Rend. Istit. Mat. Univ. Trieste
Vol. XXXTII, 1-18 (2001)

Filters, Nets and Cofinal Types
CAMILLO COSTANTINI AND ENRICO PrioLA *)

Dedicated to the memory of Prof. Davide Carlo Demaria

SUMMARY. - In this paper we investigate functionals relating filters
and nets on a given set X, with special respect to the problem of
monotonicity. In particular, we provide three different function-
als Wy, (k=1,2,3) from the collection of the filters on X to the
class of the nets on X, such that if F2OG then Uy, (F) is a subnet
of U (G). We also compare them with the standard functional N,
which fails to be monotone. To this end, we often use the theory

of cofinal types.

1. Introduction

In this paper we study relationships and mutual reversibility between
the notion of filter and that of net, with special regard to their nat-
ural (or, possibly, newly defined) order structures.

The main reasons for such an investigation come from general
topology, where establishing a close link between the above notions
may allow to use them in a parallel way, exploiting the peculiarities
of each one (the reader is also referred to [10, Remark 13.5]). Nev-
ertheless, the treatment we are going to provide here is essentially
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set-theoretic, inasmuch as the partial orders (or preorders) we will
consider, on the collection (or class) of all filters (nets) on a set X,
do not need any supplementary structures on X itself.

Let X be a set: a net on X is a triple (R, D, <), where (D, <)
is a (preordered) directed set and R is a function from D to X. We
will often write (R, D) or simply R, instead of (R, D, <), if the other
elements of the triple are clear from the context.

In a directed set (D,<) we use the notation fta to denote, for
every a € D, the terminal set {a' € D|a' > a}. If (R, D) and (S, E)
are two nets in X, we will say (according to [4]) that R>S if there
exists ¢: D — F such that R = S o ¢ and

Vb€ E:Ja € D:¢ (ta) C1hb (%)

This clearly corresponds to the usual notion of subnet or finer net
which is used in general topology (see, for example, [7, ch. 2] or [6,
§1.6]).

Observe that the class T' (X) of all nets on X is only preordered
by the above relation <. Two nets R, S are said to be equivalent,
and we write R ~ S, if R=<S and S=<R.

We will also call ® (X) the collection of all filters on X. Tt turns
out that ® (X) is a complete semi-lattice with respect to set-theoretic
inclusion (and a complete, atomic distributive lattice, if we add to
® (X) the “null filter” P (X); see [10, Remark 13.8]).

A first, well-known connection between filters and nets can be
extablished by associating to every net (R, D) the filter $(R) gen-
erated by the collection {R (1) |7 € D}. Such an association looks
extremely natural; and we can give here some arguments to think
that it is, in some sense, the only right one.

First of all, we observe that if R>S, then J(R) 2 J(S). On the
other hand, in the case where X is a topological space it is easily
seen that, following the standard terminology, the limit and cluster
points of R and $(R) are always the same.

Furthemore, it can be proved that for every net R on any set X
and for every filter 7 on X with F # $(R), there exists a suitable
topology 7 such that the limit points of F and J(R) fail to coincide.
Indeed if for example F € F\S(R) then, putting 7 = {0, F, X},
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we have that F converges to any point of X while S(R) (hence R)
converges only to the points of X\ F.

Let us now deal with the converse problem of finding a suitable
correspondence from filters to nets, that is to say a functional ©
associating to every filter 7 on X a net © (F) on X. Which are
reasonable conditions for ©7 A basic requirement is

(@ (F) =7 (1)

observe that, by the above remarks, this automatically gives that,
for every topology 7 on X, F and © (F) have the same convergence
behaviour (i.e., the same limit and cluster points). What seems
harder to be obtained is the monotonicity of O, that is:

O (F) =06 (G) whenever F D G. (2)

It turns out that the two main ways of defining such a ©, which
can be found in the literature (see §2), satisfy (1) but not (2). The
central result of this article provides three different functionals ful-
filling both the above conditions. At our knowledge, the only partial
results in this directions that can be found in the literature are [3,
Proposition 2.5’] and [4, Propositions 3 and 5].

