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Singular Semilinear Elliptic
Equations in the Half-space

KYRIL TINTAREV (*)

SUMMARY. - We show that equation x5 Au + uP~' =0 on the half-
space Y = RN 71 x(0,00) and on some of its subsets has a ground

state solution for ¢ = N — M, p € (2,2*). For N > 3
the end point cases p = 2 and p = 2* correspond to the Hardy
inequality and the limit exponent Sobolev inequality respectively.
For N = 2 the problem can be interpreted in terms of Laplace-

Beltrami operator on the hyperbolic half-plane.

1. Introduction

In this paper we consider the equation
o4 Au + uPt =0, u(z) >0, z €Q, (1)

where @ C Y := RV=! x (0,00), N > 2 and 2* = 2 for N > 2,
2* = oo for n = 2.

Solutions to semilinear elliptic equations on unbounded domains
often fail to exist. In the problem (1) with Q =Y, any other value
of ¢ but
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2
leads to non-existence for the homogeneity reason: if u were a solu-
tion, changing variables z to tz’ and letting ¢ — oo or ¢ — 0 when
the left hand and the right hand side of the equation have different
order of homogeneity, yields u = 0. Calculation of p, that equal-
izes dilation homogeneity in both sides of the equation is elementary
and is left to the reader. This is the same homogeneity argument
that is used to show that one does not have non-trivial solutions for
Au 4 uP =0 in RY with p # 2* — 1, which connects the solution of
(1) with the Talenti solution for Au+u? ~! = 0. In some other prob-
lems non-existence can be proved by using parallel translations. For
example, an equation Au — Au + uP = 0, A > 0, considered with the
Dirichlet boundary condition on a proper open subset © C R, has
no ground state solution when €2 contains balls of every size (cf. [3]):
if w is a minimizer for the problem on R”, a minimzing sequence wu;,
for the subset Q can be given as yqow(x — ay), with a smooth cut-off
function yq and oy € © chosen so that d(ay, 02) — oco. This yields
that the value of the infimum for Q is same as for RY. Then any
minimizer for Q would be a minimizer for R" contrary to the strong
maximum principle.

When invariance of equation with respect to actions of a non-
compact group becomes a necessary condition for solvability, it also
sets up the problem as inherently non-compact, necessitating a con-
centration-compactness argument using the same group. In appli-
cation to singular equations, this approach has been carried out in
[9] for elliptic equations with a singularity at the origin. In general,
when it is impossible to draw on a compact case (as in [1]), the
concentration compactness technique seems to be the natural choice
([2, 5]). The invariant problem serves, at least implicitly, as a sort of
reference point for comparison with non-invariant modifications of
the problem, such as restriction of the domain or introduction into
the equation of lower order terms or penalizing varaible coefficients.

The present paper addresses a model case not covered by the ref-
erences above, using an abstract version of concentration compact-
ness from [6] which can be applied to a range of degenerate prob-
lems without compactness (see, e.g., an application to the Heisenberg

Py =N —
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group [8]).
The equation (1) is equivalent to the Euler-Lagrange equation
for the minimization problem

c(Q,p,q) = 1nf / |Vu|?dz (3)
uGDLZ(Q) o luPeydz=1

Homogeneity with respect to dilations in (3) with Q@ = Y yields
c(Y,p,q) = 0 unless ¢ = p.. (Obviously, this does not imply ¢(€2, p, q)
= (0 for any 2 C Y: by compactness in the Sobolev imbedding, the
infimum is positive whenever €0 is a compact subset of Y. Nonethe-
less we restrict our study here to the case g = p,.)

Let us show now that the infimum in (3) for ¢ = p, is positive, in
other words, that for every p € (2,2*) there is a C(p) > 0 such that

[l oy oy < CP)ullpray)- (4)

When N > 3, the relation (4) is an iterpolation between the
endpoint cases p = 2 and p = 2%, which follows easily from the
Holder inequality. In the left endpoint case one has p, = 2 so that
(4) is the Hardy inequality, in the right endpoint case p, = 0 and (4)
is the Sobolev inequality with the limit exponent. When N = 2, one
has 2* = oo, the interpolation argument of higher dimension case
cannot be applied, and a separate proof of (4) for N = 2 is left for
the Appendix. For any N > 2, the infimum in (3) only increases if
one replaces Y by its subset.

