of X such that for every A € a and for every open neighbour-
hood U of A there exists a B € 8 such that AC B C U. An a-cover
of a space X is a family of subsets of X such that every member of
a is cointained in some member of this family.

DEFINITION 4.2. [7] The a-netweight, a-a-netweight and a-Arens
number are respectively defined and denoted as follows: anw(X) =
w + min{|B| : B is an a-network for X}, aanw(X) = w + min{|B| :
B C a and B is an a-network for X}, aa(X) = w+min{|U| : U C «
and U 1is an a-cover for X}.

Recall that K (Y') will denote the set of all nonempty compact subsets
of Y.

LEMMA 4.3. Let a be a network on X and let T a topology on CL(Y')
then

1) w(CX.Y)7) < |a] - w(CL(Y),7);

(2) w(C(X,Y),7a) < |a| - w(K(Y), ) if a is Y-compact.

Proof. (1) Let B a base for (C(L(Y'), ) such that |B| = w(CL(Y), 7).
The family {[A: G] : A € a,G € B} is a subbase for (C(X,Y), 74)
so w(C(X,Y),7a) < |af - [B] = |a| - w(CL(Y), 7).

In an analogous way it is easy to show the inequality (2). O

Note that in (2) the factor |@| cannot be omitted as the following
example shows.

EXAMPLE 4.4. Let X =Y =Ra = {{z} : 2 € X} and 7 = 7.
a is a Y-compact network on X and w(K(Y), 7)) = w. It suffices
to observe that the family S = {V* : V open interval with rational
bounds} is a base for (K(Y), 7). Moreover the family {[{z} : V] :
z € X, V €S} is a subbase for 7,y so w(Co,yv(X,Y)) =c.

THEOREM 4.5. Let o be a network on X and let Y =R. Then
(1) aonw(X) <w(Cqyv(X,Y)) if o is functionally separating;
(2) aanw(X) > w(Cq,yv(X,Y)) if a is Y-compact.

Proof. First let us prove the inequality (1). Let B’ a base of
Ca,v(X,Y) of minimal cardinality: |B'| = w(Cy,y(X,Y")), contained
in the fami- ly B of all finite intersections of members [A : V] of the
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canonical subbase S, and let S’ be the family of all [A : V] such that
there is a B’ € B' of the form B' = [A: V]|N[A; : Vi]N...N[A :
Vi]. Then it is easily seen that the family o' C « of all A such
that there is a V with [A : V] € §' is an a-network of cardinality
< w(Cq,v(X,Y)). In fact let A € o, A C U,U open set.

Let f € C(X,Y) be such that f(A4) = {0} and f(X\U) = {1}.
We have f € [A :] — I, %[ ]), hence there is an A’ € o such that
JelA:vic[A]-14l]
Observe that V C] — 1, 1[. Clearly A’ C U, since f(X\U) NV = .
Finally A C A’. If not pick any a € A\ A’. There exists a function g
such that g(A’) =r € V and g(a) = 1. To show the inequality (2) let
o' C o an a-network of minimal cardinality: |¢/| = canw(X). It is
easily seen that 7o/ v = 7o,v. Fix A € o,V openinY and f € [A: V]
and let U an open set in Y such that f(A) C U C U C V, then there
isan A’ € o/ such that AC A’ C f}(U)and fe[A':V]C[A:V].
Now it suffices to apply Lemma 4.3 (2) with 7 = 71+ and recall that
W(K(Y),7y+) =0 : w(Ca (X,Y)) = 0(Cory (X, V) < |o/]. O

Observe that:“If « is a Y-closed, Y-compact, functionally separating
network on X and Y = R then aanw(X) = w(Cq(X))”.

In particular, for compact networks on X, we deduce Theorem 4.5.2
in [7] without requiring the hereditarily closedness of «, that is to
say:

COROLLARY 4.6. Let o be a compact network on X. Then
aanw(X) = w(Cq(X)).

For Y-closed networks Theorem 4.5 is an effective generalization
of Theorem 4.5.2 in [7] as the following example shows:

EXAMPLE 4.7. A Y-closed, Y-compact, Y =R, functionally separat-
ing network on a Tychonoff space X which is not compact.