We also establish a link with the theory of the cofinal types of
directed sets, to investigate more in detail the whole subject, and
especially in which cases the newly defined functionals turn out to
act in an essentially different way with respect to the old ones (for
general references about cofinal types, see [13, ch. 2], [11] and [12]).

On the other hand, we observe that it would be too strong to
require the functional © to satisfy the condition

O (3(R)) ~ R, (3)

since it is possible to find nonequivalent nets R, S on X such that
S(R) = S(S) (see next section).

Finally, in the same spirit of [5, §4], we will tackle the problem of
whether the restriction to nets indexed by partially ordered sets —
that we will call partially ordered nets, or simply ponets — would be
equally satisfactory in order to get suitable connections with filters.
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2. Associating a filter to a net.

Let (D,<y), (E,<3) be two (preordered) directed sets: a function
¢ : D — E satisfying condition (*) of the introduction — that is,
such that:

Vb€ E:Ja € D:Vd' >1 a:¢ (a') >9 b

is said to be convergent; we say that the directed set D is cofinally
finer than ¥ — and we write D > E — if there exists a convergent
function from D to E. We say that D and E are equivalent, or that
they have the same cofinal type, if D > E and E > D; in this case,
we write D =~ E.

It is clear that if (R, D) and (S, E) are two nets such that R>S,
then in particular D > F in the sense of directed sets. We will often
use this fact to prove the incomparability of some particular nets.

In the introduction, we have already defined the functional <&
from I' (X) to ® (X), and observed that it is monotone, i.e., R>=S
implies S(R) 2 $(S). Note that the reverse implication does not
hold, in general; in fact, it is possible to find R, S such that $(R) =
3(S), although R and S are incomparable as nets. For example, we
may consider as D and E any two incomparable directed sets — say
D =wand F = w; — and put R and S to be the functions on D
and F, respectively, both constantly equal to a fixed z € X.

Thus, a natural problem arises of providing an internal charac-
terization to the class I' (X), for two nets R,S to have the same
associated filter. Such a problem is connected with the possibility of
introducing a different notion of “subnet” which can be found in the
literature (see [1] and also [9]) and which could render more man-
ageable some applications of nets to topology. According to such a
definition, a net R is said to be a subnet of S simply if J(R) D I(.5).

In the following, we will provide a solution to the above problem.

DEFINITION 2.1. Two nets R, S in X are said to be compatible, and
we write R > S, if there exists a net T in X such that T>R and
T»S. Two filters F,G are said to be compatible, and we write F*G,
if FVG={FNG|FeF,GEeG} is still a filter on X.

The next result is just a restatement of [8, Lemma 4.1].

LEMMA 2.2. Let R, S € I' (X): then R < S < J(R) = 3(S5).
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LEMMA 2.3. Let F,F' be filters on X. If for every G € ® (X) with
F %G we have that F'x G, then F O F'.

Proof. By contradiction, suppose F’ € F' is such that F' ¢ F. Let
F =X\F' and § = {MCX |FCM}: then G x F (otherwise, there
exists F* € F with F* N F = (), whence F*CF’ and F' € F), while
it is not true that G x F’. This contradicts the hypothesis. O

DEFINITION 2.4. For every filter F on X, we denote by N (F) the net
(R,D,<), where D = {(F,z)|F € F,z € F}, (F,z) < (F',2') <
F'CF and R: D — X is defined by: R(F,z) = x.

The functional N will be studied in detail in the next sections.
It is easy to check that — as it is well-known — F = (N (F)) for
every F € & (X).

PROPOSITION 2.5. Let R, S € T'(X). Then S(R) D 3(S) if and only

if:
VIel' (X):(R<T= SxT).

