A Note on Harmonic Calculus in *m*-convex Algebras

A. EL KINANI (*)

Summary. - We prove a version of the maximum modulus principle, for harmonic vector valued functions, in complete locally m-convex Q-*-algebras. This is used to generalize some extended versions of von Neumann's inequality.

Introduction

Let f be a complex function holomorphic on the open unit disk D and \mathcal{H} be a complex Hilbert space. In [4] Ky Fan has proved that if $f(D) \subset D$, then the inequality ||f(T)|| < 1 holds for every proper contraction T on \mathcal{H} . It is known that Ky Fan's theorem is an equivalence formulation to the important inequality of von Neumann given also in [4]. Generalizations of this result, in hermitian algebras, are obtained in [2]. Tao Zhiguang ([7]) has generalized Ky Fan's theorem to analytic operator functions. Using a maximum principle, we have extended, in [3], Ky Fan's theorem and von Neumann's inequality to harmonic functions, in hermitian Banach algebras. In this paper, we prove that the above mentioned results remain valid in the general context of locally m-convex algebras.

^(*) Author's address: A. El Kinani, Ecole Normale Superieure, B.P. 5118, Takaddoum, 10105 Rabat, Morocco

Mathematics Subject Classifications 1999: 46K99, 46H30

Keywords: maximum modulus principle, harmonic functional calculus, m-convex Q-algebra, hermitian algebra

1. Preliminaries

Let (E,τ) be a locally convex space the topology of which is given by a family $\{|.|_{\lambda} : \lambda \in \Lambda\}$ of seminorms. If E is endowed with an algebra structure such that $|xy|_{\lambda} \leq |x|_{\lambda}|y|_{\lambda}$, for every $x, y \in E$ and $\lambda \in \Lambda$, we say that $(E, (|.|_{\lambda})_{{\lambda} \in \Lambda})$ is a locally multiplicatively convex (l. m. c. a.in short). It is known that a complex l. m. c. a. $(E, (|.|_{\lambda})_{{\lambda} \in \Lambda})$ is the projective limit of the normed algebras $(E_{\lambda}, \|.\|_{\lambda})$, where $E_{\lambda} = E/N_{\lambda}$ with $N_{\lambda} = \{x \in E : |x|_{\lambda} = 0\}$ and $\|\overline{x}\|_{\lambda} = |x|_{\lambda}$. An element x of E is written $x = (x_{\lambda})_{\lambda} = (\pi_{\lambda}(x))_{\lambda}$, where $\pi_{\lambda} : E \longrightarrow E_{\lambda}$ is the canonical surjection. The algebra $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is also the projective limit of the Banach algebras $\widehat{E_{\lambda}}$, the completions of E_{λ} 's. The norm in $\widehat{E_{\lambda}}$ will also be denoted by $\|.\|_{\lambda}$. If E is endowed with an algebra involution $x \mapsto x^*$ such that $|x|_{\lambda} = |x^*|_{\lambda}$, for any $x \in E, \lambda \in \Lambda$, then $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is called a locally multiplicatively convex *-algebra (l. m. c. *-a. in short). In this case, each E_{λ} , $\lambda \in \Lambda$, becomes an involutive Banach algebra. A l. m. c. a. $(E,(|.|_{\lambda})_{\lambda\in\Lambda})$ is called a Qalgebra if the group G(E) of its invertible elements is open. Denote by $Rea = \frac{1}{2}(a + a^*)$ the real part of an element a in E, by U the set of all unitary elements of E (i.e., all a such that $a^*a = aa^* = e$) and by U_e the identity component of U. Recall that the algebra E is said to be hermitian if hermitian elements (i.e., all a such that $a^* = a$) have real spectrum. If E is a l. m. c. *-a. which is a Q-algebra, define $|a| = \rho (a^*a)^{\frac{1}{2}}$ for a in E.

