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Special Relativity without Physics
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SUMMARY. - Using only causality and the constant speed of light, 1
derive the Poincaré transformation group. In this derivation I
make no a priori assumptions about the linearity or continuity of
the transformations.

By “understanding special relativity” I mean understanding how
the coordinate systems associated with different observers transform
into each other. In my opinion, this rather limited concept of “un-
derstanding special relativity” is the most fundamental. Indeed, 1
show by examples that once the coordinate transformations are prop-
erly understood, the standard special relativistic phenomena such as
length contraction, slowing of clocks, and Einstein’s law for addition
of velocities follow with a minimal effort.

Although, the coordinate transformations are derived in virtually
any textbook on special relativity, these derivations have much to be
desired. Most of them are based on highly restrictive and unintu-
itive assumptions, such as linearity or preservation of the space-time
intervals, which are justified by physical reasoning of questionable
rigor. In contrast, my objective is to formulate precisely a few sim-
ple physical principles from which the coordinate transformations
are derived in a purely deductive manner.
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1. The Poincaré group

We shall use two primitive (i.e., undefined) notions: event and coin-
cidence of events. Intuitively, event is when something happens, such
as the emission or absorption of a photon. The intuitive meaning of
coinciding events is that these events occur simultaneously at the
same place, for instance, a simultaneous emission of photons from
the same place in different directions. We assume that all events
form a set U, called the universe, and that the coincidence of events
is an equivalence relation on U, denoted by ~. Our main object of
study is the family
E=U/~

of all equivalence classes of coinciding events, called the space-time.

We assume in F there is a binary relation <, called the light
connection. Intuitively, a point v € F is light connected to a point
u € F, in writing u < v if the equivalence class w is determined by
the emission of a photon 7 (light signal), and the equivalence class
v is determined by the absorption of the same photon A. For each
u € E, the set

Clu)={veFE:u<vorv=<u}
is called the light cone at u, and the sets
Ci(u)={veFE:u<v} and C_(u)={veFE:v<u}

are called the forward and backward light cones at u. In essence, our
approach to special relativity is based on a single assumption: the
light cones are the only physical reality detectable by an
observer. Naturally, an observer may detect other physical phe-
nomena too, but those we shall ignore in our exposition.

By R we denote the set of all real numbers. For an integer m > 2,
we denote by R™ the m-fold Cartesian product of R. We shall be
mainly concerned with R* in which the first three coordinates are
viewed as spatial coordinates and the forth coordinate is viewed as a
time coordinate. For x = [z1, %9, 13, 24] in R*, we let

a? = (21)* + (22)* + (23)* — (20)”



SPECIAL RELATIVITY etc. 253

Intuitively speaking, an observer is a person, named «, equipped
with a measuring tape and a clock (both broadly interpreted), who
tries to associate with each class of equivalent events a place and time
represented by a point 2 € R*. This association is not arbitrary, since
it must reflect the light connection. Thus « associates points of R*
with points of the space-time FE so that the following condition is
met: if

T = [r1,72,73,24] and y = [y1,Y2, Y3, Y]

are associated, respectively, with the emission of a photon A and the
absorption of the same photon 7, then

V(1 — 21)% + (y2 — 22)% + (y3 — 23)2 = c(ys — 24)

where c is the average speed with which the photon A travels from the
time of its emission to the time of its absorption. The next definition
and axiom give a precise mathematical formulation to our intuition.

DEFINITION 1.1. An observer is a bijection o = [a1, a, vz, s from
E to R* such that

U< v = {[a(v) — oz(u)]2 =0 and as(u) < 044(1))}

for each w and v in E.

We note that what we call an observer is often referred to as the
coordinate system or reference frame of an observer.

AxioM 1.2. The set of all observers is not empty.

REMARK 1.3. Postulating the existence of an observer encompasses
important physical claims.

(i) The speed of light is constant and equal to 1. The constancy of
the speed of light is crucial; the fact we made the speed of light 1
is merely a matter of convenience achieved by a suitable choice
of units.

(ii) The causality, i.e., the direction of time flow, holds between any
points of space-time which are light connected. In short, it says
a photon has to be emitted before it is absorbed.
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(iii) The space-time E has the structure of a four-dimensional linear
space over R.

Claims (i)—(iii) are the physical assumptions underlying special
relativity. They are physical in the sense of being independent of
the choice of an observer. In wacuum, claim (i) has been verified
locally to a high degree of accuracy. Claim (ii) is extrapolated from
time-wise irreversible processes, such as those encountered in ther-
modynamics. On the other hand, claim (iii) is a deliberate simplifi-
cation which, strictly speaking, holds only in the universe completely
void of any matter (including gravitational fields). However, from a
practical point of view, claim (iii) is still a good approximation of
physical reality in the absence of strong gravitational fields. For in-
stance, claim (iii) is a useful assumption in the study of microscopic
phenomena, in particular, in quantum mechanics. Investigating the
actual structure of the space-time is the subject of general relativity,
which is beyond the scope of my lectures.

Note an observer « transforms the light cone C(u) at u € E into
a genuine cone in R* with the vertex z = a(u). Indeed,

a[Cu)] ={ye R : (y—z)? = 0}

is a quadric in R* whose only singular point is 2. The set R* —
a[C(u)] has two connected components

{yER4:(y—m)2<0} and {yER4:(y—m)2>0}.