Proof. If S(R) D ¥(S) and T' € I' (X) is such that R < T, then by
Lemma 2.2: S(R) * (T, whence $(S) x (T") and S < T.
Conversely, if R, S € I' (X)) are such that

VIel' (X):(R<xT= S~T),

then we prove that S(R) D (S). To this end, taking Lemma 2.3
into account, let G be any filter on X such that G * S(R): since
G = S(N(G)), we have that N(G) < R, whence N (G) < S and
S(N(G))(= G) x 3(9); therefore, I(R) D I(S). O

3. Associating a net to a filter.

The functional N we have introduced in the previous section is by
far the most common in General Topology and other fields of Math-
ematics, to associate a net to a filter (cfr. [6, Theorem 1.6.13]). Such
a functional is studied, for example, in [2, 3, 4] and [5], where some
basic properties are pointed out; its peculiar role is also emphasized
by the fact that it is “minimal”, in the sense of the following propo-
sition.
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PROPOSITION 3.1. Let F be a filter on X and R = (R, D, <) € I' (X)
such that S(R) D F: then R=N (F).

Proof. Let N (F) = (R',D’,<'). Define a function ¢: D — D' by:

¢(a) = (R(ta),R(a))

for every a € D. Tt is clear that R' o = R and that ¢ is convergent.
O

In the literature, there exists another way to associate a net to a
filter [5, §4]. Following such a definition, given any F € & (X) and
fixed a total order < on X, we consider the set D = F X w X X,
endowed with the lexicographic (directed) order C generated by the
partial directed orders D, < and = on F, w and X, respectively.
Then we put B(F) = (R, D,C), where the function R: D — X is
defined by R(F,n,z) = z (in the following, as usual, the symbol
B (F) will be often intended to denote only the function R).

Observe that the net B (F) is always defined on a partially or-
dered set (i.e., it is a ponet). Since (B (F))(1(F,n,z)) = F for
every (F,n,z) € F X w x X, we have — like the functional N —
that (B (F)) = F. Such an equality emphasizes the fact that, in
a convergence framework, the use of either filters, nets or ponets
are completely equivalent. Nevertheless, from the point of view of
the relative order structures, the class of nets is essentially “larger”
than that of ponets. Indeed, while for every (preordered) directed
set there exists a partially ordered directed set having the same co-
final type [13, Lemmas 4.1 and 4.2], the same does not hold for nets
and ponets, as the following characterization shows (observe that the
only sets for which each net on it is equivalent to a suitable ponet
are the singletons and the empty set).

We recall that in a preordered set (M, <), the definition of maxi-
mum is the same as in an ordered set, i.e. m is a maximum of (M, <)
if x < m for every x € M. Of course, a preordered set may have
several different maxima, because the anti-symmetric property does
not hold, in general.

THEOREM 3.2. A net (R, D, <) is equivalent to a ponet if and only
if there exists no pair a,b of elements of D, such that R (a) # R (b)
and a,b are both mazima in (D, <).
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Proof. Suppose first that there are a,b as before and let ¢ be a
convergent function from D to D', where (R, D', <) is a ponet.
Then we know that there exists a € D such that Ve > a: ¢ (c) >’
¢ (a), and in particular ¢ (b) >" ¢ (a) (because b is a maximum); in a
symmetric way, we obtain that ¢ (a) >’ ¢ (b), whence ¢ (a) = ¢ (b).
Therefore it is impossible that R' o ¢ = R.

Suppose now that there exist no a, b as before: call M the set of
all maxima of D.
19 case: M = (. Fix a total order C on D, and let <* be obtained
from < and C by:

t<"y<= ((z<y and y£Lz) or (z<y, y<z and zLy));

it is a routine verification that (D,<*) is a directed poset. The
identity maps : (D, <) — (D,<*) and ":(D,<*) = (D, <) are
both convergent, so that (R, D, <) and (R, D,<*) are equivalent.
20 case: M # (. By hypothesis, there exists # € X such that
R(t) = z for every t € M. Fix any partial order <' on D\M and
extend it to D' = (D\M) U {d'}, where d' ¢ D\M, in such a way
that ¢t <’ d' for every t € D’. Fix an element m of M and define
R:D" — X, p1: D — D" and ¢9: D' — D by:

R%ﬂ_{luﬂ if t € D\M,

z ift=d,
t ifte D\M, t ifte D\M,
o1 (t) = ‘ and o (t) =
d ifte M, moift=d.
Thus it is clear that the ponet (R, D', <') is equivalent to (R, D, <).