Let Ω be an open subset of C and $f:\Omega \longrightarrow E$ a $C^{(2)}$ function of two real variables x and y. Recall that f is said harmonic if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ on Ω . The set of all harmonic E-valued functions on Ω is denoted $h(\Omega, E)$. If f is holomorphic on Ω , then f is harmonic; so we have $H(\Omega, E) \subset h(\Omega, E)$. For the scalar functions on Ω , we simply put $H(\Omega) = H(\Omega, C)$ and $h(\Omega) = h(\Omega, C)$. In the sequel, e will denote the unit and for $z \in C$ we simply write z instead of ze. Also the open unit and the closed disk in C will be denoted by D and \overline{D} respectively. The spectrum and the spectral radius of an element $a \in E$ will be denoted by Spa and $\rho(a)$ respectively.

2. Harmonic calculus and a form of the maximum principle

The functional calculus for harmonic E-valued functions ([3]) can be extended to locally m-convex algebras as follows.

DEFINITION 2.1. Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be a unitary and complete 1. m. c. *-a., Ω an open subset of C, $z_0 \in \Omega$ such that $\overline{D(z_0, r)} \subset \Omega$, (r > 0), $a \in E$ with $Spa \subset D(z_0, r)$ and $f \in h(\Omega, E)$. Then

$$f(a) = \frac{1}{2\pi} \int_{|z-z_0|=r} f(z) Re \left[(z+a-2z_0)(z-a)^{-1} \right] \frac{|dz|}{r}.$$
 (1)

The fundamental properties of this functional calculus are contained in the following result. The proof, being straightforward, is omitted.

Proposition 2.2.

- 1) The mapping $f \mapsto f(a) = (f(a_{\lambda}))_{\lambda \in \Lambda}$ is an involutive homomorphism from $h(\Omega, E)$ into E that extends the algebra homomorphism $f \mapsto f(a)$ from $H(\Omega, E)$ into E given by the holomorphic functional calculus.
- 2) If K is a compact neighbourhood contained in Ω and containing Spa, then the mapping $f \mapsto f(a)$ is continuous with respect to the uniform convergence on K.
- 3) If $x \mapsto x^*$ is a hermitian involution and a is normal, then f(Spa) = Spf(a) for every $f \in h(\Omega)$.

Let $a \in E$ such that $\rho(a) < 1$ and |a| < 1. The characteristic function Φ_a is defined by

$$\Phi_a(z) = (e - aa^*)^{-\frac{1}{2}} (z + a) (e + za^*)^{-1} (e - a^*a)^{\frac{1}{2}}$$

for $z \in C$ satisfying $|z|\rho(a) < 1$. It is holomorphic in a neighbourhood of \overline{D} and takes the unit circle into U_e .

The following result will be needed later on.

PROPOSITION 2.3. Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be a complex, unitary and complete 1. m. c. *-a. which is a Q-algebra, Ω be an open subset of C and $f \in H(\Omega, E)$. Then the function $z \longmapsto \rho(\Phi_a(z))$ is subharmonic in Ω .

Proof. By a result of Vesentini ([6]), the function $z \mapsto \rho_{\lambda} (\pi_{\lambda} \circ f(z))$ is subharmonic, for every λ . On the other hand, the spectral radius ρ is u. s. c. for E is a Q-algebra. Then the function $z \mapsto \rho(f(z))$ is u. s. c. in Ω . It follows that the function $z \mapsto \rho(f(z)) = \sup_{\lambda \in \Lambda} \rho_{\lambda} (\pi_{\lambda} \circ f(z))$ is subharmonic in Ω .

As a first application of the harmonic calculus, we give a proof of J.W.M. Ford's square root lemma. Our approach enlighten more the fact that the square root is hermitian.

PROPOSITION 2.4. Let $(E, (|.|_{\lambda})_{{\lambda} \in \Lambda})$ be a complex, unitary and complete 1. m. c. *-a. and h be a hermitian element of E such that $Sph \subset \{z \in C : Rez > 0\}$. Then there exists a hermitian element $k \in E$ such that $k^2 = h$.

