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A Note on Harmonic Calculus
in m-convex Algebras

A. EL KiNANT ()

SUMMARY. - We prove a version of the mazimum modulus prin-
ciple, for harmonic vector valued functions, in complete locally
m-convex Q-x-algebras. This is used to generalize some extended
versions of von Neumann’s inequality.

Introduction

Let f be a complex function holomorphic on the open unit disk
D and H be a complex Hilbert space. In [4] Ky Fan has proved
that if f(D) C D, then the inequality ||f(T)| < 1 holds for every
proper contraction 7" on H. It is known that Ky Fan’s theorem is an
equivalence formulation to the important inequality of von Neumann
given also in [4]. Generalizations of this result, in hermitian algebras,
are obtained in [2]. Tao Zhiguang ([7]) has generalized Ky Fan’s
theorem to analytic operator functions. Using a maximum principle,
we have extended, in [3], Ky Fan’s theorem and von Neumann’s
inequality to harmonic functions, in hermitian Banach algebras. In
this paper, we prove that tha above mentioned results remain valid
in the general context of locally m-convex algebras.
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1. Preliminaries

Let (E, 7) be a locally convex space the topology of which is given by
a family {|.|) : A € A} of seminorms. If E is endowed with an algebra
structure such that |zy|y < |z|a|y|x, for every z,y € E and A € A, we
say that (E, (|.|]x)aca) is a locally multiplicatively convex (I. m. c. a.
in short). It is known that a complex I. m. ¢. a. (E,(].|x)xea) is the
projective limit of the normed algebras (E}, ||.||»), where E\ = E/N)
with Ny = {z € E : |z|y = 0} and ||Z||y = |z|». An element z of
E is written z = (z)), = (mx(x))x, where 7y : E — E) is the
canonical surjection. The algebra (E, (|.|x)rea) is also the projective
limit of the Banach algebras E\)\, the completions of F’s. The norm
in E, will also be denoted by Il.Il. If E is endowed with an algebra
involution z — z* such that |z|\ = |z*|), for any z € E, X € A, then
(E,(]-Ix)aen) is called a locally multiplicatively convex x-algebra (L.
m. c¢. *-a. in short). In this case, each E’;, A € A, becomes an
involutive Banach algebra. A I. m. ¢. a. (E,(|.]x)xen) is called a Q-
algebra if the group G(E) of its invertible elements is open. Denote
by Rea = % (a + a*) the real part of an element ¢ in E, by U the set
of all unitary elements of E (i.e., all a such that a*a = aa* = €) and
by U, the identity component of U. Recall that the algebra F is said
to be hermitian if hermitian elements (i.e., all a such that a* = a)
have real spectrum. If E is a I. m. c¢. *-a. which is a Q-algebra,

define |a| = p(a*a)% for a in E.

Let © be an open subset of C and f : Q@ — E a C® function
of two real variables x and y. Recall that f is said harmonic if
% + 327]; = 0 on (). The set of all harmonic E-valued functions on
Q is denoted h(Q, E). If f is holomorphic on €, then f is harmonic;
so we have H(S), E) C h(Q2, E). For the scalar functions on Q, we
simply put H(Q) = H(Q,C) and h(Q2) = h(Q,C). In the sequel,
e will denote the unit and for z € C' we simply write z instead of
ze. Also the open unit and the closed disk in C will be denoted by
D and D respectively. The spectrum and the spectral radius of an
element a € E will be denoted by Spa and p(a) respectively.
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2. Harmonic calculus and a form of the maximum
principle

The functional calculus for harmonic E-valued functions ([3]) can be
extended to locally m-convex algebras as follows.

DEFINITION 2.1. Let (E,(|.|x)aen) be a unitary and complete 1. m.
c. x-a., ) an open subset of C, zy € Q such that D(zp,r) C 1,
(r>0), a € E with Spa C D(z,7) and f € h(Q, E). Then

fla) = S f(z)Re [(z+a—2zo)(z—a)_1] M (1)

2 |z2—zo|=r r

The fundamental properties of this functional calculus are contained
in the following result. The proof, being straightforward, is omitted.

PROPOSITION 2.2.

1) The mapping f — f(a) = (f(ax))ea 5 an involutive homomor-
phism from h(Q, E) into E that extends the algebra homomor-
phism f —— f(a) from H(Q, E) into E given by the holomorphic
functional calculus.

2) If K is a compact neighbourhood contained in ) and containing
Spa, then the mapping f — f(a) is continuous with respect to
the uniform convergence on K.

3) If x — x* is a hermitian involution and a is normal, then
f(Spa) = Spf(a) for every f € h(12).

