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Web Functions:
Survey of Results and Perspectives

GRAZIANO CRASTA AND FiLipPo GAzzoLa )

SUMMARY. - We recall some of our previous results on web func-
tions, we give some new numerical results concerning a simple
model and we state some open problems.

1. Introduction

Let € be an open bounded convex domain of R" (n > 2), let
f:RT — IR be a lower semicontinuous (l.s.c.) function and con-
sider the functional J defined by

J(u) = /Q F(Vul) = ] dar

For some concrete models leading to this kind of functionals we refer
to the references in [4].
We study the following problem of existence of minima,

min  J(u) . (1)
ueW, ' (Q)

Since we make no convexity assumption on f, the minimum in (1)
may not exist. In such case, the standard procedure [5] is to modify
the functional J by relaxation and to try to recover informations

) Authors’ addresses: Graziano Crasta, Dipartimento di Matematica Pura e
Applicata, via Campi 213/B - 41100 Modena (Italy), e-mail: crasta@unimo.it
Filippo Gazzola, Dipartimento di Scienze T.A.; via Cavour 84 - 15100 Alessan-
dria (Italy), e-mail: gazzola@unipmn.it

Partially supported by MURST project “Metodi variazionali ed Equazioni Dif-
ferenziali Non Lineari”.



314 G. CRASTA and F. GAZZOLA

concerning problem (1) from the properties of the relaxed functional,
of its minimum and of its minimizing sequences. Recently [3, 4,
6], we have been trying to proceed in a different fashion, namely
by maintaining the functional J and by modifying the space where
to seek the minimum: we considered the subspace K C WO1 1(Q)
of web functions (functions depending only on the distance from
the boundary 02 of the set {2) and we proved in [3, 6], under mild
assumptions on f, that the minimum problem

fféiz? J(u) (2)

always admits a unique solution w. Clearly, in order to justify such
approach, one should then verify that @ describes in some sense the

minimization problem (1); to this end, we gave in [4] some estimates
of the relative error

mingecxc J(u)
J(u)

&= (3)

lnquWOl’l(Q)
for several meaningful models. In order to have £ well defined, the
denominator in (3) must be different from 0; by means of a suitable
normalization, in [4] we showed that it is always possible to reduce
to functions f satisfying f(0) = 0 so that J(0) = 0. Then, either
u = 0 (which is a web function!) solves (1) or ianol’l(Q) J < 0 so

that &£ is well defined. In the latter case, since K C WO1 () one has
€ € ]0,1] and & represents the relative error of the approximation:
the closer £ is to 1, the better the approximation is. The results we
obtained show that our web function approach is promising, that is,
£ is close to 1 in many concrete examples: even in the cases where
problem (1) admits a solution (for instance when f is convex) this
approach gives important information about it.

In this paper we first recall some results from [3, 4, 6], then we
give some new numerical results concerning the case where f(s) =
52 /2; finally, we state three open problems which seem of particular
interest to us: the first one is a problem in functional analysis, the
second is a problem in optimal design suggested by Buttazzo [1], the
third is a possible alternative definition of web function.
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2. Some results, old and new

Let @ C IR™ (n > 2) be a bounded open convex set and let W, denote
its inradius, namely the supremum of the radii of the open balls
contained in 2. The Lebesgue measure and the (n — 1)-dimensional
Hausdorff measure of a set A C IR™ will be denoted respectively by

L(A) and H(A). Assume that

f # 400 is a ls.c. function s.t.

L&y (4)
oy LER. S(8)2Ms—b Vs>0.

M >

We denote by f* the polar function of f and by f** the bipolar
function of f, see [5]; let

o =max{s > 0; f**(s) = min f**} (5)

and define the normalized non-decreasing bipolar function f.. of

J by
forls) {0 ifo<s<o
xx\S) =
() = f*(o) ifs>o.

Finally, denote by f. the polar function of f... In [4, Proposition 1]
we showed that any function f satisfying (4) may be normalized with-
out altering the minimization problem and therefore we can always
reduce to the case where f**(0) = 0 and f** is non-decreasing. More-
over, if f satisfies (4), a necessary condition for inf J(u) <0

is that f.(Wgq) > 0, see [4, Proposition 2].

ewgt ()

Counsider the set of web functions relative to
K ={ue W, (Q); u(z)=u(d(z, ) Yz € Q} ,

where d(-, 0Q2) denotes the distance function from the boundary. We
also consider the one-parameter family of subsets of 2 defined by

Oy ={z € Q; d(z,00) >t} Vit € [0, Wq]
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and their boundaries 9. In our setting a major role is played by
the functions

o) = L()

(0] alt) =H(OQ)  telo,Wql .