Proof. Put $\Omega=\{z\in C:z\notin R^-\}$. There is a holomorphic function f in Ω such that $f^2(z)=z$ and f(1)=1. Let Γ be a closed curve such that Sph is contained is its interior $int\Gamma$ and $int\Gamma\cup\Gamma$ is contained in Ω . Put $k=\frac{1}{2\pi i}\int_{\Gamma}f(z)(z-h)^{-1}dz$. It is clear that $k=(k_{\lambda})_{\lambda\in\Lambda}$, where $k_{\lambda}=\frac{1}{2\pi i}\int_{\Gamma}f(z)(z-h_{\lambda})^{-1}dz$ for $Sph_{\lambda}\subset Sph$. Moreover, by 1) of Proposition 2.2, we have

$$k^2 = \left(k^2_{\lambda}\right)_{\lambda \in \Lambda} = \left(\frac{1}{2\pi i} \int_{\Gamma} z(z - h_{\lambda})^{-1} dz\right)_{\lambda \in \Lambda} = (h_{\lambda})_{\lambda \in \Lambda} = h.$$

It remains to show that k_{λ} is hermitian for every $\lambda \in \Lambda$. Let r and r' such that 0 < r < r', $Sph \subset D(r',r)$ and $\overline{D(r',r)} \subset \Omega$. We check that

$$k_{\lambda} = rac{1}{2\pi} \int_{|z-r'|=r} f(z) Re \left[(z+h_{\lambda}-2r')(z-h_{\lambda})^{-1} \right] rac{|dz|}{r}.$$

Since $x \mapsto x^*$ is continuous, we have

$$k^*_{\lambda} = \frac{1}{2\pi} \int_{|z-r'|=r} \overline{f(z)} Re \left[(z + h_{\lambda} - 2r')(z - h_{\lambda})^{-1} \right] \frac{|dz|}{r}.$$

But $f(\overline{z}) = \overline{f(z)}$, for every $z \in \Omega$, hence $k^*_{\lambda} = k_{\lambda}$. This completes the proof.

We now prove the following version of the maximum principle for harmonic functional calculus in the context of m-convex algebras. It is the main result of this note.

PROPOSITION 2.5. Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be a complex, unitary and complete 1. m. c. *-a. which is a Q-algebra, Ω be an open subset of C containing \overline{D} , $f \in h(\Omega, E)$, $E_0 = \{a \in E : max(|a|, \rho(a)) \leq 1\}$ and $E_1 = \{a \in E_0 : f commutes with both a and <math>a^*\}$.

- 1) If $Sp\Phi_a(z) \subset \overline{D}$, for all $a \in E_1$ and |z| = 1, then $f(E_1) \subset \overline{C_0}f(U_e)$, where $\overline{C_0}f(U_e)$ is the closure of the convex hull of $f(U_e)$
- 2) If E is hermitian, then $|f(a)| \leq \sup\{|f(u)| : u \in U_e\}$ for all a in E_1 .
- Proof. 1) Assume, without loss of generality, that |a| < 1 and $\rho(a) < 1$ for $a \in E_0$. Since Φ_a is holomorphic on a neighbourhood of \overline{D} , it follows from Proposition 2.3 that $\rho\left(\Phi_a(z)\right)$ is subharmonic function of z in a neighbourhood of \overline{D} . Then, by the maximum modulus principle, we have $Sp\Phi_a(\xi) \subset \overline{D}$, for all $|\xi| \leq 1$. Let $z_0 \in D$ and $r_1 > 0$ such that $\overline{D}(z_0, r_1) \subset D$ and put $C_1 = \{z \in C : |z z_0| = r_1\}$. Again, by the maximum modulus principle, there exists $0 < r_2 < 1$ such that $Sp\Phi_a(\xi) \subset D(0, r_2)$ for every $|\xi z_0| \leq r_1$. Put $C_2 = \{w \in C : |w| = r_2\}$. For $|\xi z_0| < r_1$ we have, by (1),

$$f(\Phi_a(\xi)) = \frac{1}{2\pi} \int_{C_2} f(w) Re \left[(w + \Phi_a(\xi))(w - \Phi_a(\xi))^{-1} \right] \frac{|dw|}{r_2}$$

