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On the Minimal Free Resolution of
Multiple Curves

EDpOoARDO BALLICO *)

SUMMARY. - Here we give a sufficient condition to obtain the prop-
erty Ny for the minimal free resolution of a projective embedding
of certain multiple (i.e. locally Cohen - Macaulay but not reduced)
curves (ropes in the sense of Chandler and some generalizations).

1. Introduction

Let C be a purely one-dimensional locally Cohen - Macaulay pro-
jective scheme. We are interested in the cohomological properties of
the embeddings of C in a projective space and in particular we want
to study the associated minimal free resolution (e.g. property N, in
the sense of [12] or [3]). We study it for certain C: the ropes. Set
D := C, 4 and call Z the ideal sheaf of D in C. Notice that if 7> = 0,
then T is a coherent Op-module. In [5] C is called a rope if Z2 = 0
and D is smooth and connected. Notice that if C is a rope, then 7
is a locally free Op-module. The rope C is said to have multiplicity
r + 1 if the locally free Op-module Z has rank r. In [1], Def. 0.1, C
was called a generalized rope if Z? = 0 and D is irreducible. In this
paper we will say that C is a very generalized rope if Z? = 0 and
D is connected. For general definitions and results on minimal free
resolutions of curves (e.g. property Np), see [12] and [3]. In section
2 we will give numerical assumptions which imply property N, for
an embedding of a generalized rope (see Theorem 2.8). We state
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below as Theorem 1.1 the corresponding result for the simpler case
of ropes.

We work over an algebraically closed field K. Let C be a rope with
multiplicity r + 1 > 2. Set E := 7 seen as a rank r vector bundle on
D. Let u*(E) (resp. p~(E)) be the maximal (resp. minimal) slope
of a graded subquotient of the Harder - Narasimhan filtration of E.
Hence p (E) < u(E) < u™(E) and p~ (E) = p™(E) if and only if F
is semistable.

THEOREM 1.1. Assume char(K) = 0. Let C be a rope and set D :=
Cred and q := po(D). Fiz L € Pic(C) and an integer p > 0. Set
y := deg(L|D). Assumey > max{2¢+2+p,2¢+ 1+ (p+2)p~(E)}.
Then L has property N,.

For a curve Y C P" very weak informations on the general hyper-
plane section of Y (e.g. the so - called Uniform Position Property)
were used to obtain upper bounds for p,(Y) in terms of deg(Y’) and
n (see [5], [3], [6] and [1] for the case of multiple curves). In section
3 we will use a different approach to obtain upper bounds for p,(Y")
when Y is a generalized rope.

2. Property N,

In this section we will prove Theorem 1.1 and an extension of it to
the case of generalized ropes (see Theorem 2.8).

REMARK 2.1. Let C be a very generalized rope. Since h°(D,Op) = 1,
we have h°(C,O¢) = 1 if and only if h°(D,T) = 0.

REMARK 2.2. If R € Pic*(D) and z > 2p,(D), then R is very ample
by a very particular case of [4], Th. 1.1.

To prove Theorem 1.1 we need the following two lemmas. In the
statements of lemmas 2.3 and 2.4 we will use the notations introduced
in the statement of Theorem 1.1. Thus we have ¢ = p,(D) and the
exact sequence

0—+E—-0Oc—0p—0 (1)

Set g := po(C) and z := deg(E). We have ¢ = 1 — x(O¢) =
1-x(Op)—x(E)=q—z+7r(¢g—1) = (r+1)g—r—=. Since Z2 = 0,
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we have an exact sequence
0-Z—05—0p—0 (2)

in which the map Of — O} is the exponential map sending ¢ into
1+t (see [10], p.179). Since dim(C) = 1 and H*(D, 0})) = K*, we
obtain Pic(C) = Pic(D) x H'(D, E). From the exact sequence (1)
we obtain at once the following lemma.

LEMMA 2.3. Fiz L € Pic(C).

(a) If deg(L|D)+u~(E)>2q—2, then the restriction map H°(C,L) —
H°(D, L|D) is surjective.

(b) If deg(L|D) + p~(E) > 2q — 2 and deg(L|D) > 2q — 1, then
HY(C,L) = 0.

LEMMA 24. Fiz L € Pic(C) and set z := deg(L|D). Assume z >
max{2q —1,2g — 2+ u~(E)}. Then L is very ample.