Giving a full generalization of [6, Theorem 1], the following result
has been proved in [3]:

THEOREM 2.1. Let © C IR"™ be an open bounded convex set and
assume that f satisfies (4). Then, the function

d(z,00)
um=A F(w(t)) dt

is the unique solution of (2).
In [4] we obtained the following lower bound for &:

THEOREM 2.2. Let 2 C IR" be an open bounded convex set and let
R= (L( ))1/” assume that f satisfies (4) and fi(£) > 0. Let

g = Jo DL Wo " oD i) dt
Yo [ (Dt fu(Wa) fW“£ ) dt
then
£ 2 max{gl,&}. (6)

Both & and & have interest in the estimate (6) depending on
how thin is the domain Q: we quote the following example taken
from [4]:

EXAMPLE 2.3. Let f(s) = s2/2 and let Q = (0,1) x (0,2Wg), 0 <
Wq < 1/2. We have that & is monotone decreasing on [0,1/2],
limy,,—0 E2(Wa) = 2/3 and £2(1/2) = 3/8. On the other hand, & is
monotone increasing on [0, 1/2], approaches 0 as W tends to 0 and
&1(1/2) = /4.

The explicit computation of £ and & gives that & > & for

37— o2 — 12
0<Wq< L 47T T ~0.181
vy
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From now on, we essentially deal with the simple case where
f(s) = s?/2 and n = 2; in such case, also a lower bound for &
involving optimal Sobolev constants is available, see [4, Theorem 5.
However, in this case numerical analysis is helpful and gives well-
approximated values of £: in what follows we list some new results
obtained numerically.

So, consider the functional

J(u)zA(@—u) dz |

To the minimization problem of J is associated the Euler equation

—Auy = 1 inQ
{ (7)

u = 0 ondQ;

the unique solution of (7) is precisely the minimum of the functional
J over the space WO1 1(Q) (in fact the solution is smooth). Therefore,
by multiplying the equation in (7) by @ and by integrating by parts
we obtain

i 1
f(s) = all , & minimizes J = J(u) = __/ T, (8)
2 2/,

On the other hand, by (25) in [4] we have

1 We £2()
Ix =minJ(u) = —= dt 9
k=minJ) =—-3 | H(00) ©)
so that (3) becomes
Wa £2(Q) dt
sz—f‘] }“aﬂﬁt) (10)
Q
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RECTANGLES. Consider the case where Q = (0,4) x (0,1) with
¢ € (0,1] and denote by £(¢) the corresponding error (10). By sep-
arating variables we find that the unique solution w of (7) is given
by

lr — 22

2
4 sin[(2k + 1) mz] (e@HHR/L | (GhDR(-9)/)
3 P (2k 4 1)3(6(2k+1)7r/£ + 1) ’

u(z,y) = +

therefore, by (8) we have

/3 8£4 o e(2k+1)7r/€ -1 1
O O ] (1
T = =3 /Q“ 24 2 RIR/E 4T (26 1 1) (11)

In order to evaluate the minimum of J over K, note that in this case
we have Wq = % and

(e—2t)(1—2t)

a(t) =2(1+4—4t) , v(t) = Sari—an
then, from (9) we get
1 [Y2 (0= 26)2(1 — 2t)2
I =1Ic(l) = —- dt
k= Txll) 14/0 l—iif £4t ’ (12)
— = (1 _p4 (2
= 256(1 1) lg1 £+128(£ 40+1) .

From (11) and (12) we deduce the explicit value of &:

si5 (1 — 0)* log 174 + 755 (£2 — 40 + 1)

23 8e4 exp[(2k+1)7w/f]-1 1
— 21 T 25 Doke0 o[kt T TT @D

£() =

A numerical computation performed with MATHEMATICA®) gives
the following picture representing the function & = £(¥) for £ € (0, 1]:
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Figure 1: £ =£&(¢)

These pictures reveal a new striking and unexpected phenomenon:
the map ¢ — E(£) is not decreasing on (0,1], contrary to what the
intuition suggests. In the second picture of Figure 1 we show in more
detail the behavior of £ in a neighborhood of its minimum which is
achieved for £ =~ 0.75.

