Cardinal Invariants for Function Spaces

Annamaria Miranda (*)

Summary. - Several function space topologies can be generated by a procedure defined by two parameters: a network on the domain and a topology on the hyperspace of the range. Results about cardinal functions and metrizability for a particular class of such spaces are given.

1. Introduction

Let X,Y be topological spaces, CL(Y) the set of all closed nonempty subsets of Y and C(X,Y) the set of all continuous functions from X to Y. Any network α in X and any hypertopology τ on CL(Y) induce on C(X,Y) a topology τ_{α} by requiring: "A net $\{f_{\lambda}\}$ in C(X,Y) τ_{α} -converges to $f \in C(X,Y)$ iff the net $\{\overline{f_{\lambda}(A)}\}$ τ -converges to $\overline{f(A)}$ in CL(Y) for all $A \in \alpha$ ". In other words τ_{α} has the following subbasic open sets:

$$[A:\mathcal{G}] = \{ f \in C(X,Y) : \overline{f(A)} \in \mathcal{G} \}$$

where $A \in \alpha$ and \mathcal{G} is open in τ .

This is a general method to produce function space topologies by using hypertopologies (see [8]).

^(*) Author's address: Annamaria Miranda, Dipartimento di Matematica e Informatica, Facoltà di Scienze, Università degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (SA), Italia, e-mail amiranda@unisa.it 1991 AMS Subject Classification: 54A10, 54B20, 54C05, 54C35 Keywords: network, hyperspace, Hausdorff hypertopology, Vietoris topology, cardinal function

In particular, given the well known Vietoris topology τ_V on CL(Y), any network α on X produces a topology on C(X,Y), which we denote by $\tau_{\alpha,V}$. The function space having this topology is denoted by $C_{\alpha,V}(X,Y)$ or simply $C_{\alpha,V}(X)$ when $Y=\mathbb{R}$.

If α contains the singletons, a typical subbasic open set in $\tau_{\alpha,V}$ is

$$[A:V] = \{ f \in C(X,Y) : \overline{f(A)} \subset V \}$$

where $A \in \alpha$ and V is open in Y (see [4]).

A topology on C(X,Y) is called "set-open" provided there is some closed network α such that the family $\{[A,V]: A \in \alpha \text{ and } V \text{ is open in } Y\}$, where $[A,V]=\{f\in C(X,Y): f(A)\subset V\}$, is a subbase for the topology (see [7]).

This function space is usally denoted by $C_{\alpha}(X,Y)$ $(C_{\alpha}(X))$ when $Y = \mathbb{R}$.

The relations between $C_{\alpha}(X,Y)$ and $C_{\alpha,V}(X,Y)$ depend essentially on the choice of the network α . For example, if α is compact they coincide.

McCoy and Ntantu in [7] give results about relations between some cardinal functions on $C_{\alpha}(X)$ and the domain X when α is a compact hereditarily closed network and $Y = \mathbb{R}$.

Trying to prove such relations for $C_{\alpha,V}(X)$, we find results that have as corollaries not only those obtained by McCoy and Ntantu but also fundamental theorems about countability properties of the most famous set-open topologies, such as the uniform convergence topology on compact sets and the pointwise convergence topology (see [2]). In this case the function spaces having these topologies are denoted respectively by $C_K(X)$ and $C_p(X)$.

Furthermore simple necessary and sufficient conditions on metrizability of $C_{\alpha,V}(X,Y)$ are given. As corollaries we obtain the well known theorems about metrizability of $C_p(X)$ and $C_K(X)$ (see [1]).

Throughout this paper all spaces are assumed to be Hausdorff and all networks to contain singletons.

We refer the reader to [5] for notations and terminology not explicitly given.

2. Preliminaries

Let X, Y be topological spaces, CL(Y) the set of all closed nonempty subsets of Y and C(X, Y) the set of all continuous functions from Xto Y. A nonempty family α of nonempty subsets of X is a network on X if for every $x \in X$ and for every open neighbourhood U of xthere exists an $A \in \alpha$ such that $x \in A \subset U$.

It is called closed (compact) provided each member is closed (compact). A closed network is called hereditarily closed iff every closed subset of a member is a member.