Proof. By [4], Remark 2.1, it is sufficient to prove that for every
zero-dimensional subscheme B of C with length(B) = 2 we have
h'(C,L®ZIg) = 0. If B C D this follows from the very ampleness of
L|D, the surjectivity of the restriction map H°(C,L) — H%(D, L|D)
(Lemma 2.3) and Remark 2.2. Hence we may assume card(By¢q) = 1,
say Breq = {P}. Since g~ (E(—P)) > 2¢ — 2 and any semistable
bundle on D with slope < 0 has no non-zero section, we conclude
using (1). O

Proof of Theorem 1.1. By lemma 2.3 we have h'(C,L) = 0 and
RCL)y=(r+1)y+1—-g=(r+1)y—(r+1)g+r+z By
lemma 2.4 L is very ample. Let M be the kernel of the evalua-
tion map H°(C,L) ® Oc — L. Hence My, is a vector bundle on
C with rank(M) = h%(C,L) — 1. Set R := L|D. Let Mg be the
kernel of the evaluation map H°(D,R) ® Op — R. By [3], Th.
1.2, or the first few lines of [7], §3, Mg is semistable and stable un-
less ¢ = 0 or £ = 2g and D is hyperelliptic. We have u(Mg) =
—deg(R)/(h°(D,R) —1)0—y/(y—q). M|D is the direct sum of Mg
and of a trivial bundle with rank h°(C, L)—h°(D, R). By [3], Lemma
2.5, for every integer k£ > 1 and all vector bundles A, B on D we
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have = (A¥(A)) > kpu=(A)) and p~(A® B) = p~(A) +p~(B). Con-
sider the tensor product of (1) with AP*1(M) ® L®*, k > 1. Since
a vector bundle A on D with = (A) > 2q — 2 satisfies h'(D, A) = 0,
we obtain H'(C,AP* (ML) ® L&) = 0 for every k > 1. Hence L
satisfies N, by [12], Prop.1.3.3; indeed, the proof of [12], Prop.1.3.3,
does not use that C is a smooth curve, but just dim(C) = 1. Hence
the proof of Theorem 1.1 is over. O

To generalize Theorem 1.1 to the case in which D is not smooth
but only irreducible we need to handle the case in which Z, seen as a
coherent Op-sheaf, is not locally free. For each P € Sing(D) call mp
the maximal ideal of Op p and let dp the codimension (as K-vector
space) of Op_p in its normalization. Set ¢'(D) = ma‘XPeSing(D){(sP}'
For any torsion free sheaf A on D set

(A, P) := dimk (A/mp)/rank(A)

. Notice that u(A,P) > 1 and pu(A, P) =1 if and only if A is locally
free at P. Set (A, Sing(D)) = maXPeSing(D){/‘(Aa P)}. Notice that
for every locally free sheaf B on D we have u(A ® B, P) = u(A, P)
and hence u(A ® B,Sing(D)) = p(A, Sing(D)). By [13], p. 165, we
have p(A, P) <1+ dp. Thus (A4, Sing(D)) <1+ 4.

LEMMA 2.5. Fiz L € Pic(C).

(a) If deg(L|D)+u (E)>2q—2, then the restriction map H°(C,L)—
H°(D, L|D) is surjective.

(b) If deg(L|D) + u~(E) > 2q — 2 and deg(L|D) > 2q — 1, then
HY(C,L)=0.

Proof. It is sufficient to check that a torsion free sheaf A on D
with p=(A) > 2¢ — 2 has h'(D,A) = 0. Taking the Harder -
Narasimhan filtration of A we reduce to the case A semistable. As-
sume h'(D, A) # 0. By duality we have a non-zero map f : A — wp.
If rank(A) = 1, f must be injective and hence deg(A4) < 2¢q — 2,
contradiction. Assume rank(A) > 2. We have rank(Ker(f)) =
rank(A)—1 > 0 and deg(Ker(f)) > deg(A)—2¢g+2. Thus u(Ker(f)) >
u(A), contradicting the semistability of A. Alternatively, the result
was claimed in [13], first two lines of Lemma 5.2, p.166. O
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The proof of Lemma, 2.5 gives the following result.

LEMMA 2.6. Fiz L € Pic(C) and set z := deg(L|D). Assume z >
max{2q — 1,2¢ — 2+ p~(E)}. Then L is spanned and it induces an
embedding at each point of Dyeg.

LEMMA 2.7. Fiz L € Pic(C) and set z := deg(L|D). Assume z >
max{2q — 1,2q — 2 + rank(E)d' + p~ (E)}. Then L is very ample.
If E is locally free the same is true under the weaker assumption
z > max{2q —1,2g — 2+ p~(E)}.

Proof. By Remark 2.2 L|D is very ample. By Lemma 2.6 it is suffi-
cient to show that for every P € Sing(D) and every zero-dimensional
subscheme B of C' with length(B) = 2 and B,q = {P} we have
h(C,L ® Ig) = h°(C,L) — 2. If B C D this equality follows from
the very ampleness of L|D and the surjectivity of the restriction
map H°(C,L) - H°(D,L|D) (Lemma 2.5, part (a)). If B is not
contained in D, it is sufficient to prove that H°(D, E ® (L|D)) spans
E® (L|D)) at P. Since L|D is locally free, we have u(E ® (L|D)) =
u(E) + z. Hence we may apply [13], Lemma 5.2’ (a) at p. 166, to
the Harder - Narasimhan filtration of £ ® (L|D). O

