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Generalized Truncated Exponential

Polynomials and Applications

GIUSEPPE DATTOLI, PAOLO E. RICCI
AND LAURA MARINELLI *)

SUMMARY. - The use of the monomiality principle will allow us to
obtain generalizations of the truncated exponential polynomials.
We will derive the properties of the new families of polynomi-
als and finally we will mention their applications in problems of
practical interest.

1. Introduction

The study of the properties of ordinary and generalised polynomials
is simplified by the use of concepts associated with the monomial-
ity principle, according to which a given polynomial p,(z) (n € N
and z € C) is defined a “quasi monomial” if two operators P and
M , called from now on “derivative” and “multiplicative” operator
respectively, can be defined in such a way that [4]

P(pu(z)) = npp-i(z), (1)

~

M(pn(z)) = ppi1(z). (2)
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The P and M operators are shown to satisfy the relation of commu-
tation

(PN = PN — NP =1, 3)
and thus display a Weyl group structure.
The properties of p,(z) can be deduced from those of the Pand M
operators.
If P and M possess a differential realization, then the polynomial
pn(z) satisfy the differential equation

M P(pu(2)) = npa(z). (4)
If po(x) = 1, then p,(x) can be explicitly costructed as
pn(@) = M™(1). (5)

The identity (5) implies that a generating function of p,(z) can be
cast in the form
N oo tn
(1) =3 Cpale). (6
n=0

The Hermite and Laguerre polynomials are two examples of quasi
monomials [4].
The monomiality principle allows us to define new families of func-
tions by exploiting the corrispondence

M — =z (7)
P — 9,
pn(z) — 2" (8)

According to such a correspondence, one can define families of p-
base functions, namely functions defined in such a way that the quasi
monomial p,(z) replaces z" in the series expansion of a known func-
tion.
We will e.g. define p-base exponential and Gauss functions respec-
tively as
1
pelz) = 3 pu(a), (9

n=0

(=1)" pon(z)
n!

hE

p9(z) =

S
I
o
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Within such a context the p-base extension of Bessel functions has
been shown to be of particular importance in various problems [3].
In this paper we will discuss the p-base extension of truncated poly-
nomials, which play an important role in various problems in classical
and quantum optics [1].

The ordinary truncated polynomials are defined by [1, 5]

en(z) = Z R (11)
k=0

Most of the properties of this polynomials can be derived from the
definition (11). We find indeed

en(z) = ! /000 ez + a)" da. (12)

Tl

Eq. (12) allows the derivation of the generating function

Tt S

£ = tmen(a). (13)

n=0

By using eq. (13) we obtain the differential recursions

%en(w) =ep-1(x), (14)

1+ 2 (1= L) | en(@) = enia(2)
n+1 dz

- da
dz’

. T d
E, =1 1——.
+ +ﬁ+1( d:v)

Furthermore the use of the relation

B, [E'_e”(w)] = en(z) (16)
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yields the differential equation

[xj—; . z)% + n] en () = 0. (17)

The p-base truncated polynomials will be denoted by ,e,(z) and,
according to the correspondences (7) and (8), we find

pen(e) = 3 PP, (18)

the generating function

eMt 0
== 21" ren(®) (19)
n=0

and the differential equation
[Mﬁ? —(n+ NP+ n] ven(z) = 0, (20)

which provides an isospectral problem to the ordinary truncated
polynomials equation.

By using eq. (12) and the corrispondences (7), (8), we can write the
integral representation of e, (z)

1
p€n (r) = !

/00 e *(M + )" da. (21)
0

In this paper we will discuss the problems associated with the prop-
erties of Hermite and Laguerre based truncated polynomials.

2. Hermite based truncated exponential polynomials

In the case of Hermite-based polynomials eq. (18) reduces to

n

Hen($ay) :ZM’ (22)

k!
k=0
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where Hy(z,y) are the Hermite polynomials [11, 7], and the gener-
ating function (19)

ewt+yt2 o
—— = ueale,y) 1, (23)

n=0

which is a trivial consequence of the structure of the operator M and
of the Weyl disentanglement rule.

By taking the derivative with respect to z, y and ¢ of both sides of
eq. (23) we can derive the recurrences

)

a:c Hen(xay) = Henfl(l',y ;
Y), (25)

ay Hen(:l"a y) = Hen—Q(ma

T y-z 2y
(1 + n+1 + n+1 ax - n_‘_lai%) He"l(xay) = Hen+1($,y). (26)

Furthermore, by defining the shifting operators

A T 2y —z 2y o
E. = 1 Op — 0
+ (+ﬁ+1+'fz+1 T h417)

A~

E_ = 0,
and by using the relation
By (B wea(z,y)) = wea(a,y). (27)
we obtain the differential equation in the form
[2982 + (z + 29)02 + (x — n)0y + 1] men(z,y) =0.  (28)

Furthermore by using (21) we find the integral representation

1 o0
wen(z,y) = A e “(z+2y0; + )" da + (29)
1 o0

+ e “H,(z + o, y) da.

n! 0

In section 3 we extend the truncated polynomials to the Laguerre
family.
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3. Laguerre based truncated exponential polynomials

Putting p,(z) = L,(z,y) in eq. (18), we obtain the Laguerre-based
truncated polynomials defined as

ﬁen(ma y) = Z Ek(w,y)a (30)

k!
k=0

where Li(z,y) are the Laguerre polynomials [9, 2].
We derive the generating function by eq. (31),

eth’ xt)
1 E 7 Z [,en z y (31)

where

o (_
=> (32)
r=0
which is a direct consequence of the structure of the operator M and

of the Weyl disentanglement rule.