A network α on X and a topology τ in CL(Y) induce in C(X,Y) a natural convergence which topologizes C(X,Y) by requiring: $\{f_{\lambda}\}$ τ_{α} -converges to f in C(X,Y) iff $\{\overline{f_{\lambda}(A)}\}$ τ -converges to $\overline{f(A)}$ in CL(Y) for each member A in α (see [4] and [8]).

The method establishes the correspondence $(\alpha, \tau) \longrightarrow \tau_{\alpha}$. Clearly, given a topology τ on CL(Y) the choice of the network α plays an important role to construct the associated function space topology. This role is emphasized by introducing the following definitions:

DEFINITION 2.1. A network α is Y-closed iff for every function $f \in C(X,Y)$ and $A \in \alpha$ $\overline{f(A)} = f(A)$.

For example a compact network on X is Y-closed when Y is a Hausdorff space. There exist Y-closed networks, with Y Hausdorff, that are not compact.

DEFINITION 2.2. A network α is Y-compact iff for every function $f \in C(X,Y)$ and $A \in \alpha$, $\overline{f(A)}$ is compact.

If X = Y = R the set of bounded intervals of X is a Y-compact network on X which is neither compact nor Y-closed. Clearly, if Y is compact then every network on X is Y-compact.

DEFINITION 2.3. A network α on X is functionally separating iff for every $A \in \alpha$ and B nonempty closed in X such that $A \cap B = \emptyset$ there exists a continuous function $f: X \to [0,1]$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

If X is completely regular (normal) then every compact (closed) network on X is functionally separating.

DEFINITION 2.4. A network α on X is regular with respect to Y iff for every $A \in \alpha$, $f \in C(X,Y)$ and V open in Y such that $\overline{f(A)} \subset V$ there exists an open set U in Y such that $\overline{f(A)} \subset U \subset \overline{U} \subset V$.

If Y is normal then every network on X is regular with respect to Y.

If τ is the Vietoris topology, these networks produce various function space topologies.

Each topology is denoted by $\tau_{\alpha,V}$ and the related function space by $C_{\alpha,V}(X,Y)$.

The Vietoris topology τ_V on CL(Y) has as subbasic open sets

$$V^{-} = \{E \in CL(Y) : E \cap V \neq \emptyset\}$$

$$W^{+} = \{E \in CL(Y) : E \subset W\}$$

where V, W are open sets in Y.

We may think of τ_V as obtained by joining the topologies τ_{V^-} and τ_{V^+} generated taking as basic open sets the family $\{V^-: V \text{ open in } Y\}$ and $\{W^+: W \text{ open in } Y\}$ respectively (see [3]).

If Y is metrizable then CL(Y) can be metrized by Hausdorff metric. Recall that if d is a compatible metric on Y, for every $A, B \in CL(Y)$ the metric

$$d_H(A,B) = \max\{\sup_{a \in A} d(a,B), \sup_{b \in B} d(b,A)\}$$

is the Hausdorff metric on CL(Y).

Recall also that if \Im is a family of compact subsets of Y then τ_V coincides with the topology induced by Hausdorff metric on \Im (see [3]).

If we endow the hyperspace of Y with τ_{V^+} we can costruct a topology on C(X,Y) in the following way: for every A belonging to a network α and open set V in Y, define

$$[A:V] = \{ f \in C(X,Y) : \overline{f(A)} \in V^+ \}$$

equivalently

$$[A:V] = \{ f \in C(X,Y) : \overline{f(A)} \subset V \}.$$

The family $\{[A:V]: A \in \alpha, V \text{ open in } Y\}$ is a subbase for a topology on C(X,Y).

If Y is regular or α contains the singletons of X, then this topology is exactly $\tau_{\alpha,V}$ (see [4] Proposition 1.2).

For almost any natural topology on C(X,Y) the topological properties of X and Y interact with the topological properties of C(X,Y). So after comparing $C_{\alpha,V}(X,Y)$ with $C_{\alpha}(X,Y)$, introduced in [7], we deduce results about these interactions for $C_{\alpha,V}(X,Y)$.

3. Comparison between $C_{\alpha,\mathbf{V}}(\mathbf{X},\mathbf{Y})$ and $C_{\alpha}(\mathbf{X},\mathbf{Y})$

In [7] $C_{\alpha}(X,Y)$ is a topological space generated taking as subbasic open sets the following sets:

$$[A, V] = \{ f \in C(X, Y) : f(A) \subset V \}$$

where $A \in \alpha$ and V is open in Y.