If (y —z)? <0 and y4 > z4, then

Vi —21)2 + (y2 — 22)% + (y3 — 23)2 = s(ys — 24)

where 0 < s < 1. The physical interpretation of this is a particle
emitted from the space-time point a~!(z) that travels with a speed
s, lesser than the speed of light, is absorbed at the space-time point
a !(y). Since massive particles can travel with any speed that is
lesser than the speed of light, we say the space-time points a~!(z)
and o (y) are mass connected.

The following observation is an immediate consequence of Defi-
nition 1.1 and Axiom 1.2. It shows the relation < of light connection
is antisymmetric.
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PROPOSITION 1.4. For each pair u,v € E, we have
{u<vandv <u} <= u=v.

Proof. If a: E — R* is an observer, then ay(u) = a4(v), and hence

It follows a(u) = a(v), and since « is a bijection, u = v. O

Given two observers a and (3, we have the following commutative
diagram
E j— E

L b

R — R
where f = Boa ! is a bijection of R*. The map f is the coordinate
transformation whose understanding is critical for any communica-

tion between observers o and 3. Assuming f : z — z’, it is easy to
see

(z—y)? =0+ (z'—y)* =0, 1

(z —y)® = 0 = sign(z4 — y4) = sign(z} — v}).

THEOREM 1.5. Let m > 3 be an integer, and let Q) be an indefinite
non-singular quadratic form in R™. Assume f : x — z' is a bijection
of R™ such that

Q(zx'—y)=0=Q(z—y) =0

for all z,y € R™. Then f is an affine map, and there is a real
number k # 0 such that

QY —2') = kQ(y — z)

for all x,y € R™. If the signature of Q differs from zero, then k > 0.
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Theorem 1.5 was proved at various levels of generality by sev-
eral authors. The present version was established in 1962 by V.
KNICHAL, who never published his result. For m = 4 and Q(z) = z2,
Theorem 1.5 is proved in [9, 2]. For any m > 3 and

m

Qz) = (21)” =D _(2:)*,
i=2
a proof can be found in [4]. No proof is easy, and I shall not attempt
it at this point. However, in Section 5 below, I outline the proof of
a stronger result, from which Theorem 1.5 follows.

Theorem 1.5 is false if @) is positively definite or if m = 2. The
first claim is obvious, since Q(z) = 0 implies z = 0 whenever Q is
positively definite. To see the second claim, consider a nonsingular
indefinite quadratic form

Q(z) = (1)* — (22)*
in R?, and a nonlinear bijection
[21,x9] — [($1)3, (x2)3] ‘R 5 R?.

This is interesting, since in many textbooks on special relativity, the
Lorentz transformation is derived for the case of one spatial coordi-
nate only, i.e., in R%. Such derivations are either incorrect, or they
require additional assumptions.

DEFINITION 1.6. The Poincaré group P is the group of all bijective
affine maps f : x> ' of R such that for a constant k(f) > 0 and
all z,y € R*, the following conditions are satisfied:

(@' —y')? = k(f) (@ —y),
(z —y)* = 0= sign(z) — ;) = sign(zs — ya) -
Elements of the Poincaré group are called Poincaré transformations.

The following proposition is an immediate consequence of equa-
tions (1) and Theorem 1.5.

PROPOSITION 1.7. If o and B are observers if and only if B o a~*
belongs to P.
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2. The Lorentz group

DEFINITION 2.1. The Lorentz group L is the group of all linear
Poincaré transformations

z— 2 RS R

such that (z')? = 2% for each x € R*. Elements of the Lorentz group
are called Lorentz transformations.

A normalization is a map
.o 4
z—cx+z:RF—= R

where ¢ > 0 and z € R*. It is easy to verify the family N of all
normalizations is a normal subgroup of P. We denote by 0 and 1
the zero vector in R* and the identity map of R*, respectively.

PROPOSITION 2.2. There is a split short exact sequence

~
[E-
—
DO
~—

1 N _—Ssp 2.

where

O(f):z— [f(z) — f(0)] : R* - R,

k(f)
Proof. A straight forward calculation shows that ®(f) € £ for each
f € P, and that ®(g) = g for every g € L. Moreover, ®(f) = 1 if
and only if

for all z € R, or equivalently, if and only if f(z) = \/k(f)z + f(0)
is a normalization. Thus (2) is a short exact sequence, which splits
because the inclusion map £ < P is the right inverse of ®. O

From the physical point of view, two observers are related by a
Lorentz transformation whenever both of them

e map the same point of the space-time to the zero vector 0 of R?,

e choose the same units of length and time.
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Since the Lorentz transformations are linear maps of R*, they can be
represented by matrices. We say a 4 x 4 matrix A is a Lorentz matriz
if the map x — Az is a Lorentz transformation. To facilitate the
calculation with matrices, we view the points of R* as the column
vectors, and if A is a matrix we denote by AT its transpose. The
identity 4 x 4 matrix is denoted by I, and we let

100 0
010 O
7= 001 O
00 0 -1

LEMMA 2.3. If A is a 4 x 4 matriz, then (Az)? = 22 for each z € R*
if and only if ATJA = J, or equivalently AJAT = J.

Proof. Recall there is a one-to-one correspondence between the qua-
dratic forms z — 27 Az and symmetric matrices A. Since J and
AT JA are the symmetric matrices of the quadratic forms = +—
and z ~— (Az)?, respectively, we have (Az)? = z? if and only if
ATJA = J. Moreover, in the following string of equalities each is
equivalent to the next:

ATjA = J
JATJA = T
JAT] = A7!
AJAT T = 1
AJAT = J

O

LEMMA 2.4. Let A = (a;j) be a matriz such that ATJA = J. Then
|asa| > 1 and
sign(Ax)s = sign(aszs)

for each x € R* with x> < 0.