O

Since, by Proposition 3.1, B (F)=N (F) for every F € ® (X), the
question arises of characterizing the cases where the reverse inequal-
ity holds — so that we have equivalence.

Henceforth, we will denote the product of two directed sets D1,
D,, endowed with the lexicographic order, by D; - Ds.

LEMMA 3.3. Let D, E be two directed sets: then, if D has no last
element, D - E = D, and if D has last element, then D - E =~ E.
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Proof. Easy. O

PROPOSITION 3.4. Let F be a filter on X: then N(F) ~ B(F) if
and only if (F,2) has no last element.

Proof. Let N(F) = (R,D,<) and B(F) = (R',D',C). If F has a
last element F', then by the above lemma it is easily seen that (D', C)
has no last element, while (D, <) has a maximum (take any element
of the kind (F,a), with a € F'). Thus (D,<) #? (D’,C), and hence
N (F) #B (F).

Suppose now that F has no last element, and consider the func-
tion ¢ from D to D' defined by ¢ (U,z) = (U, 1,z) for every U € F
and z € U. Then ¢ is convergent and R = R’ o . U

In the following two results we use the notion of cofinal type to
establish exactly for which pairs of filters the functionals N and B
are actually monotone, and for which they are not.

THEOREM 3.5. Let F,G € ®(X): then N(F)=N(G) if and only if
F G and (F,2) > (G,2).

Proof. Let N(F) = (R,D,<) and N(G) = (R',D',<’). If there
exists a convergent : D — D’ such that R'op = R, then in particular
(D,<) > (D', <), whence (F,D) > (G,D) — because it is easily
seen that (F,D) = (D, <) and (G,2) =~ (D', <'). Moreover, from
N (F)=N (G) we get F = S(N (F)) D (N (6)) = 6.

Suppose now that F D G and (F,2) > (G, D). Let n: F — G be
convergent, and define ¢: D — D' by ¢ (F,z) = (n(F)UF,z). Then
R' o ¢ = R and ¢ is convergent — given any (G,y) € D', if F € F
is such that n (1F) CtG, then choosing any x € G N F' we have that
(T (GNF, z))ST(G,y). O

THEOREM 3.6. For F,G € ® (X), we have that B (F)=B(G) if and
only if F 2 G and (F,2) - w > (G,2) - w.

v

Proof. Put, like above, B(F) = (R,D,<) and B(G) = (R',D’, <’
IfB(F)=B(G), then F = 3(B(F)) 2 (B (G )) Gand (F,D)w
(D,<) > (D', <) = (G,2) w

Suppose now that F D G and that there exists a convergent
function n = (11, 72) from (F,2) - w to (G, D) - w, where obviously
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m:(F,2) -w— G and n9: (F,D) -w — w. Define ¢:B(F) — B(G)
by ¢ (F,n,z) = (m (Fyn,z) UF, no (F,n,z), z): it is easily shown
as in the previous proof that R'op = R and that ¢ is convergent. [

REMARK 3.7. If F,G are filters on X with FOG, it is clear from the
above propositions that N (F)=N(G) = B (F)=B (G). This means,
in some sense, that the functional B preserves monotonicity in more
cases than the functional N — e.g., when F has a last element and
(G,D) = w. To find an example of this situation, let X = w, F =
{FCw|0 € F} and

G={GCw|0€ G and In € w:Ym >mn:m € G}.
COROLLARY 3.8. The following are equivalent:
1) the functional N is monotone on ® (X);
2) the functional B is monotone on ® (X);
3) the set X if finite.

Proof. We only prove (2)==-(3). If X is infinite, fix z € X and a
non-principal ultrafilter 4 on X; let F = {FCX |Z € F} and G =
{Uu{z}|U eU}. Put B(F) = (R,D,<) and B(G) = (R, D', <),
then DG, D ~ w and D' ~ (U,D); it is easy to prove by an
inductive construction that w cannot be cofinally finer than (U, D).