Clearly, if α is Y-closed then $C_{\alpha,V}(X,Y) = C_{\alpha}(X,Y)$. In particular if α is the network of all compact subsets of X and Y is Hausdorff these spaces coincide both with $C_k(X,Y)$. In general $C_{\alpha}(X,Y)$ is distinct from $C_{\alpha,V}(X,Y)$.

PROPOSITION 3.1. If α is a regular network on X then $C_{\alpha,V}(X,Y) \subset C_{\alpha}(X,Y)$.

The next example shows that this is a strict inclusion when $Y = \mathbb{R}$ and $\alpha = CL(Y)$.

Example 3.2. Let $X = Y = \mathbb{R}$ equipped with the natural topology and $\alpha = CL(Y)$. There exists a C_{α} -open set that is not open in $\tau_{\alpha,V}$.

Consider the function $f: X \to Y$ defined by $f(x) = \operatorname{arctg} x$ for every $x \in X$. If $A = [\frac{\pi}{2}, +\infty[$ and $V =] - \frac{\pi}{2}, \frac{\pi}{2}[$, then $f \in [A, V]$, but every $\tau_{\alpha, V}$ -open set containing f is not contained in [A, V]. Infact, let A_1, \ldots, A_n be elements of α and V_1, \ldots, V_n open sets in Y such that $f \in \bigcap_{i=1}^n [A_i : V_i]$.

We distinguish two cases: 1) $\frac{\pi}{2} \in \overline{f(\bigcup_{i=1}^{n} A_i)}$; 2) $\frac{\pi}{2} \notin \overline{f(\bigcup_{i=1}^{n} A_i)}$.

It can be shown that in both cases it results $(\bigcap_{i=1}^{n} [A_i : V_i]) \setminus [A, V] \neq \emptyset$.

1) If $\frac{\pi}{2} \in \overline{f(\bigcup A_i)}$ there exists $j \in \{1, \dots, n\}$ such that $\frac{\pi}{2} \in \overline{f(A_j)}$, so A_j has no upper bounds. Suppose that it is the only element of $\{A_i : i = 1, \dots, n\}$ to have no upper bounds. Then there exists $x_0 \in [\frac{\pi}{2}, +\infty[$ such that $(\bigcup A_i) \cap [x_0, +\infty[=\emptyset.$

 $x_0 \in [\frac{\pi}{2}, +\infty[$ such that $(\bigcup_{i \neq j} A_i) \cap [x_0, +\infty[=\emptyset]$. Let $p = \sup\{x \in \mathbb{R} : x \in \bigcup_{i \neq j} A_i\}$. The function

$$g(x) = \begin{cases} f(x) & x \in]-\infty, p] \\ \frac{\pi}{2} + \frac{\frac{\pi}{2} - f(p)}{x_0 - p} (x - x_0) & x \in [p, x_0] \\ f_{\frac{\pi}{2}} & x \in [x_0, +\infty[$$

where $f_{\frac{\pi}{2}}$ denotes the constant function related to $\frac{\pi}{2}$, belongs to $\cap [A_i:V_i]$ but it does not belong to [A,V].

Observe that if A_j is not the only unbounded element of the set $\{A_1,\ldots,A_n\}$ we can take their intersection and procede as in the previous way. If all A_i 's have no upper bound the function $f_{\frac{\pi}{2}}$ belongs to $\cap [A_i:V_i]$ but it does not belong to [A,V].

2) If $\frac{\pi}{2} \notin \overline{f(\cup A_i)}$ then for every $i \in \{1, \ldots, n\}$ A_i is upper bounded so there exist $x_0 \in \mathbb{R}$ such that $x_0 > \max \bigcup_{i=1}^n A_i$. Let $g: (\cup A_i) \cup \{x_0\} \to Y$ be defined by

$$g(x) = f(x)$$
 $x \in \bigcup A_i$
 $g(x_0) = \frac{\pi}{2}$

and let G be a continuous extension of g on X. Clearly $G \in \bigcap_{i=1}^{n} [A_i : V_i] \setminus [A, V]$.