Let a € E such that p(a) < 1 and |a| < 1. The characteristic
function @, is defined by

M=

Bo(2) = (e — aa*) "2 (2 +a) (e + za*) ™" (e — a*a)

for z € C satisfying |z|p(a) < 1. It is holomorphic in a neighbourhood
of D and takes the unit circle into Us,.

The following result will be needed later on.
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PROPOSITION 2.3. Let (E, (|.|x)ren) be a complez, unitary and com-
plete 1. m. c. x-a. which is a Q-algebra, ) be an open subset of C
and f € H(Q, E). Then the function z — p (®4(2)) is subharmonic
in €.

Proof. By aresult of Vesentini ([6]), the function z — py (7 o f(2)
is subharmonic, for every A. On the other hand, the spectral radiu
pis u. s. c. for F is a Q-algebra. Then the function z — p (f(2)
is u. s. c¢. in Q. It follows that the function z — p(f(2)) =

sup py (mx o f(2)) is subharmonic in €. O
AEA

~— N ~—

As a first application of the harmonic calculus, we give a proof
of JJW.M. Ford’s square root lemma. Our approach enlighten more
the fact that the square root is hermitian.

PROPOSITION 2.4. Let (E, (|.|]x)xen) be a complez, unitary and com-
plete 1. m. c. *x-a. and h be a hermitian element of E such that
Sph C {z € C: Rez > 0}. Then there exists a hermitian element
k € E such that k* = h.

Proof. Put Q@ ={z € C:z¢ R™}. There is a holomorphic function
fin Q such that f?(z) = zand f(1) = 1. Let T be a closed curve such
that Sph is contained is its interior intl’ and intl’ U T is contained

1
in Q. Put k = 57 / f(2)(z— h)fldz. It is clear that k = (kx)ycn,
™ Jr

1
where k) = 37 / f(2)(z — hy) " dz for Sph, C Sph. Moreover, by
™ Jr

1) of Proposition 2.2, we have

1
k? = (K2 = —/ — hy) "t = (h = h.
( )\),\EA <27m' FZ(Z ) z en ( )\))\eA

It remains to show that k) is hermitian for every A € A. Let r and
r’ such that 0 < r <7/, Sph C D(r',r) and D(r',r) C Q. We check
that

1 d
kx=— [ f(z)Re[(z+hy—2r")(z—hy)""] M
27 |z—r!|=r
Since z — z* is continuous, we have

k‘*/\ = i mRe [(Z—Fh)\—QTI)(Z—h/\)_l] M

27 |z—r!|=r
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But f(z) = f(z), for every z € Q, hence k*) = k). This completes
the proof. O

We now prove the following version of the maximum principle for
harmonic functional calculus in the context of m-convex algebras. It
is the main result of this note.

PROPOSITION 2.5. Let (E, (|.|x)xen) be a complez, unitary and com-
plete 1. m. c. *-a. which is a Q-algebra, ) be an open subset of C
containing D, f € h(, E), Ey = {a € E: maz (|a|,p(a)) < 1} and
Ey = {a € Ey : fcommutes with both a and a*}.

1) If Sp®4(z) C D, for all a € Ey and |z| = 1, then f(E1) C
Cof(Uy), where Co f (Uy) is the closure of the convex hull of f(U,)

2) If E is hermitian, then |f(a)| < sup{|f(u)|: u € Ue} for all a in
Ey.

Proof. 1) Assume, without loss of generality, that |a| < 1 and p(a) <
1 for a € Fy. Since @, is holomorphic on a neighbourhood of
D, it follows from Proposition 2.3 that p (®,(z)) is subharmonic
function of z in a neighbourhood of D. Then, by the maximum
modulus principle, we have Sp®,(¢) C D, for all |¢] < 1. Let
29 € D and r1 > 0 such that D(z9,r71) C D and put C; =
{z € C:|z—2)|=r1}. Again, by the maximum modulus prin-
ciple, there exists 0 < r9 < 1 such that Sp®,({) C D(0,rs) for
every | —2zo| < 71. Put Cy = {w € C : |lw| = ra}. For [€—2zp| <1
we have, by (1),

F@al€) = = [ flw)Re [(w + Du(€))w — Bo(e))~'] 142!