By using eq. (30) we find the integral representation

1 [ n
— / e *(y— D' +a)" da. (33)
0

[,en(l', y) = n!

By taking the derivative with respect to —0,x0,, 0y and —0;t0; of
both sides of eq. (31), we can derive the recurrences

(E—)w Len(way) = Cen—l(xay) (34)
(E—)y gen(x,y) = Len—l(xay) (35)
E+ Een($ay) = LEn+1 (:L'ay)a (36)
where the shifting operators
~ x y(1+ 2n)
E,.=1-
+ CES R CET
2 . 2
Y z y(1 +2n) 2. 202
— O0rpx 0y 05z°0
+((ﬁ+1)2 Gr1? a2 )T T Gy
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can be embedded to give the relation

A~

Ey ((E—)z Len(xay)) =c en(‘r,y)a (37)
which can be further manipolated to get the differential equation

[a:ani + (dzy — 2202 + (y(2 + z) + z(n — 2))02+ (38)
+(n+y—x)0; + n] cen(z,y) =0.

The last equation can also be derived by using eq. (20), where
M = (y — D;') and P = —0,20;. We obtain indeed

[(y — Dz 192202 + (n+y — D3 ) 0,20, + n] cen(z,y) =0, (39)

which easily reduces to eq. (38).

4. The generating function method

In the previous sections we have discussed p-base truncated polyno-
mials, but the correspondences (7), (8) allows the introduction of the
Hermite-Bessel and Laguerre-Bessel functions, the Hermite-Laguerre
and Laguerre-Hermite polynomials.

These new functions are useful for the study of integrals involving
combinations of special functions [9].

We can find the analytic form of these integrals by using the gener-
ating function method, which can be summarized as follows.

Consider the problem of computing the sequence of definite in-
tegrals

b
/ fo@)ds, (e Np:={0,1,2,..}), (40)

without knowing explicitly the primitives of the functions f,(z). Let
F(z,t) be the generating function of the set {fn(z)},cn,, namely

F(z,t) = an(m)t", (41)
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which is an analytic function of ¢, defined in a suitable neighborhood
of the origin: |t| < Tp. Suppose further that the function F(z,t) is
analytically integrable, namely

/bF(:v,t) dz = B(2), 1] < T, (42)

so that the coefficients of the series expansion ®(t) = > ° ; a,t" are
known.

Then, by using the uniform convergence of the expansion (41), the
generating function method allows us to write:

b S b
/ Flatyds = S ( / fn(:c)dac): (43)
a n—=0 a
= Zt”an,
n=0
and hence

b
/a folo)ds = an,  (n€N). (44)

To give an idea of the importance of p-base functions and p-base
polynomials we will present in this section a number of integrals,
often appearing in applications, which can be written in terms of
Hermite-base Bessel, Laguerre-base Bessel functions and also in terms
of truncated exponential polynomials.

The examples given below are a consequence of the previously quoted
generating function method [10]

/Oo e () J (z+b)dz = \ﬁ T (5, (45)
. n = OéH n ’401 )

where g J,, (b, ﬁ) are the Hermite-Bessel functions, furthermore [6]

* —(ez?) _ |z 1
/ La(z +d) da \fa L (d,4a), (46)

where gL, (d, ﬁ) are the Hermite-Laguerre polynomials. Moreover

o ke (ad
/ e~ (@) fre (z+d)d n+1 E n2k2]:| )o? ,  (47)
—0o0

®
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where e, o (ad) are the exponential truncated polynomials.
The integral representation (29) can also be obtained by using the
generating function method, which yields

1 o0 ewt+yt2 o
o i e “Hy(z + a)da = -7 = Zthen('Tay)a (48)
: n=0

i.e. the generating function of ge,(z,y).
It is easy to derive a similar identity for the ce,(z,y) polynomials.

5. Concluding Remarks

We have shown that the monomiality principle offer a quite pow-
erful tool to explore new families of functions and new classes of
isospectral problems leading to non trivial generalizations of special
functions.

Presenting selected examples we have proved the usefulness of the
point of view based on the concept of quasi monomiality and of the
generating function method. It is worth to note that the methods we
have used to treat generalized forms of truncated polynomials pro-
vide noticeable advantages with respect to the ordinary techniques.
Most of the flexibility of the method is associated with its operational
nature and this offer a fairly natural derivation of the associated dif-
ferential equations, whose derivation would become quite awckward
using e.g. the procedure described in ref. [8].

Furthermore the introduction of Hermite and Laguerre base trun-
cated polynomials is naturally framed within the context of the
formalism underlying the monomiality principle and therefore their
properties emerge quite naturally in such a framework.

A final word of comment is relevant to the applications of this family
of polynomials which may become a powerful tool in problems in-
volving overlapping integrals of Hermite-Gauss and Laguerre-Gauss
modes in optics, this aspect of the problem has been preliminarily
discussed in refs. [1, 10, 6] and will be the topic of a more carefull
forthcoming investigation.
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