U

4. Central results.

In this section we are going to introduce three different functionals
Wy, Uy, Us from @ (X) to I' (X), fulfilling conditions (1) and (2) of
the introduction; then we compare them with the standard functional
N. It turns out that, in some sense, they stray less and less from N,
so that Uy (F) =Wy (F) =U3(F) =N (F) for every F € & (X); and
we give necessary and sufficient conditions on F for ¥; (F) ~ N (F),
for i =1,2,3.

DEFINITION 4.1. Let F be any filter on X, and let (F;);c; be a (one-
to-one) indezxing of ® (X), where i is the element of I such that F; =
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F; consider the cartesian product Il;c1F; and let Dy be the set of all
pairs (f,x), where f € Ijc1F; and x € f(i). We declare Uy (F) to be
the triple (Ry, D1,<1), where Ry (f,x) = x for every (f,z) € Dy and
(f,z) <1 (9,9) iff f < g with respect to the componentwise product
order generated by the directed sets (F;, D).

Consider now the subset J of I defined by: J = {i € I|F;CF}.
Let Dy be the set of all pairs (f,x), where f € Iljc;F; and x € f (i),
and let

D3 ={(f,z) € D2|Vj € J: f () 2 f(i)}.

Also, let Ry, for k = 2,3 be the function from Dy to X defined by
Ry (f,z) = z for every (f,z) € Dy; finally, let (f,z) <k (9,y) for
(f,z),(9,y) € Dy and k = 2,3 if f < g with respect to the com-
ponentwise order on Dy, generated by the directed sets (F;, D), as j
varies in J. For k=1,2,3, we put ¥y (F) = (Ry, Dy, <p).

THEOREM 4.2. The functionals Vi, for k = 1,2,3, fulfil conditions
(1) and (2) of the introduction. Moreover, ¥ (F) =Wy (F) =¥3 (F)
for every F € @ (X).

Proof. Condition (1) is easily checked; let us turn to condition (2).

Let F,G € & (X) with F D G, and let Uy (F) = (Ry, Dy, <g)
and ¥y (G) = (R}, D}, <})). First consider the case k = 1. Let
i,7* € I be such that F; = F and F;+ = G; define ¢: D; — D) by
p(f,z) = (f,fll'), where

i if i £ i
{f() # @

FEUFG) ifi =

It is clear that R} o ¢ = Ry; we claim that the function ¢ is also
convergent. Indeed, let (g,y) € D}, and consider the element (h, z)
of D1, where h is defined by:

i ifi £,
h(z’)z{g(.) 7 (5)

g(*)Ng (@) ifi=i,

and z is any element of g (i*) Ng(2). If (f,z) € Dy is such that
(f,z) >1 (h,2), and @ (f,x) (f,x), then for i # 7,7* we have

that f(z') = f(i)Ch(i) = (_) for i = i we have that f (i) =
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f(3) Ch (i) = g (i*)Ng (3) Cg (i), and for i = i* we have that f (i*) =
FEYUF@ECh(E)UR(E) =g@)U(g (@) Ng(i)) =g (™).

k = 2.3 the proof is similar. Let {F;|j e J} = {F' €
& (X) |FCFY and {F;|ie I} = {F € ®(X)|[FCG, with ICJ
Let 7,7* € J be, like above, such that F; = F and F;» = G, and put
o(f,z) = (f,x), where f is defined as in (4) for every i € I: then
R o ¢ = Ry and ¢ is convergent. Indeed, given (g,y) € Dj, take

h € Hjejj:j defined by:

j) itjer

i*) ifj=14;

X ifjeJ\([Iu{i)).

Then, fixed any z € g (i*), the element (h,z) of Dy is such that
o(1 (R, 2) )1 (9, 9)-

To prove the last part of the theorem, let F be any element of
® (X) and ¥y (F) = (Rg, Dy, <p) for k = 1,2,3. If we put ® (X) =
{FilieI}, I' ={ieI|F,CF} and 7 € I' such that F; = F, the
function ¥': D1 — Do defined by 9 (f,z) = (f|p,z) is convergent.
In the same way, defining 9¥": Dy — D3 by 9" (f,z) = (g, ), where
g (i) = f (i)Uf (2) for every i € I', we have that 9" is convergent. [

We turn now to compare the functionals W, with the functional
N, defined in section 1. Observe that, by Proposition 3.1, we have
Uy (F) =N (F) for every F € ®(X) and k € {1,2,3}; thus, in this
case, the relation ¥y (F) ~ N (F) is equivalent to Uy (F) <N (F).
We first need some preliminary results.