Let Z = [] Z; where Z; = [0,1] Vt € R. The ¥-product X =
teR
¥(0) C Z is a countably compact normal space (see [5]),which is not

locally compact.

Let a be a closed network on X.

- a is Y-closed and Y-compact: for every A € «, A is countably
compact then f(A) is countably compact, that is to say compact.
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- « is functionally separating because X is normal.

- « is not compact, otherwise X would be locally compact.

We need only to show that “For every compact network 8 751 #
Ta, v -

(This follows from Theorem 1.1.1 [7], anyway we give a proof for the
sake of completness.)

The network « is not compact, so let us take a non compact A in
a. Let V be a nonempty proper subset of Y. Then [A : V] =

{f €e C(X,)Y) : f(A) C V} belongs to 7,,v. Let f € [A : V],

Ki,...,K, € pand Vi,...,V, open in Y such that f € N[K;: V]
i=1
We show that N[K; : V;] is not contained in [A : V]. A is not compact

n
so there exists a € A such that a ¢ |J K;. Fix y € Y\V consider
i=1

n n
the function g : (|J K;) U {a} — Y defined by ¢ = f on | K;

i=1 i=1
and g(a) = y. Let § be a continuous extension of g on X, clearly

n

g€ (_ﬂl[Ki ViD\[4 = V].

Notezthat if a coincides with the set of all compact subsets of X,
denoted by K(X), then C, v (X,Y) = Cx(X,Y) and if a = {{z} :
z € X} then Cp v(X,Y) = Cp(X,Y). In both cases « is functionally
separating, hereditarily closed and applying Theorem 4.5 the second
countability for Cx(X) (respectively C,(X)) is equivalent to the
condition aanw(X) = w that is to say aa(X) = w and anw(X) = w
with @ = K(X) (respectively o = {{z} : £ € X} ) by the relation
aaw(X) = aa(X) - anw(X) (Theorem 4.5.1 in [7]). Recall that
when o = K(X) X is hemicompact iff aa(X) = w, so we have the
following;:

COROLLARY 4.8. ([7] 4.5.3) Ck(X) is second countable iff X is hemi-
compact and anw(X) = w with o = K(X).

COROLLARY 4.9. ([7] 4.5.4; [2] 1.3.7) Cp(X) is second countable iff
X is countable.

We consider now the metrizability of Cy v (X,Y).

THEOREM 4.10. Let X be a Tychonoff space, Y a metrizable space
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containing an arc and let o be a closed, hereditarily closed, Y-compact
network on X. Then the following conditions are equivalent:

(1) Co,v(X,Y) is metrizable;

(2) Cov(X,Y) is first countable;

(3) aa(X) = w.

Proof. (1)=(2). It is obvious.

(2)=(3). It follows from the inequality aa(X) < x(Co,v(X,Y)) [7].
(3)=(1). Let p be a compatible metric on Y. If « is (Y, p)-compact
then 7,y = 7a, (see [4]), where 7, , is the topology on C(X,Y)
generated by a and the Hausdorff metric topology induced by pg on
CL(Y), and Ta,p = Tq y.c.(p) (see [4] and [8]), where 7, . (,) denotes
the uniform convergence topology induced by p. On the other hand
the hypothesis implies that there exist a countable family {4, },c 7+
in «, such that for any A in « there is some n € Z* such that
A C A,. Fix n € ZT the metric

pn(fr9) = Sup p(f(z),9(z))  f,g€C(X,)Y)

induces the uniform convergence on A, and the following metric
= 1
p(£.9) =) 5apn(f.9) f.9€ C(X,Y)
n=1

generates Ty 4.c.(p)- O

Let X be a Tychonoff space and Y a metrizable space containing an
arc.

COROLLARY 4.11. ([7] Exercise 9.1(a); [1]) Cx(X,Y) is metrizable
iff X is hemicompact.

COROLLARY 4.12. ([7] Exercise 9.1(b)) Cp(X) is metrizable iff X is
countable.

The author is grateful to the referee for many helpful suggestions
which improved the exposition of the paper.
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