We will now define a class of £ for which we will formulate the
existence result. The variable z € Y we will represent as (z,zy).
Let

d:={ne;: (z,2n) = (2772 —,27zy), j € Z,a € ZV 71} (5)

We will also use the notation

= {na] (Z,2n) = (2(Z + @), 22y), j € Z,a € ZV '} (6)

Let us define the following set of unitary operators on D'2(Y) (they
preserve LP (Y, zF*)-norms as well):
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D := {ga,j U 27j(N72)/2u(77a,j')a77a,j € d}- (7)

Throughout this paper we shall consider the spaces D'2(Q) with
open ) C Y as subspaces of DV2(Y).

We can now give the definition of asymptotically contractive do-
mains:

DEFINITION 1.1. An open set Q C Y will be called asymptotically
contractive (with respect to D) if for every sequence gr € D such
that gruy converges weakly in DV2(Y), there is an o € RN~ and a
t > 0 such that w-lim gyuy, € DV2(nQ), where n(z) = (T + o, tzy).

Geometric characterization of asymptotic contractivity will be
given in Section 2. It is immediate that Y itself is asymptotically
contractive. The main result of the paper is the statement:

THEOREM 1.2. Let Q C Y be an asymptotically contractive domain
with respect to D and let p € (2,2%), ¢ = p«. Then the equation (1)
possesses a solution that (up to a scalar multiple) minimizes (3).

Section 2 of the paper deals with concentration compactness
with respect to the dislocation set D, with structure of minimizing
sequences and with analytic interpretation of concentrated conver-
gence. In Section 3 we prove Theorem 1.2.

2. Concentration compactness in half-space.

DEFINITION 2.1. Let H be a separable Hilbert space. We say that a
set D of unitary operators on H is a dislocation set if id € D and

9k, hi, € Dby tgy /0 = @)

I{k;} C N, h,:jlgkj 18 strongly convergent.
Note that operators h,;l g are not required to be elements of D.

DEFINITION 2.2. Let u,ur € H. We will say that ug converges to
u weakly with concentration (under dislocations D), which we will
denote as

E2Y
Up — U,
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if for all p € H,

lim sup(g(uy, — u), ¢) = 0. (9)
k—oo geD
THEOREM 2.3 ([6]). Let uy € H be a bounded sequence. Then there

exists w™ € H, g,(cn) € D, k,n € N such that for a renumbered

subsequence

—1
g = id g g™ =0 forn#m, (10)
) — im g™
w = w-limg,’ ug (11)
Yo llw™)? < Timsup [|ug® (12)
neN
g — Zg,(cn)w(”) 2 . (13)
neN

We now return to the case H = D%?(Y). To use Theorem 2.3
with the set D defined in the previous section we have to show that
D is a set of dislocations. We begin with

LEMMA 2.4. A sequence (oy,jx) € RV x Z has a bounded sub-
sequence if and only if for every u € H \ {0}, 27x(N=2)/2(20k 7 4
ak,2‘7k{L‘N) 7A 0.

Proof. If on a renamed subsequence j;, = 7 and ap — «, then obvi-
ously 20x(N=2)/2q(27k Fay,, 2k g5 ) — 20IN=2/24(V T4, V) # 0.
Conversely, if 27k(N=2)/24,(20k T4y, 27k 2 5) # 0, assume without loss
of generality that u € C5°(Y). Then there exists a v € C§°(Q2) such
that 206(N=2)/2(y (23, 2k zn), 0(Z — ap, zn)) A 0. If j, — 400,
then we have integration restricted to a shrinking neighborhood of
(g, 0) which yields zero limit, a contradiction. If j, — —oo, the ar-
gument can be repeated by rewriting the scalar product above in the
form 277k(N=2)/2(y(270k 3, 270k z ), u(Z — o}, zx)). Finally, if on an
appropriate renamed subsequence, ji = j, but |ax| — oo, then the
supports of 2/(N=2)/24(20%, 27z ) and v(Z — ay, 2 x') become disjoint
for k sufficiently large, which implies