4. Main results

Let X, Y be topological spaces and let α be a network on X. Before showing the interaction between cardinal functions on X and on $C_{\alpha,V}(X,Y)$ we need to recall the following definitions:

DEFINITION 4.1. [7] An α -network β on X is a family of nonempty subsets of X such that for every $A \in \alpha$ and for every open neighbourhood U of A there exists a $B \in \beta$ such that $A \subset B \subset U$. An α -cover of a space X is a family of subsets of X such that every member of α is cointained in some member of this family.

DEFINITION 4.2. [7] The α -netweight, α - α -netweight and α -Arens number are respectively defined and denoted as follows: $\alpha nw(X) = \omega + \min\{|\mathcal{B}| : \mathcal{B} \text{ is an } \alpha\text{-network for } X\}, \ \alpha \alpha nw(X) = \omega + \min\{|\mathcal{B}| : \mathcal{B} \subset \alpha \text{ and } \mathcal{B} \text{ is an } \alpha\text{-network for } X\}, \ \alpha a(X) = \omega + \min\{|\mathcal{U}| : \mathcal{U} \subset \alpha \text{ and } \mathcal{U} \text{ is an } \alpha\text{-cover for } X\}.$

Recall that K(Y) will denote the set of all nonempty compact subsets of Y.

LEMMA 4.3. Let α be a network on X and let τ a topology on CL(Y) then

- (1) $w(C(X,Y), \tau_{\alpha}) \leq |\alpha| \cdot w(CL(Y), \tau);$
- (2) $w(C(X,Y), \tau_{\alpha}) \leq |\alpha| \cdot w(K(Y), \tau) \text{ if } \alpha \text{ is } Y\text{-compact.}$

Proof. (1) Let \mathcal{B} a base for $(C(L(Y), \tau)$ such that $|\mathcal{B}| = w(CL(Y), \tau)$. The family $\{[A:G]: A \in \alpha, G \in \mathcal{B}\}$ is a subbase for $(C(X,Y), \tau_{\alpha})$ so $w(C(X,Y), \tau_{\alpha}) \leq |\alpha| \cdot |\mathcal{B}| = |\alpha| \cdot w(CL(Y), \tau)$. In an analogous way it is easy to show the inequality (2).

Note that in (2) the factor $|\alpha|$ cannot be omitted as the following example shows.

Example 4.4. Let $X=Y=\mathbb{R}, \alpha=\{\{x\}:x\in X\}$ and $\tau=\tau_V^+$. α is a Y-compact network on X and $w(K(Y),\tau_V^+)=\omega$. It suffices to observe that the family $\Im=\{V^+:V \text{ open interval with rational bounds}\}$ is a base for $(K(Y),\tau_V^+)$. Moreover the family $\{[\{x\}:V]:x\in X,\ V\in\Im\}$ is a subbase for $\tau_{\alpha,V}$ so $w(C_{\alpha,V}(X,Y))=c$.

Theorem 4.5. Let α be a network on X and let $Y = \mathbb{R}$. Then

- (1) $\alpha \alpha nw(X) \leq w(C_{\alpha,V}(X,Y))$ if α is functionally separating;
- (2) $\alpha \alpha nw(X) \geq w(C_{\alpha,V}(X,Y))$ if α is Y-compact.

Proof. First let us prove the inequality (1). Let \mathcal{B}' a base of $C_{\alpha,V}(X,Y)$ of minimal cardinality: $|\mathcal{B}'| = w(C_{\alpha,V}(X,Y))$, contained in the family \mathcal{B} of all finite intersections of members [A:V] of the

canonical subbase S, and let S' be the family of all [A:V] such that there is a $B' \in \mathcal{B}'$ of the form $B' = [A:V] \cap [A_1:V_1] \cap \ldots \cap [A_k:V_k]$. Then it is easily seen that the family $\alpha' \subset \alpha$ of all A such that there is a V with $[A:V] \in S'$ is an α -network of cardinality $\leq w(C_{\alpha,V}(X,Y))$. In fact let $A \in \alpha, A \subset U, U$ open set.

Let $f \in C(X,Y)$ be such that $f(A) = \{0\}$ and $f(X \setminus U) = \{1\}$. We have $f \in [A:] - \frac{1}{4}, \frac{1}{4}[]$, hence there is an $A' \in \alpha'$ such that $\overline{f} \in [A':V] \subset [A:] - \frac{1}{4}, \frac{1}{4}[]$.