LEMMA 4.3. Let I be a set of indices and, for every i € I, let D; be
a directed set without any mazimum. Then, if we put D = ;e D;,
endowed with the componentwise order, we have that the cofinality
of D is strictly greater than |I|.

As a consequence, for every directed set E with |E| < |I| we have
that E is not cofinally finer than D.

Proof. Use a standard diagonal argument. U
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LEMMA 4.4. Let F be a filter on a set M and k = |F|: then
{g € @ (M)|GCF} = k.
Moreover, if (F,2) has no mazimum, then
{G € ® (M) |GCF, (G,2) has no maximum}| > k.

Proof. To prove the first claim, let us associate to every F' € F the
filter G (F) = {F'CM | FCF'}: then F — G (F) is one-to-one.
Suppose now that (F,D) has no maximum. Let us associate
to every F € F the filter H (F) = {(M\F)U(F'NF)|F € F} =
{F" € F|F" > M\F}: then H (F) CF, and (H (F), D) has no max-
imum (if G were the maximum of (H (F), D), then GN F would be
the maximum of (F,D)). We prove that F' — H (F) is one-to-one.
Suppose Fi,Fy, € F and z € F|\Fy: then (M\F,) U (FoNFy) €
H(F1) and = ¢ (M\Fy) U (FoNF). On the contrary, since z €
M\F,, every element of H (Fy) contains z. Thus H (Fy) # H (F2).
]

In the following three theorems, we put as usual:
N(]:) = (RaDaS) and Wy (‘7:) = (RkaDkagk) for k= 1,2,3.
We first tackle the case k = 2.

THEOREM 4.5. Let F be any filter on X: then WUy (F) ~ N(F) if
and only if F is finite.

Proof. Let {F;j|lie€l} = {Ge€ ®(X)|GCF} (i — F; one-to-one)
and 7 € I such that F; = F. Suppose first that F is finite: then, for
every i € I, there exists a maximum F; of (F;, D); let f € ;1 F; be
defined by f(z) = F; for every i € I. We define n: D — D5 in the
following way: for every (F,z) € D we put n(F,z) = (f,z), where
f € ;e F; is defined by:

) F; for i #1;
- {F
F  fori=1.

A

Then R = Ryon and 7 is convergent — because ) (F;, z) = (f,x)
for every z € X.
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Suppose now that F is infinite and let |F| = x: consider first the
case where (F, D) has not a maximum. By Lemma 4.4, there exists
a subset J of I such that |J| = x and for every j € J, (F;, D) has not
a maximum. Let ¢: Dy — Il;c 7 F; be defined by ¢ (f,z) = f|,: then
¥ is convergent with respect to the componentwise order on Il;¢ s F;
if, by contradiction, there existed a convergent 17: D — Do, then o1
would be convergent from D to Iljc;F;. This contradicts Lemma
4.3, as D has the same cofinal type of (F,D).

If, on the contrary, (F, D) has a maximum F,then X \F is infinite
(otherwise, F would be finite). Fix a filter 7 on X\F such that
(H,2) has no maximum and let G be the filter on X generated by

FUH|H e H}. Then (G, D) has no maximum and is contained
in F; hence, Dy has no maximum, too. Thus, D # Ds. O

—

THEOREM 4.6. If F is any filter on X, then Uy (F) ~ N(F) if and
only if the set X 1is finite.

Proof. Let {F;|i€ I} = ®(X): if X is finite, then for every i € I
there exists a maximum F; of (F;, D), and we can show as in the
previous proof that N (F)=U (F).