2jk(N—2)/2(u(2j’f:i —|—ak,2jk$N)av) =

PN (27, Y ay),0(Z — a,an) = 0,
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ie.
29 (N=2)/24 (9 7 4 qup,, Pk ) — 0,

a contradiction that yields a bounded. U

LEMMA 2.5. The set D is a set of dislocations in D2(Y).

Proof. Tt suffices to verify (8). Assume that h,;lgk A 0. If gpu(x) =
2=k (N=2)/24(9=Ik z—qyy,, 2~k ) and hyu(z) = 2Tk (N-2/24(2 Tk z—
Q. 2_j;c) then by Lemma 2.4, on a renamed subsequence, jj. — ji = j
and 2oy, — o, = o with some o € QV~! and j € Z. Then for any
u € H,

hitgeu = 2N D/2, 975 4 o ). (14)

O

LEMMA 2.6. Let p € (2,2*), and let u;, € DY2(Y) be a bounded
sequence. Then

ug 205 up — 0 in LP(Y, 2,7). (15)

Proof. First, assume that uy — 0 in LP(Y,z'"). Then for every
sequence g € D, grur — 0 in LP(Y,z,’"). However, since uy is
bounded in D'?-norm, gyu; — 0 in D2 and therefore, u, 2.

Assume now that wuy B0, Let

B =(0,1)V"1 x (1,2), (16)

and let

Boj=1,;B, a € ZV7, j€Z, (17)

in other words, By = {(2a1,2/(aq + 1)) x ... (2 an—1,2 (an_1 +
1)) x (27,2771}, a € ZV7', j € Z. Note that Uyezn-1 jez Baj =Y
up to a set of measure zero.

By the standard Sobolev imbedding over B and by homogeneity,
there is a C' > 0 such that for every a € ZV~!,j € Z,



SINGULAR SEMILINEAR etc. 333

/ oy Jupl <
o,

(18)

2 2 —2
C<||“’“||D“(Ba,j)+”“k” 2(Ba,j,mN2)> ”“’“”ip(Ba,j,mp*)‘

Adding the inequalities (18) over all «, j, we arrive at
/ o JuglP <
v

1-2/p
2 2 —Px
(Il + el oo ) sup ([ o )

(19)
Using the Hardy inequality that estimates the L?(Y,zy?)-norm by
the DY2(Y)-norm, and choosing an appropriate “near-supremum”
sequence 7y € d, we get from (19)

1-2/p
Lo tur <20 ([ wmar) . @)

It remains to note that since ug (1) — 0 in DV2(Y), from compact-
ness of Sobolev imbedding on B one concludes that ug(n;-) — 0 in
LP(B,z "), so that the assertion of the lemma follows. O

We now give a sufficient geometric condition for a set to be

asymptotically contractive. We recall that for a sequence of sets
Qp, Imint Q== Uy, Ni>p Q-

LEMMA 2.7. Let Q C Y be an open set, such that (Y \ Q) = 9. If
for every i € d*, there exist a t >0 and an o € RN such that

lim inf 7, Q2 C 1€, (21)

where nr = (tT+a,txy), the set Q is asymptotically contractive with
respect to D.