Proof. Since Lemma 2.3 implies AJAT = J, we obtain

(a11)? + (as2)” + (as3)® — (a4a)* = -1,
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and consequently (as4)? > 1. Now select an z € R* with 22 < 0. As

4
o= asm,
i=1
Schwartz’s inequality yields

(5521 - a44fv4)2 = (a4121 + as2x2 + a43x3)2
2

< [(as1)? + (as2)® + (as3)?] - [(z1)* + (22)* + (z3)°]
< [(a44)® — 1] (z4)?
Thus 2/, = 0 whenever z4 = 0, and
1
|2y — asawa| < [(a1a)® — 1) 2|24 < |agazs]
whenever 4 # 0. The lemma follows. O

From Lemmas 2.3 and 2.4 we obtain immediately the following
corollary.

COROLLARY 2.5. A 4 x 4 matriz A = (ai;) is a Lorentz matriz if
and only if ATJA = J and ass > 1, or equivalently, if and only if
ATJA =J and

signxy = sign(Az)4

for a single x € R* with  # 0 and 2% < 0.

To appreciate the physical meaning of Lemma 2.4 and Corol-
lary 2.5, call a bijection a : E — R* a semiobserver if

{u<vorv=<u} <= [a(v)—a(u)]2:0.

Thus a semiobserver recognizes the speed of light is 1, but his flow
of time may be mixed up. Nonetheless, since normalizations do not
affect causality, Lemma 2.4 shows the flow of time of a semiobserver
« is either the correct one, in which case « is an observer, or the
reversed one. In view of Corollary 2.5, the causality of a semiobserver
can be decided by a single experiment which verifies the flow of time
between two distinct points of the space-time that are either light
connected or mass connected.
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3. Boosts

If u and v are numbers in the open interval (—1, 1), let

u+v= (3)

and observe {(—1,1),4} is an abelian group, denoted by B. For
v € B, a direct calculation reveals

—v
1—v2 00 1—v2
0 10 0
Ao 0 0 1 0
—v 1
V1—v2 00 1—v2
is a Lorentz matrix, called a boost, and
AyAy = Ayiy (4)

for each pair u,v € B. Thus the map v — A, is a homomorphism
from B into the multiplicative group of Lorentz matrices.
A spatial adjustment, or simply an adjustment, is a linear map of

R* given by a matrix
C n
St

where C is an orthogonal 3 x 3 matrix and n is a 3 X 1 zero matrix.
Note spatial adjustments live up to their name: they adjust the spa-
tial coordinates x1,z9, 3 by rotations and reflections, while leaving
the time coordinate z4 intact. A direct verification shows the family
A of all adjustments is a subgroup of the Lorentz group L.

PROPOSITION 3.1. Let A be a Lorentz matrixz. There are matrices
R and S corresponding to adjustments, and a real number v with
|v| <1 such that

A= RA,S.

Proof. By a,b,c,... and a,b,c,... we denote real numbers and 3 x 1
matrices, respectively. Keep in mind n denotes the 3 x 1 zero matrix.
Using this notation, we can write

C a
A= 2)
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where C'is a 3 x 3 matrix.
(i) Choose an orthogonal 3 x 3 matrix (b; by bgs) so that
b = bb; for some b € R. Let

_(bi by by n
Bl_(o 0 0 1)

and observe

ci €y C3 a
Al:ABl:(bl 02 03 c)

where ¢y, c2, c3 are some 3 x 1 matrices, not necessarily the columns

of C.
(ii) Choose an orthogonal 3 x 3 matrix (a; as as) so that
a = gaj for some a € R. Let

a{ 0
T
a, 0
B = al 0
nT 1
and observe
dl' a
dl o
dl' ¢

where d;,ds,d3 are some 3 x 1 matrices and d = (b 0 0).

(iii) Since A, Bj, and By are Lorentz matrices, so is Ay =
By AB;y. As Lemma 2.3 implies AQJAg = .J, we infer dy, dg, and d3
are mutually perpendicular vectors, and d and d3 are unit vectors.
Choose a unit vector e so that d; = de for some d > 0. Let

_edg d31’l
B3_(0 0 0 1)

and observe

Az = A9 B3

I
N O O
S = O O
0o O o9

K O = O
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(iv) As Ay and Bj are Lorentz matrices, so is A3. Lemma 2.3
yields
AT JAs = A3JAY =7,

from which we infer

r=q=0, (5)
EP-p*=d*-a’=1, (6)
- =ad> -2 =-1, (7)
ad —cp=pd—ac=0. (8)

From equations (6) and (7), we obtain
d?=1+a*=c%,

and as d > 0 by our choice, and ¢ > 1 by Corollary 2.5, we conclude
d = c¢. Hence a = p, since equation (8) implies

0=ad—cp=ac—cp=cla—0p)

and ¢ > 1. If v = —a/e, then

V=3T3 <1
and
l=c—a?=c% - =321 —0?).
Therefore,
c:d:# and a=p=—vc= Y

V1 —92 V1i—vZ’

and it follows from equation (5) that As is the boost A,. Since
A, = ByAB1B3 where By, By, and B3 are matrices corresponding
to adjustments, it suffices to let R = By' and S = (B;B3)~". O

If « : E — R is an observer and ¢ € N or g € A, we say
the observer go « : E — R* is a normalization or an adjustment
of the observer «, respectively. Using this terminology, we can give
Proposition 3.1 a more intuitive formulation.
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THEOREM 3.2. Given observers a and (3, there is an adjustment oy
of a and an adjustment and mormalization (1 of B such that the

diagram
E _— E

ol b

R — 5 R

v

commutes for some v € R with |v| < 1.