Suppose now that X is infinite: then it is possible to find 2/X1
(in fact, 22‘X|) non-principal ultrafilters on X, and since |F| < 21X,
it easily follows — as in the last part of the previous proof — that
D # D;. O

THEOREM 4.7. Let C be the filter of all cofinite sets on X. Then
U3 (F) ~ N (F) if and only if FCC.

Proof. Let, as in Theorem 4.5, {F;|i € I} = {G € ® (X)|GCF} and
1 € I such that F; = F.

Suppose first that FCC: then for every F' € F and ¢ € I there
exists H (F,7) which is the maximum — with respect to O — of
{H' € F;|H' O F}. Define n: D — D3 by n(F,z) = (f,z), where
f (i) = H (F,1) for every i € I. Clearly, R = R3 o1, and 7 is conver-
gent because for every (g,y) € D3 the element (g (7),y) of D is such
that: Y (F,2) > (9 (1) 9): 1 (F,2) >3 (9,).

Suppose now that there exists M € F such that X\ M is infinite.
Let
H={FNM|FeF}
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be the trace of F on M, and put x = |H|: then A is a filter on M and
by Lemma 4.4 there exist x distinct filters on M — say {H, |« € K},
with o — H, one-to-one — each of which is contained in H. Let
us fix a filter G on X'\ M such that (G, D) has no maximum, and for
every a € k put: &, ={H UG |H € Ho, G € G}. Then &, is a filter
on X and is contained in F. Therefore, for every a € k there exists
i (@) € I such that &, = Fj); clearly, if a # o/, then &, # £, and
hence i (@) # i ('). Observe also that i («) # 7 for every a € k.

Let us associate to every (f,z) € D3 a function 9 (f,z) from &
to G, defined by:

W (f,z)) (a) = f(i(a))N(X\M) for every o € k.

We prove that 9 is convergent from D3 to the directed set "G,
endowed with the componentwise order generated by (G,2). Let
g € "G, and consider the element ( f ,Z) of D3, where & is any ele-
ment of M and f is defined by:

MUg(a) ifi=i(a) for a (unique) a € k;
f@)=4 M ifi =1;

X otherwise.

for every a € £, and hence (9 (f,z)) (o) = f(i () )N(X\M) CS(M U
g(@)) N (X\M) = g (a).

If, by contradiction, we had a convergent function 7n: D — Dsg,
then 9on would be convergent from D to #G; this contradicts Lemma
4.3 because D and (F,D) have the same cofinal type, and H is a
terminal set in (F, D). O

In the last part of this section, we come back to the notion of
ponet. Let we call IV (X) the class of all ponets on a set X. By
Theorem 3.2 of the previous section, we see that the notion of ponet
cannot replace in every respect that of net. Nevertheless, we can
wonder whether it is possible to find a functional ©: ® (X) — I (X),
fulfilling conditions (1) and (2) of the introduction. To give such
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a question a positive answer, we are going to introduce a suitable
functional Z from I' (X) to I'' (X); it establishes a rather strict link
between the two classes in question, in the sense of the following
result.

THEOREM 4.8. There exists a functional E from T (X) to T (X) such
that:

I)VR1,Ry € T'(X):(Ri>Ry = E(R1)=Z(R2)) (monotonic-
ity);

II)VR e T (X):3(E(R)) = S(R) (invariance with respect to the
functional ).

Proof. To define the functional =, suppose to have any net R =
(R,D,<) eI'(X). Let, fora,be D,a=b<= (a<b and b <a);
also, fix any total order C on D, and for a,b € D put: a <* b <
((a<b and b£La) or (a=b and aCb)). Finally, consider
D' = D X w, and for (a,n),(b,m) € D' put:

(a,n) <" (b,m) <= ((n<m and a<0b)

or (n=m and a<"b)).

By checking in the various possible cases the transitive and anti-
symmetric properties for <, and its directed character, we easily see
that (D', <') is a directed partially ordered set. Define R': D' — X
by R'(a,n) = R(a), and put E(R,D,<) = (R',D’,<). Since for
every (a,n) € D' we have that R'(1(a,n)) = R(Ta), it follows that
S(R) = S(R'). Thus, what only we have to show is monotonicity.