THEOREM 2.8. Assume char(K) = 0. Let C be a generalized rope.
Fiz L € Pic(C) and an integer p > 0. Set D := Creq, q := pa(D),
y = deg(L|D) and let E be the ideal sheaf of D in C. Assume
y > max{2¢+2+p,2¢+ 1+ (p+2)p~ (E)} if E is locally free and
y > max{2q + 2 + p,2q + 1 + rank(E)§' (D) + (p+ 2)p~ (E)}

Proof. Look at the proof of Theorem 1.1. We quote lemmas 2.5,
2.6 and 2.7 instead of lemmas 2.3 and 2.4. By [8], Appendix with
J. Harris, Clifford’s theorem for special line bundles is true for an
arbitrary integral projective curve. Hence the proof of [7], Lemma
2.4, works verbatim and gives the semistability of My, p if pa(D) > 2;
the case po(D) = 1 is similar. We have (A ® B) = pu(A) + p(B) for
every torsion free sheaf A on D and every locally free sheaf B on D.
Hence we may copy the proof of Theorem 1.1. O

3. Bounds for the genus

Here we try to use the methods of the previous section and of [2]
to obtain upper bounds for p,(Y) refining Castelnuovo’s method.
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Indeed, we will see a few cases in which assuming m := dim((Y;4)) <
n but large, say m > n — 2, we obtain better upper bounds than the
ones obtained in [5] and below the range of gaps found in [1] in the
case m = n. We are mainly interested in the case of generalized
ropes or when Y is generically surfilinear, i.e. when the sheaf Z /72
on Y4 is, outside finitely many points, a line bundle.

DEFINITION 3.1. Let Y C P™ be a non-degenerate curve with Yyeq
irreducible. Fiz a general P € Y,¢q and a general hyperplane H
through P. Let Z be the connected component of the scheme Y NH
with Zyeq = {P}. Set f := dim((YreqUZ)) — dim((Yrea)). The integer
f does not depend from the choices of P and H and will be called
the generic fattening dimension of Y.

EXAMPLE 3.2. LetY C P™ be a non-degenerate generalized rope with
Yieq irreducible. Set m:=dim((Yyeq)) and t:=deg(Y)/deg(Yreq) € N.
Let f be the generic fattening dimension of Y. Assume f =t—1,i.e.
assume that general P € Y,eq and a general hyperplane H through P,
(Z(P))N{(HNYyeq) = {P}, where Z(P) is the connected component
of Y N H with P as support, this condition is always satisfied if
t = 2. Notice that by definition of generic fattening dimension we
have m + f < m. Let T be the ideal sheaf of Y,eq in Y. Hence
I? = 0, T is the conormal sheaf of YVyeq in Y and rank(T) =t — 1.
The conormal sheaf of Yyeq in P™ has a factor (9@(” m)( 1). By the
definition of fattening dimension and the assumptwn f=t—1 the
image of L in this factor by the map associated to the standard ezact
sequence of conormal sheaves ([9], EGA IV 16.4.21) is generically
surjective. Hence deg(Z) > f(deg(Yreqa)) = (t — 1)(deg(Y))/t. By the
ezxact sequence

0=+Z—=0y =0y, —0 (3)

and Riemann - Roch we obtain 1 —pa(Y) =t — t(pa(Yrea)) + deg(T)
and hence

p—a(Y) <t(pa(Yrea)) —t+1+ (¢ —1)(deg(Y))/t (4)

In several cases (e.g. if m =n—1 and t = 2) applying Castelnuovo’s
upper bound for pa(Yreq) we obtain in this way an upper bound for
pa(Y') better than the one obtained in [5] and below the range of gaps
found in [1] in the case m = n.
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EXAMPLE 3.3. Let Y C P" be a non-degenerate generically sur-
filinear curve such that Yyeq is irreducible. Set m := dim((Yyeq))
and assume m < n. Let T be the ideal sheaf of Yreq in Y. Let z
be the first integer such that T?T! = 0, i.e. such that Y¥) =Y.
Since Yreq is irreducible and Y is generically surfilinear, we have
deg(Y) = (2 + 1)deg(Yyeq). There is a natural map S'(Z/I?) —
Tt/THL whic is an isomorphism at each smooth point of Yreq. As
in Ezample 3.2 the assumption m < n implies h®(Yyeq,Z/T?) # 0.
Hence deg(Zt/T') > —t(deg(Yyeq)) for every positive integer t. The
sheaf T' /Tt has generically rank one because Y is generically sur-
filinear. From the exact sequences

0= I/T = Oy /T = Oy /Tt > 0 (5)

and Riemann - Roch we obtain x(Oy) = Y7 o x(Z/TH) = (2 +
D(Oy, )+ deg(TH/IH) > (2-41) (O, )~ (1) (deg (YVrea).
In a few cases with low z and high m this is a far better upper
bound for p,(Y') than the one obtained in a straightforward way using
Castelnuovo’s method.
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