Since A is a normal subgroup of P, in Theorem 3.2 it does not
matter whether observer 3 is first adjusted and then normalized
or vice versa. By symmetry, it is also irrelevant which observer
is normalized. On the other hand, we shall see that, in general,
both observers a and 6 must be adjusted. To this end, we need to
understand the physical meaning of boosts.

Let a and (B be suitably adjusted and normalized observers so

that the diagram
E _— E

b
R4 . R4
Ay
commutes for a v € R with |v] < 1. To emphasize the forth coordi-
nate is time, we write x = [x1, 29, 73, t] for each z € R*. If 2’ = A, ,
then
, T — ot , p y t— 2
T = ——, ITo=1=xT9, Iy3=1I3 = —.
VT2 P »e ’ V1 —?
View observer a as a person, named «, holding a clock c¢(a). We
may assume « associates the coordinates [0,0,0,¢] with the event
when the clock ¢(a) shows time . In view of equations (9), observer
( associates with the same event the coordinates

(9)

t
V1—9?

It follows « sees B as moving along the zi-axis with the constant
velocity v. By symmetry, § sees « as moving along the zi-axis with
the constant velocity —wv.

—vt, 0,0,
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From the above considerations we deduce that any pair of ob-
servers move with respect to each other on a line in R?® with a con-
stant speed less than 1 — the speed of light. In accordance with the
first Newton law, such observers are usually referred to as inertial
observers. In order to relate a pair of inertial observers by a boost,
it is necessary to make two steps.

(i) Normalize one of the observers so that both observers map
the same point of the space-time to 0 € R*, and use the same
units of time and length. In other words, by a suitable normal-
ization of one of the observes, we achieve that the observers are
related by a Lorentz transformation.

(i) Adjust both observers so that their first coordinate axes lie in
the line of their relative motion and point in the same direction,
and that their second and third coordinate axes coincide.

Once the parameter v in the boost A, is interpreted as velocity, it
follows from identity (4) that the addition + defined by equation (3)
is the Einstein law for the addition of velocities.

For observers « and [ related by a boost A,, we explain two
additional relativistic phenomena. Since A, leaves the coordinates
z9 and z3 intact, we can reduced our considerations to R? where A,
is given by equations

o T — vt and g t—vx
V12 V1=
To facilitate ones intuition, it is best to give observers a and 3 a
rather concrete interpretation.

We think of observer « as a person, named «, who holds a clock
¢(a) and stands by a railroad track lying on the z-axis. We assume
the event when ¢(«) shows time ¢t = 0 is mapped by « to [0,0]. We
further assume that at each spatial point = along the railroad track
there is a clock ¢, synchronized with ¢(a) in the following sense: if
c(a) shows time ¢ (event A), then ¢, shows time ¢ + z (event B);
note |z| is the time needed for a photon to travel between the spatial
points 0 and z. Since A < B or B < A (according to whether z > 0
or z < 0, respectively), observer @ maps event A to [0,¢] and event
B to [z,t + x].

(10)
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We think of observer 8 as a person, named (3, standing at the
end of a train T which moves on the railroad track with a constant
positive velocity v < 1. We assume that § holds a clock ¢(8), and
that the event when (/) shows time ¢t = 0 is mapped by 3 to [0, 0].
If #/ > 0 is the rest length of T (i.e., the length of T measured by
B), then ¢’ is the spatial coordinate of the front of T in the reference
frame of 3.

Since a and ( are related by a Lorentz transformation, both «
and § map the same space-time point to [0,0], which plays the role
of 0 € R* due to the dimension reduction. Consequently the events
when the clocks ¢(a) and ¢(8) show time ¢ = 0 coincide. In other
words, when « and 3 are at the same place, the clocks ¢(a) and ¢(f)
show the same time ¢ = 0.

Slowing of clocks Let A be the event when the clock ¢(3) shows
time ¢’ > 0. Then S(A) = [0,¢'], and solving equations (10)
reveals

vt! t

- V1—v2" 1 -2

Thus at the place z = vt'/v/1 — v? where the clock ¢(8) shows
time ¢/, the clock c; shows time

a(A)

t/
t= —— >t

V1 —1?

Consequently, the clock ¢(() is late with respect to the clock ¢, .

Length contraction Suppose observer @ wants to measure the
length of T. To this end, a finds two spatial points £ < y
such that the clocks ¢, and ¢, show the same time ¢ when
the beginning of T is at y and the end of T is at . Then «
interprets the number ¢ = y — x as the length of T. Assuming
x =t =0, the event when the front of T is at y is mapped by
a to [£,0]. The same event is mapped by (3 to [¢',t'] where

V= L and t = vt

V1—1? V1 —?
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according to equations (10). Consequently,

(=0\1-0v2</?,

which shows the length ¢ of T measured by « is shorter than
the rest length ¢' of T measured by f[.

REMARK 3.3. Theorem 3.2 of its own does not preclude the possibility
of two particles moving with a relative speed larger than or equal to
1 — it merely says observers cannot be attached simultaneously to
these particles. There are dynamical reasons why the relative speed
of two massive particles is always less than 1. On the other hand, the
relative speed of two photons or of a photon and a massive particle
equals 1.