Since for any fixed $w \in C_2$, the function g defined by

$$g(\xi) = Re \left[(w + \Phi_a(\xi))(w - \Phi_a(\xi))^{-1} \right]$$

is harmonic on $D(z_0, r_1)$ and continuous on C_1 , it follows that

$$g(\xi) = \frac{1}{2\pi} \int_{C_1} g(z) Re \left[(z + \xi - 2z_0)(z - \xi)^{-1} \right] \frac{|dz|}{r_1}.$$

Thus, for every $\xi \in D(z_0, r_1)$, we have $f(\Phi_a(\xi)) =$

$$= \left(\frac{1}{2\pi}\right)^2 \int_{C_2} \int_{C_1} f(w)g(z)Re\left[(z+\xi-2z_0)(z-\xi)^{-1}\right] \frac{|dz|}{r_1} \frac{|dw|}{r_2}$$

Let $\phi \in E'$ the topological dual of $(E,(|.|_{\lambda})_{\lambda \in \Lambda})$. The reader can prove that the function $\xi \longmapsto \phi(f(\Phi_a(\xi)))$ is harmonic on D. Then the function $F(\xi) = Re(\phi(f(\Phi_a(\xi))))$ defined for $|\xi| < 1$ is harmonic for $|\xi| < 1$. Furthermore F is continuous in \overline{D} . The maximum principle tells us that $F(0) \leq \sup\{F(\xi) : |\xi| = 1\}$ and consequently

$$Re\phi(f(a)) \leq \sup \{Re \left(\phi\left(f\left(\Phi_a(\xi)\right)\right)\right) : |\xi| = 1\}.$$

Since f commutes with a and a^* , it follows that f commutes with $\Phi_a(\xi)$ and $\Phi_a(\xi)^*$, for every $|\xi| = 1$ and hence $Re\phi(f(a)) \le \sup Re\phi(f(U_e))$. Therefore, by a separation theorem ([1, p. 417]), $f(a) \in \overline{C_0} f(U_e)$. This completes the proof of 1).

2) Since E is hermitian, we have $\rho(\Phi_a(z)) = 1$ for every |z| = 1 and therefore $Sp\Phi_a(z) \subset \overline{D}$ for all $a \in E_2$ and |z| = 1. On the other hand, by [5], |.| is a continuous submultiplicative seminorm on E such that $\rho(x) \leq |x|$ for every $x \in E$. Hence 2) in a consequence of 1).

As a consequence, we obtain the following result

COROLLARY 2.6. Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be a complex, unitary and hermitian complete 1. m. c. *-a. which is a Q-algebra.

- 1) If f is a complex harmonic function on some neighbourhood of \overline{D} such that $f(\overline{D}) \subset \overline{D}$ and $a \in E$ with $|a| \leq 1$, then $|f(a)| \leq 1$.
- 2) If $f \in h(D)$, 0 < r < 1 and $M(r) = \max_{|z|=r} |f(z)|$, then $M(r) = \max_{|a|=r} |f(a)|$.
- 3) If $f \in h(D)$ such that $f(D) \subset D$ and $a \in E$ with $|a| \leq 1$, then |f(a)| < 1

Proof.

1) By 2) of Proposition 2.5, it suffices to prove that

$$\sup\{|f(u)|: u \in U_e\} \le 1.$$

Since $\rho(u) = |u| = 1$, for every $u \in U_e$, we have $Spu \subset \overline{D}$. Hence f(u) is defined. Furthermore f(u) is normal and hence $|f(u)| = \rho(f(u))$. On the other hand, we have $Sp f(\pi_i(u)) = f(Sp(\pi_i(u)))$ by the spectral mapping theorem given by 3) of Proposition 2.2. Thus $\rho_i(f(\pi_i(u))) \leq 1 \ \forall i$. Now since $\rho(f(u)) = \sup \rho_i(f(\pi_i(u)))$, we obtain $f(u) \leq 1$.