Let R1 = (Rl,Dl, Sl) and R2 = (RQ,DQ, Sg) be nets in X such
that there exists a convergent ¢: Dy — Dy with Ry 0o ¢ = Ry. Put
E (Rk, Dk, <x) = (R}, Dy, <)) for k = 1,2, and define ¢': D} — Dj
by ¢’ (a,n) = (¢ (a),n): thus it is clear from the properties of ¢
that Ry o ¢' = Rj.

To show the convergent character of ¢’ let (az, m) be any element
of D, and consider the element (a1, m + 1) € D!, where a; € Dy is
such that ¢ (fa1) Ctag in (D2, <3). Then, if (by,n) >} (a1, m + 1),
we have two possible cases:

1) n>m+1 and by >1 a1, whence ¢ (b1) >2 as and ¢ (by,n) =
(¢ (b1) ) >b (az, m);
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2)n=m+1and by >} a1, whence by >1 a1 and ¢’ (by,m + 1) >}
(ag, m). O

COROLLARY 4.9. For k =1,2,3, the functional
S0 U d(X) = I’ (X)
satisfies conditions (1) and (2) of the introduction.

REMARK 4.10. The definition of the functional = of Theorem 4.8
does not involve directly the set X (it is, in some sense, “intrinsic”).
In other words, it is possible to define a functional A which associates
to every directed set (D, <) a directed poset A (D,<) = (D x w,<’),
so that for every set X and every (R,D) € I'(X) we have that
E(R,D) = (Rom,A(D)) (where m is the universal projection on
the first component of a product).

We conclude the paper with a result which shows that the above
functional Z cannot be “improved”.

We know, by Theorem 3.2, that it is impossible to find a func-
tional Z": T (X) — IV (X) satisfying the strong condition:
II)VReT (X):Z'(R)~ R
(which would imply both condition (I) and (II) of Theorem 4.8).

On the other hand, if we restrict to the subclass T' (X) of T' (X),
containing all nets on X defined on a directed set which has no max-
imum, then there exists a functional Z':T (X) — I' (X) satisfying
condition (III) for all R € T' (X) (in fact, the 1° case of the proof of
Theorem 3.2 provides us an actual method to construct such a Z').
Observe that the class T (X) corresponds, for example, to the nets
which are actually used in General Topology.

In the light of such results, it is worth wondering whether it is
possible to get a functional Z': T (X) — ' (X) satisfying conditions
(I) and (II) of Theorem 4.8 on the whole of I (X), and condition
(III) on I'(X). In Theorem 4.12 below, we give such a question a
negative answer.

The following fact may be considered as folklore in the theory of
cofinal types.

LEMMA 4.11. Let D' be any directed set for which there exists a
convergent map f:w — D'. Then either D' has a mazimum or D' ~
w.
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THEOREM 4.12. If X has at least two elements, there exists no =’
from T (X) to IV (X) such that:

I)VRi,Ry €T (X): (Ri=Ry = B/ (R1) =Z' (Ry) );
I VYReT (X):S(E (R)) = I(R);
III) VReT (X):Z' (R) ~ R.

Proof. Let x,y be two distinct elements of X. If, by contradiction,
there exists a E' fulfilling (I), (II), (III), we consider a net (R, D)
on X defined on a two-element directed set D = {a,b}, endowed
with the discrete order, such that R(a) = z and R(b) = y. Put
E'(R,D) = (R, D'): then, by (II), D' has no maximum (otherwise,
$(R) would contain a singleton, which is impossible).

Fix a directed set E without maximum, such that £ # D' (such
an F exists because if £ = w does not work, then by Lemma 4.11 we
have D' =~ w, and hence we can put £ = wy). Define a T: E — X,
having constant value z; then ¢: E — D, defined by ¢ (e) = a for
every e € E, is convergent and such that Ro ¢ = T. Therefore
(E,T) > (R, D), which implies by (I) that E'(E,T)*>=" (R, D)
(R, D'). But this is impossible because =’ (E,T) ~ (E,T) by (III
and hence we would have £ > D'.

~—

3

O
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