4. The Hilbert space

PROPOSITION 4.1. Let U and V be mazimal orthonormal families
in Hilbert spaces X and Y, respectively. If X and Y are linearly
homeomorphic, then U and V have the same cardinality.

Proof. As the proposition is a standard result of linear algebra when
U or V is finite, assume U and V are infinite, and select a surjective
linear homeomorphism 7' : X — Y. If (z, y) denote the inner product
in Y, the family

Vy={veV:(v,Tu) #0}

is countable for each u € U by Bessel’s inequality. Since the linear
hull of T'(U) is a dense subset of Y, we see V = (J,c Vu. Conse-
quently, the cardinality of V is smaller than or equal to the cardinal-
ity of U, and the proposition follows by symmetry. O

An immediate corollary of Proposition 4.1 is that all maximal
orthonormal families in a Hilbert space X have the same cardinality,
called the dimension of X and denoted by dim X. Hilbert spaces X
and Y are called isomorphic if there is a linear isometry from X onto
Y. It is well known and easy to prove two Hilbert spaces are isomor-
phic if and only if they have the same dimension [8, Section 4.19]. In
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view of Proposition 4.1, two Hilbert spaces are isomorphic whenever
they are linearly homeomorphic.

Throughout the reminder of my lectures, X will be an arbitrary
but fixed real Hilbert space of any dimension (possibly finite). If z
and y are elements of X, we denote by (x,y) their inner product,

and let |z| = y/(z,y). The zero vector of X is denoted by 0. For a
set A C X, we denote by A~ and [A] the closure and linear hull of
A, respectively.

A functional on a linear space Z over R is a real-valued function
defined on Z. A functional S on X x X is called:

e bilinear if the functionals
Spry—=Sx,y): X =R and Sy:z+ S(z,y): X =R
are linear for all z,y € X;
e symmetric if S(xz,y) = S(y,z) for all z,y € X;
With each functional S on X x X we associate a quadratic functional
x— S(z,x)

on X. If § is symmetric and bilinear, then

S(z,y) = [S(@@ +y,z+y) — S(z,2) — S(y,y)] (11)

N =

for all z,y € X. Thus a symmetric bilinear functional S on X x X
and the associated quadratic functional z +— S(z,z) on X determine
each other.

Given an £ € X and a symmetric bilinear functional S on X x X,
we call the set

Cz,S)={yeX:Sy—=z,y—z)=0}

the light cone of S at x.
A symmetric bilinear functional Q on X x X is called a form if
there is a bijection T": X — X such that

Qz,y) = (Tz,y)
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for all z,y € X. Since @) is symmetric,

(T:an) = Q(x,y) = Q(yam) = (Tyam)a

and we infer T is a linear map whose graph is closed. Thus T is a
homeomorphism by the closed graph theorem, and the Schwartz’s
inequality yields

Q(z,y)| < Tl 12| - 1yl (12)
for all z,y € X; here ||T|| denotes the usual norm of 7.

We say a form @ is, respectively, positively or negatively definite
in a subspace Y of X if Q(z,z) > 0 or Q(z,z) < 0 for each z € YV
with z # 0. A form that is neither positively nor negatively definite
in Y, is called indefinite in Y.

DEFINITION 4.2. Let QQ be a form. An ordered pair (X, X_) of
linear subspaces of X 1is called a (Q-decomposition if

(i) X = X, & X_,

(ii) Q is positively definite in Xy and negatively definite in X_,
(i1i) Q(z,y) =0 whenever z € X, andy € X_.
The ordered pair (dim X, dim X_) is called the signature of Q.

While a Q-decomposition is by no means unique, the next propo-
sition shows the signature of a form () does not depend on the choice
of a particular ()-decomposition.

PROPOSITION 4.3. Let @ be a form, and let (X4, X_) be a Q-
decomposition. The spaces X1 and X_ are closed, and if (Yi,Y_)
18 another Q-decomposition, then

dimY, =dimX; and dimY =dimX_ .

Proof. Let {z;} be a sequence in X, that converges to an z € X,
and let £ = x4 + x_ where £z, € X and z_ € X_. Since

0=lmQ(z;,z-) = Q(z,7-) = Q(z4,2-)+Q(z—,z-) = Q(z_,z_),

condition (ii) of Definition 4.2 implies x_ = 0, and we see z € X .
A similar argument shows X is also closed.
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According to condition (i) of Definition 4.2 there are linear maps
P4 from X onto X4 such that

r=Piz+P.x
for every x € X. The first part of the proof and the closed graph the-
orem show the maps Py are bounded. Moreover, Definition 4.2, (ii)
implies
Xy NnY_ =X_nY; ={0},
and hence the maps Py : Y1 — X4 are injective. Applying the
closed graph theorem again, we see these maps are linear homeo-
morphisms. In particular, Py (Y, ) are closed subspaces of X, and
Proposition 4.1 implies
dimYy = dim P (Yy) < dim X .
The proposition follows by symmetry. O
Let U : X — X be a linear map such that