Observe that $V \subset]-\frac{1}{4},\frac{1}{4}[$. Clearly $A' \subset U$, since $f(X \setminus U) \cap V = \emptyset$. Finally $A \subset A'$. If not pick any $a \in A \setminus A'$. There exists a function g such that $g(A') = r \in V$ and g(a) = 1. To show the inequality (2) let $\alpha' \subset \alpha$ an α -network of minimal cardinality: $|\alpha'| = \alpha \alpha n w(X)$. It is easily seen that $\tau_{\alpha',V} = \tau_{\alpha,V}$. Fix $A \in \alpha, V$ open in Y and $f \in [A:V]$ and let U an open set in Y such that $\overline{f(A)} \subset U \subset \overline{U} \subset V$, then there is an $A' \in \alpha'$ such that $A \subset A' \subset f^{-1}(U)$ and $f \in [A':V] \subset [A:V]$. Now it suffices to apply Lemma 4.3 (2) with $\tau = \tau_{V+}$ and recall that $w(K(Y), \tau_{V+}) = \omega : w(C_{\alpha,V}(X,Y)) = w(C_{\alpha',V}(X,Y)) \le |\alpha'|$.

Observe that: "If α is a Y-closed, Y-compact, functionally separating network on X and $Y = \mathbb{R}$ then $\alpha \alpha n w(X) = w(C_{\alpha}(X))$ ". In particular, for compact networks on X, we deduce Theorem 4.5.2 in [7] without requiring the hereditarily closedness of α , that is to say:

COROLLARY 4.6. Let α be a compact network on X. Then $\alpha \alpha nw(X) = w(C_{\alpha}(X))$.

For Y-closed networks Theorem 4.5 is an effective generalization of Theorem 4.5.2 in [7] as the following example shows:

Example 4.7. A Y-closed, Y-compact, $Y = \mathbb{R}$, functionally separating network on a Tychonoff space X which is not compact.

Let $Z = \prod_{t \in \mathbb{R}} Z_t$ where $Z_t = [0,1] \ \forall t \in \mathbb{R}$. The Σ -product $X = \Sigma(0) \subset Z$ is a countably compact normal space (see [5]),which is not locally compact.

Let α be a closed network on X.

- α is Y-closed and Y-compact: for every $A \in \alpha, A$ is countably compact then f(A) is countably compact, that is to say compact.

- α is functionally separating because X is normal.
- α is not compact, otherwise X would be locally compact.

We need only to show that "For every compact network β $\tau_{\beta,V} \neq \tau_{\alpha,V}$ ".

(This follows from Theorem 1.1.1 [7], anyway we give a proof for the sake of completness.)

The network α is not compact, so let us take a non compact A in α . Let V be a nonempty proper subset of Y. Then $[A:V]=\{f\in C(X,Y):\overline{f(A)}\subset V\}$ belongs to $\tau_{\alpha,V}$. Let $f\in [A:V],$ $K_1,\ldots,K_n\in\beta$ and V_1,\ldots,V_n open in Y such that $f\in\bigcap_{i=1}^n [K_i:V_i]$. We show that $\cap [K_i:V_i]$ is not contained in [A:V]. A is not compact so there exists $a\in A$ such that $a\notin\bigcup_{i=1}^n K_i$. Fix $y\in Y\setminus V$ consider

so there exists $a \in A$ such that $a \notin \bigcup_{i=1}^n K_i$. Fix $y \in Y \setminus V$ consider the function $g: (\bigcup_{i=1}^n K_i) \cup \{a\} \to Y$ defined by g = f on $\bigcup_{i=1}^n K_i$ and g(a) = y. Let \hat{g} be a continuous extension of g on X, clearly $\hat{g} \in (\bigcap_{i=1}^n [K_i:V_i]) \setminus [A:V]$.