27 Cs 79

Since for any fixed w € Cy, the function g defined by

9(&) = Re [(w + @4 (€)) (w — a(€)) ]

is harmonic on D(zg,r1) and continuous on C, it follows that

1

" or

|d7|

™

g(&) /c g9(z)Re [(z+§—2zg)(z—§)71]
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Thus, for every & € D(zp,71), we have f(®,(£)) =

2
~(3) [ rateme e+ €21 AL

Let ¢ € E’ the topological dual of (E,(|.]x)xea). The reader
can prove that the function £ — ¢(f(P®4(€))) is harmonic on D.
Then the function F (&) = Re(¢(f(Pq(£)))) defined for €] < 1 is
harmonic for |¢| < 1. Furthermore F is continuous in D. The
maximum principle tells us that F'(0) < sup{F'({) : |¢| = 1} and
consequently

Reg(f(a)) < sup{Re (¢ (f (Pa(£)))) : €] =1}

Since f commutes with a and a*, it follows that f commutes
with ®,(¢) and ®,(£)*, for every || = 1 and hence Re¢(f(a)) <
sup Re¢(f(U,)). Therefore, by a separation theorem ([1, p. 417]),
f(a) € Cq f(Ue). This completes the proof of 1).

2) Since E is hermitian, we have p(®,(z)) =1 for every |z| = 1 and
therefore Sp®,(z) C D for all @ € Ey and |2| = 1. On the other
hand, by [5], |.| is a continuous submultiplicative seminorm on £
such that p(z) < |z| for every z € E. Hence 2) in a consequence
of 1).

O

As a consequence, we obtain the following result

COROLLARY 2.6. Let (E,(|-[x)ren) be a complex, unitary and her-
mitian complete 1. m. c. x-a. which is a Q-algebra.

1)Iffisa complez harmonic function on some neighbourhood of D
such that f(D) C D and a € E with |a] <1, then |f(a)] < 1.

2)If f € (D), 0 <r <1 and M(r) = max|f(z)|, then M(r) =

|z|=r
max |f(a)]

3) If f € h(D) such that f(D) C D and a € E with |a] < 1, then
[f(@)] <1
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Proof.

1) By 2) of Proposition 2.5, it suffices to prove that
sup{|f(u)| :u e U} < 1.

Since p(u) = |u| = 1, for every u € U,, we have Spu C D. Hence
f(u) is defined. Furthermore f(u) is normal and hence |f(u)| =
p(f(u)). On the other hand, we have Sp f(m;(u)) = f(Sp(m;i(u)))
by the spectral mapping theorem given by 3) of Proposition 2.2.

Thus p;(f(mi(u))) < 1Vi. Now since p(f(u)) = sup pi(f(mi(u))),
we obtain f(u) < 1.

2) Author’s proof of [3, Theorem 3.2] applies to this case as well.

3) It is a direct consequence of 2).

O

In [7], Tao Zhiguang has generalized (1) to analytic operator
functions. More precisely, let H be a complex Hilbert space, L(H)
the complex Banach algebra of all bounded linear operators on H and
Q={z:]z|] <1+ 20} where § > 0. Tao Zhiguang showed that if
f € N3(Q) with || f(2)|| < 1for z € Dand T € L(H) is a contraction
such that T and f are commuting (i.e. Tf(z) = f(2)T for every
z € Q, then || f(T)|| < 1. Here f(T) denotes the operator defined by
Riez-Dunford integral ([1, p. 568]) f(T) = o [ f(2)(z — T) dz,
where I' is any contour that surrounds the spectrum of 7" in €; and
N#(€2) the set of all analytic functions on Q into L(#) such that
f(2)f(w) = f(w)f(z) and f(2)f(2)" = f(2)"f(2) Vz,w € Q. If we
replace the condition f € N#(€2) by an harmonic operator function
such that f(2)T* = T*f(z) for z € D, the result of Tao Zhiguang
remains valid as the following result shows.

PROPOSITION 2.7. Let T' € L(H) be a contraction (i.e., |T| < 1)
and f € h(Q, L(H)) such that ||f(2)]| < 1 for every z € D and
commutes with both T and T*. Then ||f(T)| < 1.

Proof. We first prove that ||f(nT)| <1, if n € [0,1[. By Proposition
2.5, it suffices to show that the number

0 =sup{f(S): S €U(I) and f commutes with S}
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satisties § < 1. Let S € U(I) and f € h(Q,L(H)) such that
Sf(z) = f(2)S for all z € Q. Let E be the spectral resolution of

S. Then, one has f(S) = f(S) = U(T)f(z)dEz and we deduce
that [I£(S)] < supllf()] : 2 € o($)} < 1. Thus [f(T)] < 1.
Now when 7 increases to 1, f(nz) converges to f(z) uniformly on
the neighbourhood {z : |2| < 1+ 4} of o(T). By 2) of Propo-
sition 2.2, f(nT') converges to f(T) in the norm topology and so
£ (T < 1. O
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