(Uz,y) = (z,Uy) and (Uz,z)>0

for all z,y € X. By [7, Section 104], there is a unique linear map
V. X — X with

(Va,y) = (#,Vy), (Va,2)>0, and V2=U.
We call V' the square root of U, denoted by U2. Observe
Uv =vv=vvi=vU,

and note V is bijective if and only if U is bijective. If U is bijective,
then

(Uz,z) = (V¢ z) = (Vz,Vz) = |Vz|* > 0

for each z € X with z # 0.
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PROPOSITION 4.4. Let QQ be a form, and let T : X — X be the
associated bijection. There is a Q-decomposition (X, X_) such that
X, =T(X4) is orthogonal to X_ =T(X_). Letting

Q(‘/an) ‘Zf.’L‘,yEX+,
($|y) = _Q(‘Tay) Zf T,y € X*7
0 ifre Xy andye X_,

defines an inner product (zly) in X such that the norms ||z| =

V(z|z) and |z| are equivalent.
Proof. Let U = (TQ)%. As both T and U are bounded, the sets
Xy ={reX:Te==xUz}

are closed T-invariant subspaces of X. Given z € X, finda z € X
with z = Tz, and observe

Tr=Uz=UTz=TUz.

Since T is bijective, Uz = z = Tz. Hence z € X, which implies
T(X;) = X4. Similarly we prove T'(X_) = X_. Let z € X and
y € X_. Then

Qz,y) = (Tz,y) = Uz,y) = (z,Uy) = (z, —Ty) = —Q(z,y),

and so Q(z,y) = 0. In particular, finding z € X, with z = Tz, we
obtain

(z,y) = (Tzy) = Qzy) =0.
Therefore X, C X*. Now (U + T)(X) C X, since

U-T)U+T)=U?-T*=0.
Thus if z € Xi, then,
([U+ Tz, y) = (z,[U+T)y) =0

for each y € X. Consequently (U + T')x = 0, which means z € X_.
It follows Xi = X_, or equivalently X = X, & X _. Since U is
bijective, we have

Q(x,x) = (UﬁE,iE) >0 and Q(yay) = _(Uyay) <0
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for all z € X4 and y € X_ different from 0. This establishes
(X4,X_) is a Q-decomposition. Denote by Py the orthogonal pro-
jections from X onto X4, and let

(z]y) = Q(Pyz, Pyy) — Q(P-z, P_y)
for all z,y € X. If V = U2, then
|z||” = (UPyz, Pya) + (UP_z, P_z) = |V Pia| + |VP_z|*, ()

and we infer (z|y) is an inner product in X. If lim ||z;|| = 0, then
lim|z;| = 0, because lim Py z; = lim P_z; = 0 by (*), and

|.731| = |P+.731‘ + P7$i| S |P+.731| + |P7$Z| .
On the other hand, ||z|| < V2|V - |z| according to (¥). O

PROPOSITION 4.5. If QQ is an indefinite form, then [C(m,Q)] =X
for each x € X.

Proof. Since C(x,Q) = C(0,Q) — z, it suffices to show [C(O, Q)] =
X. To this end choose @Q-decomposition (X, X_), and select a
y€ X, withy#0. If z€ X | let u=2+ty and v = z — ty where

A direct calculation shows u,v € C(0,Q), and so z = 3(u + v)
belongs to [C(0,Q)]. Thus X_ C [C(0,Q)], and similarly we prove
X1 C [C(0,Q)]. The proposition follows. O

In accordance with one’s intuition, we actually proved X is the
convex hull of C(x,Q) for each x € X, but we shall not need this
stronger result.

PROPOSITION 4.6. Let Q) be an indefinite form, and let S be a sym-
metric bilinear functional on X x X. If C(0,S) = C(0,Q), then
S = cQ for a real number c # 0; in particular S is a form.
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Proof. Let (X4, X_) be a Q-decomposition, and select z € X, and
y € X_ so that Q(z,z) = —Q(y,y). Thenu=z+yandv=z—y
belong to C(0,Q), and so

0=S(u,u) =S(z,z) +25(z,y) + S(y,y),
0=S(v,v) =8S(z,z) —25(z,y) + S(y,y) .

It follows S(z,y) = 0 and S(z,z) = —S(y,y). Now select a point
z € X4 sothat Q(z,2) =1, and let ¢ = S(z, 2). Since @ is indefinite,
there are nonzero vectors x € X; and y € X_. The numbers a =

VQ(z,z) and b = \/—Q(y,y) are positive, and letting 1 = z/a and

y1 = y/b, we obtain

Qz1,21) = —Qy1,y1) = 1.
According to our previous result, S(z1,y1) = 0 and
S(z1,21) = —=S(y1,91) = S(z,2) =c.
It follows
S(z,y) = abS(z1,41) =0,

S(z,x) = aQS(ml,ml) =cQ(z,z),
S(y,y) =6*S(y1,52) = cQ(y, ),

where the last two equalities hold also for z =y = 0. If u € X, then
u =2+ 1y where z € X; and y € X_. Consequently

S(uau) = S(.’L‘,.’L‘) + S(yay) = C[Q(.’L‘,.’L‘) + Q(yay)] = CQ(U,U) s

and equality (11) implies S = c¢@Q. As C(0,Q) # X, we have ¢ # 0.
]

5. The main result

Throughout the rest of my lecture, dim X > 3 and @ is an arbitrary
but fixed indefinite form whose signature is (o4,0_). For z,y € X,
we let

2y =Q(z,y) and 2*=Q(z,2),
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and write C, instead of C(z,Q). By P we denote the group of all
bijective transformations f : X — X such that

f(Cs) = Cray

for each z € X. Thus a bijective map f : X — X belongs to P if
and only if

[fy) — f@) =0 (y—2)*=0
for all z,y € X. It follows immediately P is a transformation group
of X. The elements of P are called Poincaré transformations.