ELLIPSES. Let 0 <b <1 and let
y?
Q:{(x,y) € R% x2+b—2<1} :
Then, the unique solution @ of (7) is given by
b2 _ b2.’L‘2 _ y2

ulz,y) = 201+ b2)
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hence, if By denotes the unit ball in IR?, by (8) we infer

1 b3 b3
M= d=a—o [ (1=22—)dady = ——1.
J (@) 2A¥‘ q1+m)éh( 2 =y )dady 8(1+ b2

(13)
. 2 — b
0; = arcsin \/max [m, 0] ;

in [4] we proved that

t)=4 in? 0 + b2 cos2 6 — db
a(t) /gt [\/sm oTeos sin? 6 + b2 cos? 9]

and

cmg:2/ﬂ2[n-( i

_|_
0, sin? 0 + b2 cos? 0)3/2

t%b
—tV/sin? @ + b2 cos2 0 do
Vsin® 0+ 17 cos? 6 + sin? 6 + b2 cos? 0]

A numerical computation performed with MATHEMATICA®) gives
the following picture representing the function & = £(b) for b € (0, 1]:
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Figure 2: £ = £(b)
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This picture shows that for ellipses the function & = £(b) is
indeed increasing as the intuition suggests. Note that the graph is
not symmetric with respect to its middle point b = 0.5.

POLYGONS. Let Q™ be the regular polygon with m (m > 3)
sides circumscribed to B C IR? (the unit ball). The constants and
functions relative to 2™ are given by

Wom =1 LQ7) =m(l —t)*tan —  H(OQ™) = 2m(1 — t) tan —.
m m
Therefore, (9) yields

1
IK:—%tan% /0 1-t)3dt = — = tan%. (14)
Now Q™ can be decomposed into 2m equivalent right triangles
with catheti of lengths 1 and tan ;. Let T}, denote one these trian-
gles, let B, be its basis (half of one side of ™) and let A,, be the
union of its two other sides. Consider the following mixed problem

—Av = 1 in T,
v = 0 on B,
g_fz = 0 on A,

and denote by vy, its unique solution; by a symmetry argument, the
restriction to 7T, of the unique solution ,, of (7) on Q™ coincides
with v,,. Therefore, by (8) we get

1
J(ﬂm):__/ Uy = —M Um
2 Jom T
this, together with (3) and (14), gives
t o
E(m) = an(y) .
16 me Um

A numerical computation performed with MatLab® gives the fol-
lowing approximated values for the function £ = 1000 - £(m):

m 3 4 ) 6 7 8 9 10 | 20
E~ | 834 | 889|921 | 942 | 956 | 966 | 972 | 976 | 990

Also in this case the map & = £(m) is monotonic and, in particular,
the equilateral triangle is the regular polygon having the least £.
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3. Three open problems

3.1. A problem from functional analysis

As noticed in [6, Remark 6], if f.. € C*(IR") then the (unique)
solution @ of (2) satisfies the following generalized Euler equation

A(div[f;*(wm);—gdﬂ)(ﬁ:o Vo € K.

For simplicity, we restrict again our attention to the case where

f(s) = s%/2 so that we may set the problem in the Hilbert space
H{(Q) and the previous weak Euler equation becomes

/vw¢:/¢ Vo € KN HL(Q).
Q Q

In terms of functional analysis, this means that w satisfies the Euler
equation projected onto the subspace K (which has empty interior):
then one should find out which is the behavior of % in the orthog-
onal complement K. In particular, it could be of some interest to
evaluate

sup /[Vﬂqu — ] :

llgll=1 /6
this is also an estimate of the error made when approximating (1)
with (2). Further, is this supremum attained? Is it attained by a
function ¢ € K7

Of course, before answering to these questions one should char-

acterize the space K. Let us just mention that in the particular
case where () = B; (the unit ball) the space of web functions K co-
incides with the subset R C H{ of radially symmetric functions and
its orthogonal complement can be characterized as follows:

LEMMA 3.1. The orthogonal complement R* of R in H}(By) is given
by

R = {¢ e Hy(B); [

0By

PdH =0 for a.e. t € (0, 1)} . (1%)
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Proof. Denote by R’ the r.h.s. in (15). We have to show that ¢ €
H{ (By) satisfies fB1 Vu-Vip =0 for all u € R if and only if ¢y € R'.
By a density argument, it is enough to prove that

Vu-Vipdr =0 Yu € RN CZ°(By) (16)
B1

if and only if 1) € R'. If u belongs to C°(B1), we have [ Vu Vi =
- fBl Au1p. Moreover, u € R if and only if Au € R, hence (16) is
equivalent to

: P(lz)p(z)de =0 Ve C2([0,1)) . (17)

From the coarea formula we deduce that (17) is equivalent to

1
Halprie = [ o0 [ w(y)cm(m] it Ve c(o.1).
By 0 aBt

Then (17) holds if and only if the term in brackets vanishes for a.e.
t € [0, 1], that is if and only if 1) € R'. O