Proof. There is a similar statement in [6] with a similar proof, so we
give only a brief sketch. Let uj, € D'2(Q) be a bounded sequence. It
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is easy to see from (21) that if w = w-lim Gy Uk then w(z) = 0 for
almost every x in the complement of lim inf 72, and so in the com-
plement of nQ). Consider a regularization of w in the sense of poten-
tial theory. Then w = 0 quasi-everywhere in the set int(Y" \ 7{2), and
therefore, by assumption of the lemma, in Y'\n€. Then w € D%?(n<Q)
by the Hedberg trace theorem. More precisely, since the Hedberg
trace theorem is formulated for Sobolev spaces and not for DV2(Y),
its conclusion applies directly only to xx(znx)w, where xx(y) = 0 for
y<1/kory>2k, xp(y) =ky—1for 1/k <y <2/k and x(y) =1
for y € [2/k, k]. However, it is easy to see that xx(y)w approximates
w in the DH?-norm. O

As examples of asymptotically contractive domains we can give

1) @={(Z,zn) : () < zn <P(T)} with 0 < ¢ < limz o ¢(2)
and ¢ > limz| 00 9(2);

2) Q={(z,zn) : |7| < AzNn}, A > 0;

3) @ =U,eq- nw, with an open w C Y

4) Any asymptotically null set as defined below;

)
)
)
5) A union of asymptotically contractive set and a set whose closure
is compact in Y.

The functions ¢, 1) above are assumed to be continuous.

REMARK 2.8. We will say that an open set @ C Y is asymptot-
ically null (with respect to the dislocation set D) if for every se-
quence gy € D, gr — 0 and every bounded sequence uj, € DV?(€),
w-lim gruy = 0. It is easy to see that for a p € (2,2%) the imbedding
into LP(Q, ") is compact if and only if Q is asymptotically null
(cf. [6]). In particular, this is true if for every sequence np € d*
defined by unbounded (o, ji),

| lim inf 7, Q| = 0. (22)
Indeed, (22) easily implies that for any bounded sequence uy, the dis-

located weak limits w™, n > 1, are zero a.e., so that uy B w® and
therefore u, — wM in LP, p € (2,2). A set p(Z) < zy < ()
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with inf ¢ > 0, supy < oo and limg_, 40 (p(z) —1p(x)) = 0 is asymp-
totically null, and so is the set |z| < (zn) with limy_01(y)/y =
limy 00 ¥(y)/y = 0. The functions ¢, are assumed to be continu-
ous.

3. Proof of Theorem 1.2.

Proof. Let uj be a minimizing sequence in (3). We apply to it
Theorem 2.3. By asymptotic contractivity of 2 we can rename

gnw(") as w™ with an appropriate choice of n for every n, so that
w™ € DLH2(Q). Then

>l ™B2(2) < e(2.p,p)- (23)
At the same time it is easy to see (cf. e.g. [7]) that

SN g gy S= il oy =10 (29)

iFrom (23) and the definition of ¢(€2, p, p.) follows that

Do w3 (Q) < e(Rup,pa) Y- 127, (25)

where t, = [Jw® H . Note now that (24) can be written now

*P*

as > t, =1, so that Wlth p> 2, Ztn/p =1 only if all but one of ¢,,
say for n = ng, equal zero. We conclude that w() is the minimizer.
Then so is [w(")| and the strict positivity of |w(™)| follows from the
maximum principle. U

4. Appendix: proof of inequality (4) for N=2.

Proof. Note that for N = 2, p, = 2 independently of p. Let B and
Ba,; be defined as in (16),(17) respectively, i.e. B;; = {(27/(,i +
1),(27,271)}, i,j € Z. Note that U; jez Bij is Y up to a set of
measure zero. Therefore from the Sobolev inequality that holds on
B7

p/2
el sy < C 0. B) (NlBoris ) + Il ) (26)
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we deduce the inequality with the same constant for every B, ;.
Adding the inequalities over ¢,j € Z, and noticing that the func-
tion s — sP/2 with p/2 > 1 is superadditive, we get

9 9 p/2
el oy < € (Il + ullfoy ) - 20)

Due to the Hardy inequality, the LP(Y,z52)-norm is dominated by
the DY2-norm, and we arrive at (4). O

It can be observed that in the case N = 2 we can view Y as a
Riemannian manifold with the metric z3(dz? + dz3), in which the
square of DM2-norm is the quadratic form of the Laplace-Beltrami
operator and z, 2dz1dzs is the invariant measure. In this setting the
set d is a subset of the group of isometries on Y.
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