Note that if α coincides with the set of all compact subsets of X, denoted by K(X), then $C_{\alpha,V}(X,Y) = C_K(X,Y)$ and if $\alpha = \{\{x\} : x \in X\}$ then $C_{\alpha,V}(X,Y) = C_p(X,Y)$. In both cases α is functionally separating, hereditarily closed and applying Theorem 4.5 the second countability for $C_K(X)$ (respectively $C_p(X)$) is equivalent to the condition $\alpha \alpha nw(X) = \omega$ that is to say $\alpha a(X) = \omega$ and $\alpha nw(X) = \omega$ with $\alpha = K(X)$ (respectively $\alpha = \{\{x\} : x \in X\}$) by the relation $\alpha \alpha w(X) = \alpha a(X) \cdot \alpha nw(X)$ (Theorem 4.5.1 in [7]). Recall that when $\alpha = K(X)$ X is hemicompact iff $\alpha a(X) = \omega$, so we have the following:

COROLLARY 4.8. ([7] 4.5.3) $C_K(X)$ is second countable iff X is hemicompact and $\alpha nw(X) = \omega$ with $\alpha = K(X)$.

COROLLARY 4.9. ([7] 4.5.4; [2] I.3.7) $C_p(X)$ is second countable iff X is countable.

We consider now the metrizability of $C_{\alpha,V}(X,Y)$.

THEOREM 4.10. Let X be a Tychonoff space, Y a metrizable space

containing an arc and let α be a closed, hereditarily closed, Y-compact network on X. Then the following conditions are equivalent:

- (1) $C_{\alpha,V}(X,Y)$ is metrizable;
- (2) $C_{\alpha,V}(X,Y)$ is first countable;
- (3) $\alpha a(X) = \omega$.

Proof. $(1) \Rightarrow (2)$. It is obvious.

 $(2)\Rightarrow(3)$. It follows from the inequality $\alpha a(X)\leq \chi(C_{\alpha,V}(X,Y))$ [7]. $(3)\Rightarrow(1)$. Let ρ be a compatible metric on Y. If α is (Y,ρ) -compact then $\tau_{\alpha,V}=\tau_{\alpha,\rho}$ (see [4]), where $\tau_{\alpha,\rho}$ is the topology on C(X,Y) generated by α and the Hausdorff metric topology induced by ρ_H on CL(Y), and $\tau_{\alpha,\rho}=\tau_{\alpha,u.c.(\rho)}$ (see [4] and [8]), where $\tau_{\alpha,u.c.(\rho)}$ denotes the uniform convergence topology induced by ρ . On the other hand the hypothesis implies that there exist a countable family $\{A_n\}_{n\in Z^+}$ in α , such that for any A in α there is some $n\in Z^+$ such that $A\subset A_n$. Fix $n\in Z^+$ the metric

$$\rho_n(f,g) = \sup_{x \in A_n} \rho(f(x), g(x)) \qquad f, g \in C(X, Y)$$

induces the uniform convergence on A_n , and the following metric

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \rho_n(f,g) \quad f,g \in C(X,Y)$$

generates $\tau_{\alpha,u.c.}(\rho)$.

Let X be a Tychonoff space and Y a metrizable space containing an arc.

Corollary 4.11. ([7] Exercise 9.1(a); [1]) $C_k(X,Y)$ is metrizable iff X is hemicompact.

Corollary 4.12. ([7] Exercise 9.1(b)) $C_p(X)$ is metrizable iff X is countable.

The author is grateful to the referee for many helpful suggestions which improved the exposition of the paper.

References

- [1] R. Arens, A topology of spaces of trasformations, Annals of Math. 47, 480–495.
- [2] A.V. Arkhangel'skii, *Topological function spaces*, Kluwer Academic Publishers, 1992.
- [3] G. Beer, *Topologies on closed and closed convex sets*, Kluwer Academic Publishers, 1993.
- [4] A. DI CONCILIO AND A. MIRANDA, Function space topologies deriving from hypertopologies and networks, Bollettino U.M.I.(8) 4 (2001), no. B, 457–471.
- [5] R. ENGELKING, *General topology*, Sigma series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989.
- [6] S. KUNDU AND A.B. RAHA, The bounded-open topology and its relatives, Rend. Ist. Mat. Univ. Trieste 27 (1995), 61-77.
- [7] R.A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Lectures Notes in Math., vol. 1315, Springer-Verlag, 1988.
- [8] A. MIRANDA, Topologie su spazi di funzioni derivanti da topologie su iperspazi, Ph.D. thesis, University of Naples, 2000.

Received August 1, 2001.