- 2) Author's proof of [3, Theorem 3.2] applies to this case as well.
- 3) It is a direct consequence of 2).

In [7], Tao Zhiguang has generalized (1) to analytic operator functions. More precisely, let \mathcal{H} be a complex Hilbert space, $L(\mathcal{H})$ the complex Banach algebra of all bounded linear operators on \mathcal{H} and $\Omega = \{z: |z| < 1 + 2\delta\}$ where $\delta > 0$. Tao Zhiguang showed that if $f \in N_{\mathcal{H}}(\Omega)$ with $||f(z)|| \leq 1$ for $z \in \overline{D}$ and $T \in L(\mathcal{H})$ is a contraction such that T and f are commuting (i.e. Tf(z) = f(z)T for every $z \in \Omega$, then $||f(T)|| \leq 1$. Here f(T) denotes the operator defined by Riez-Dunford integral ([1, p. 568]) $f(T) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(z-T)^{-1} dz$, where Γ is any contour that surrounds the spectrum of T in Ω ; and $N_{\mathcal{H}}(\Omega)$ the set of all analytic functions on Ω into $L(\mathcal{H})$ such that f(z)f(w) = f(w)f(z) and $f(z)f(z)^* = f(z)^*f(z) \ \forall z, w \in \Omega$. If we replace the condition $f \in N_{\mathcal{H}}(\Omega)$ by an harmonic operator function such that $f(z)T^* = T^*f(z)$ for $z \in \overline{D}$, the result of Tao Zhiguang remains valid as the following result shows.

PROPOSITION 2.7. Let $T \in L(\mathcal{H})$ be a contraction (i.e., $||T|| \leq 1$) and $f \in h(\Omega, L(\mathcal{H}))$ such that $||f(z)|| \leq 1$ for every $z \in \overline{D}$ and commutes with both T and T^* . Then $||f(T)|| \leq 1$.

Proof. We first prove that $||f(\eta T)|| \le 1$, if $\eta \in [0, 1[$. By Proposition 2.5, it suffices to show that the number

 $\theta = \sup\{f(S) : S \in U(I) \text{ and } f \text{ commutes with } S\}$

satisties $\theta \leq 1$. Let $S \in U(I)$ and $f \in h(\Omega, L(\mathcal{H}))$ such that Sf(z) = f(z)S for all $z \in \Omega$. Let E be the spectral resolution of S. Then, one has $f(S) = \widetilde{f}(S) = \int_{\sigma(T)} f(z) dE_z$ and we deduce that $||f(S)|| \leq \sup\{||f(z)|| : z \in \sigma(S)\} \leq 1$. Thus $||f(\eta T)|| \leq 1$. Now when η increases to 1, $f(\eta z)$ converges to f(z) uniformly on the neighbourhood $\{z : |z| < 1 + \delta\}$ of $\sigma(T)$. By 2) of Proposition 2.2, $f(\eta T)$ converges to f(T) in the norm topology and so $||f(T)|| \leq 1$.

References

- [1] N. DUNFORD AND J.T. SCHWARTZ, *Linear operators*, vol. I, Interscience, New York, 1953, vol. II, 1963.
- [2] A. El Kinani, Holomorphic functions operating in hermitian Banach algebras, Proc. Amer. Math. Soc. 111 (1991), 931–939.
- [3] A. El Kinani, Harmonic functions operating in hermitian Banach algebras, Publicacions Matemátiques 41 (1997), 403–409.
- [4] K. Fan, Analytic functions of a proper contraction, Math. Z. 160 (1978), 275–290.
- [5] M. Fragoulopoulou, Symmetric Topological *-Algebras. Applications, 3, no. 9, Shriftenreihe der Mathematischen Institus und der Graduiertenkollegs der Universitat Munster, 1993.
- [6] Vesentini, On the subharmonicity of the spectral radius, Boll. Un. Mat. Ital. 1 (1968), 427–429.
- [7] T. Zhiguang, Analytic operator functions, J. Math. Anal. Appl. 103 (1984), 293–320.

Received March 20, 2001.