3.2. A problem from shape optimization

Assume that n = 2 and let f(s) = s2/2; then we know that the
unique solution of (1) is also the unique solution of (7). Of course,
the ratio defined in (10) depends on the domain Q, £ = £(f2) and it
is not difficult to verify that it is invariant under rescaling, namely
E(kQ) = £(Q) for all £ > 0 and all convex domain €2 3 0: in fact,
both the numerator and the denominator in (10) are homogeneous
of degree 4 under rescaling. Then, in order to have a universal lower
bound for £(€) (independent of Q) it would be interesting to solve
the following problem from optimal design

fiag £

where

C = {Q C IR?; Q convex, L(Q) = 1}.

This problem was suggested to us by Buttazzo [1] in occasion of
the FGI2000 Conference on Optimization held in Montpellier. The
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questions are both to evaluate the infimum of £(f2) and to establish
if it is attained. We performed some of the numerical experiments
described in the previous section in order to have some feeling about
this problem.

More generally, the problem may be set in higher dimensions n.
Even more general, for any f satisfying (4) does there exist an opti-
mal domain © minimizing £(€2)? How is it related to the function f7
Note that for general f one cannot expect invariance under rescaling.

3.3. A different definition of web functions

Let 2 C IR be a bounded convex set whose barycenter is the origin
O and for all ¢ € (0,1] let

A ={zecQIycQ, z=1ty};

these sets are none other than the transformed of €2 by the homothety
of ratio ¢t and centered at O. Let

Ki=A{uce€ Wol’l(Q); u = constant on 9Q' Vt € (0,1]} ,

then, IC, is a closed subset of WO1 o1 (Q); we have K, = K in some cases
(e.g., when Q is a ball, a regular polyhedra) but in general K, # K.
Therefore, instead of (2) one could consider the problem

min J(u) . (18)

u€x
The natural question is: which one among (2) and (18) better ap-
proximates (1)? Let us mention that if  is an ellipsoid and f(s) =
52/2, then the unique solution of (1) belongs to K,; moreover, the
functions in K, have regular level lines and perhaps the minimum
over K, (if it exists) is a smooth function. On the other hand, an
argument in favour of IC are the results in [2, 7] where is given a
class of functions f for which (1) admits a solution which is a linear
function of d(z,09) (i.e. a web function).

The approach for proving the existence of a solution of (18) and
finding an explicit form of it should be the following. Let p(z) =
inf{\ > 0; z € AQ} be the gauge function of the convex set 2, and
define 6(z) = 1 — p(z). The function J, which plays the role of the
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distance from the boundary when dealing with K, is concave on Q
and vanishes on 92. The set K£* is none other than the set of all
functions u € Wol’l(Q) depending only on ¢, that is u(xz) = ¢(d(z))
for some ¢: [0,1] — IR, with ¢(0) = 0; then Vu(z) = ¢/'(6(z))Vi(x)
and from the coarea formula we get

J(w) = / 7 (1 0@)| Vo)) = ¢(6())] da

F8OIVSWD )
/ dt /5 t}< Vo) |w<y>|>d7*(y) (19)

- /0[ (816 (B)]) — A)P(t)] dt =: 1(9)

where

RV ) I
f (t’s)‘/{ﬁzt} Vo) W A0 /{h} Vot W)

Let f* denote the polar function of the normalized non-decreasing
bipolar function f** w.r.t. s; under suitable assumptions on f, any
minimizer ¢ of I should satisfy the Euler-Lagrange differential in-
clusion

#'(t) € D fu(t,A(t)) for ae. t€0,1]

where 9, f,(t, A(t)) denotes the (partial w.r.t. s) subdifferential of f,
evaluated at s = A(¢) and

1
A(t) = /t As)ds = L({6 > t}) = £(Q) .

If f.(t,s) is differentiable w.r.t. s in (¢, A(t)) for a.e. t € [0,1] we
get the explicit form of w:

u(x)z/o ‘Zf*u AD)) dt |

Let us perform the explicit computations in the case of the ellipse
Q = {(z,y) € R?; 22 +4?/b> < 1} and f(s) = s2/2 (in this case,
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f:f*:f**:f**:f*) We have

y? ; 1+b° 2
=1 = 24 2 - _
Saa) =1— e+ fts) =n

hence

b2 o(z,y) b2 — b212 — y2
= — 1 — = -
u(@,y) 1+62/0 (1-1)dt 2(1+062) 7

which is also the minimizer of .J over VVO1 1(Q).

[1]
[2]
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