Instead of dealing with the whole group P, it will be more con-
venient to study its homogeneous subgroup

Po={f €P:f(0)=0}.

Throughout, 2 — 2’ will stand for a map in Py, and we let A" = {2 :
x € A} for every set A C X. The essential relationship between the
groups P and Py is provided the following simple lemma.

LEMMA 5.1. Let  — x* be a map from P, and let z € X. If
=(x+z2) -2

then the map = — ' belongs to Py.

Proof. Since the map z — z* is bijective, so is the map z — 2/, and
0=y ~2)*=[(y+2)" — (@ +2)’

is equivalent to
0=[y—2)~(@-2)]" =@y -2

As 0’ = 0, the lemma is proved. O

MAIN THEOREM 5.2. Each map z +— =’ is linear.

Before we outline the proof of Theorem 5.2, we derive some of its
major consequences.

THEOREM 5.3. Each map x v ' is continuous, and there is a con-
stant ¢ # 0, depending on the map x s z', such that (z')? = cx? for
each © € X. Moreover, ¢ > 0 whenever oy # o_.
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Proof. By Theorem 5.2, the map
S:(zy) =2y : X xX R

is a bilinear symmetric functional on X x X. Since C(0,S) = Cp, by
Proposition 4.6, there is a ¢ # 0 such that 'y’ = cxy for all z,y € X.
Select a Q-decomposition (X, X_) as in Proposition 4.4, and let
(z|y) be the inner product associated with (X, X_) according to
Proposition 4.4. Since the norms |z| and ||z|| induced, respectively,
by the inner products (z,y) and (z|y) are equivalent, it suffices to
establish the continuity of z — ' with respect to the norm ||z||. To
this end, denote by P, the orthogonal projections, with respect to
the inner product (z|y), of X onto X.

Find linear spaces Yy C X so that X; = Y[, and observe
(Y4,Y_) or (Y_,Y,) is a Q-decomposition depending on whether
¢ > 0 or ¢ <0, respectively. If x belongs to Y, or Y_, then

/1> = |@)?] = lel - 2] = [e] - |(Psax + P_)’|
— || - |[(Pea)? + (P-2)?| = [e] - || Paal® = |P-al?]  (+)
< [el (IPsal® + [P=al?) = le| - ]

According to condition (i) of Definition 4.2 there are linear maps F
from X onto Yy such that

zr=FE,x+FE =z

for every z € X. Proposition 4.3 and the closed graph theorem show
the maps Ey are bounded. Thus by (%), for each z € X,

12l = [|(By2)' + (B—2)'|| < [[(Bs2)'|| + || (B-2)|
< VI (1 B+l + I1B=al)) < Viel (1B + | B-1) [z,

and the map z — 2’ is continuous. Finally, if ¢ < 0 then

oy =dimX, =dimY_ =dimX_ =o_.
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COROLLARY 5.4. Each f € P is a continuous affine map, and there
is a constant c(f) # 0 such that

[f(0) ~ f@)]" = e(Nly —2)’
for all x,y € X. Moreover, ¢(f) > 0 whenever o4 # o_.

In the remainder of this section, we outline the proof of Theo-
rem 5.2. We begin with a definition.

DEFINITION 5.5. A set N C X is called a null set whenever 0 € N
and (y—z)? =0 for all z,5y € N. If a null set is also a closed linear
subspace of X, we call it a null space.

Since a bijection of X belongs to Py if and only if it maps null
sets to null sets, understanding null sets is essential for the proof of
Theorem 5.2.

LEMMA 5.6. A set N C X is a null set if and only if 0 € N and
zy =0 for all z,y € N. If N is a null set, then [N]~ is a null space.

Proof. The first part of the lemma follows from the equality

(y—z)? =y? — 22y — 2> = (y — 0)? — 2zy + (z — 0)2.
Now it is easy to verify [N] is a null set whenever N is a null set,
and the lemma follows from inequality (12). O

It follows from Zorn’s lemma each null set is contained in a max-
imal (with respect to inclusion) null set, which is a null space by
Lemma 5.6. Denoting by 91 the family of all maximal null sets, it is
easy to see

NeM« N em.

LEMMA 5.7. Let N € M, and let L C N be a null space. If x is in
N — L, then there is an M € MM such that L C M and x ¢ M.

Proof. Given a point z in X — C, let

* Yz
r=v-2(%)
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* is the reflection of y across the

for each y € X. Intuitively, y
hyperplane

{u:uz=0}.

A straightforward calculation reveals the map y — y* is a linear
involution of X, and (y*)? = y?2 for every y € X. By inequality (12),
the involution y — y* is also continuous, and hence

M={y":y€ N}

belongs to M. Now assume yz = 0 for each y € L, and zz # 0. Then
y* =y for every y € L, and

2
zz* = 2% -2 (i—;) (xz) = _2(1‘;2) #0.
Thus L C M, and z ¢ M as Lemma 5.6 implies z* ¢ N.

We complete the proof by finding a point z in X — Cy such that
zz # 0, and yz = 0 for every y € L. To this end, let T" be the
bijection associated with ). According to Section 4, the map T
is a linear homeomorphism, and hence T(L) is a closed subspace
of X. Denote by P the orthogonal projection onto T'(L)*, and let
u = PTx. Then u # 0 and

yu = (Ty,u) = (Ty, PTx) = (PTy,Tz) =0 (%)

for each y € L. On the other hand,

zu = (Tz,u) = (Tz,PTx)
= (T, P*Tx) = (PTx, PTx) ()
= |u]?>0.

Let

ut+z ifut=0

{u if u? # 0,
z =
and observe

z =
(u+2)? =2zu if u? = 0.

9 {u2 if u? # 0,

Inequality (x*) implies z ¢ Co and zz = zu > 0. If y € L, then
yu = 0 by (%), and yz = 0 by Lemma 5.6. O
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COROLLARY 5.8. If L C X is a null space, then
L=(\{Mem:LcM}.

PROPOSITION 5.9. If N C X is a null set, then ([N]*)' =[N']".

Proof. If L = [N]~, then
L=({Mem:LcM}

by Corollary 5.8. Since z — z’ maps maximal null spaces to maximal
null spaces,

L'=({M':MeMand L C M}

is a closed subspace of X. Now N’ C L' implies [N']” C L, and we
obtain

[N (IN] )"

Applying this result to the null set N’ and the map z — z* inverse
to z — z' provides the reverse inclusion. Indeed,

[N]” = [(N')]” c (INT7)°
and consequently,
(IN]) V')
O

COROLLARY 5.10. Let x € X be such that 2> = 0, and let t € R.
Then

(tz) =tz
forat € R

Proof. Since the one-dimensional linear spaces [z] and [z'] are closed,
Proposition 5.9 implies [z]' = [2/]. O

PROPOSITION 5.11. Let x € X and t € R. then (tz)' = 'z’ for some
t' e R
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This refinement of Corollary 5.10 is obtained by a series of rather
technical lemmas, first for the case when

min{o;,0_} > 2,

and then for the case when o_ = 1; if 04 = 1, it suffices to replace
Q by —@Q. The argument relies on the assumption dim X > 3. The
interested reader is referred to [6, Section 4] for details.

PROPOSITION 5.12. If L C X is a line, then so is L'.

Proof. Select distinct points z and y in L, and let K be the line
passing through the points 2’ and /. If 2z € L and z # z, find a
t € R with y — z = #(z — z). According to Lemma 5.1, the map

z—2*=(z+2) -7 X=X

belongs to Py. In view of Proposition 5.11, there is a ¢* € R such
that

Yy =2 =y—2) =tz —2)°=t"(z' - 7).

Thus 2/ € K, and we have L' C K. Applying this result to the
map z — z* inverse to the map z — z’, we obtain K* C L, and
consequently K C L'. O

Since the field R has no nontrivial inner automorphisms [3, Theo-
rem 1.19], the Main Theorem (Theorem 5.2) follows from the funda-
mental theorem of projective geometry [3, Theorem 2.26]: If U is a
linear space over R of dimension larger than one, then each bijection
of U that maps lines onto lines is affine.

6. An application
A map z— z* : X — X is called an isometry whenever
ly" — 2" = |y — x|

for all z,y € X. It is well known [1, Section 35] the family of all
bijective isometries is a subgroup of the affine group of X.
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DEFINITION 6.1. A bijective map z — z* : X — X 1is called a
pseudoisometry whenever

" =2t =" —u'| = fy —z] = |v -y
for all z,y,u,v in X.

Pseudoisometries may not preserve distances, but they preserve
pairs of equidistant points. The family of all pseudoisometries is a
transformation group of X which contains the group of all bijective
isometries as a proper subgroup (e.g., the map z — 2z is a pseudoi-
sometry but not an isometry).

THEOREM 6.2. If dim X > 2, then each pseudoisometry is a contin-
wous affine map. Moreover, given a pseudoisometry x — x*, there
15 a constant a > 0 such that

ly" — "] = aly — g
for all x,y € X.

Proof. In the Hilbert space Y = X & X, the bijection
fiz1® 39— 2] B x5
is a Poincaré transformation of Y with respect to the indefinite form

Q(z1 @ w2, 91 Y2) = (@1,91) — (22,92) -

As before, for each u € Y, let u? = Q(u,u). Since dimY > 4, the
results of Section 5 imply f : Y — Y is a continuous affine map, and
there is a constant ¢ # 0 such that

lyi — i = I3 — 231” =[(v} — 1) @ (45 — 23)]
= (yi @y — 2} ® a5)?

= [fy @y — 1 D 2p)]?

= c(y1 B y2 — 71 G 2)°

C[(yl —z1) @ (y2 —552)]2
C(|y1—$1| lya — 22/?) .



280 W.F. PFEFFER

Letting ¢ = z1, y = y1, and 22 = yo» = 0, we obtain

ly* — ' = cly — z]*.

For y # z, the last inequality yields ¢ > 0, and it suffices to let

a = /c. O

COROLLARY 6.3. If dim X > 2, then each pseudoisometry is the
composition of an isometry and a dilation.

The assumption dim X > 2 in Theorem 6.2 and Corollary 6.3 is
essential. Indeed, viewing R as a linear space over the rationals, it
is easy to construct a nonlinear bijection f : R — R such that

flrz +sy) =rf(z) +sf(y)

for all z,y € R and all rational numbers » and s. Such an f is a
pseudoisometry of R that is not continuous, and hence not affine.

REMARK 6.4. An interesting generalization of Corollary 6.3 was ob-
tained in [5, Theorem 18]: If dim X > 2, than every bijection of X
that maps circles onto circles is the composition of an isometry and
a dilation.
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