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Genus Reducing Knots in 3-Manifolds

Yo’av Rieck (∗)

To the memory of Marco Reni

Summary. - A genus reducing knot is a knot that has infinitely
many surgeries after which the Heegaard genus of the manifold
reduces. We study certain aspects of this question, in particular
solving it for totally orientable Seifert Fibered Spaces, where we
find examples of manifolds of arbitrarily high genus containing
no such knot.

1. Introduction

The purpose of this paper is to investigate some cases of the follow-
ing question: what 3-manifolds contain a knot with infinitely many
surgeries yielding a manifold of lower genus? We solve this question
for totally orientable Seifert Fibered Spaces, and find out that al-
though most of them do, already in this class of manifolds we see
examples of manifolds of arbitrarily high genus containing no such
knot.

Before all else, let us define the new concepts we shall study:

Definitions 1.1. 1. A genus reducing knot in 3-manifold is a
knot with infinitely many surgeries yielding manifolds of lower
Heegaard genus.

2. Let M be a manifold and Σ a Heegaard surface for it. A knot
γ disjoint from Σ is called a destabilizing knot for Σ if there
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are infinitely many surgeries on γ after which Σ destabilizes to
a surface that is not isotopic (in the surgered manifold) to a
Heegaard surface for M \ N(γ).

(As we shall see, it follows from Corollary 6.6 of [13] that a genus
reducing knot is a destabilizing knot for some minimal genus Hee-
gaard surface.)

For Seifert Fibered Spaces we prove:

theorem (6.1). A totally orientable Seifert Fibered Space (other
than a Seifert Fibered Space over S2 with at most three exceptional
fibers) has a genus reducing knot unless it has a horizontal Heegaard
surface and is of the following types:

1. Seifert Fibered Space over S2 with 2k + 1, k > 1 exceptional
fibers of multiplicity two and one other of multiplicity 2n +
1, n ≥ 1;

2. Seifert Fibered Space over any surface with one exceptional
fiber.

(Seifert Fibered Spaces over S2 with at most three exceptional
fibers are treated separately in Section 5.) This implies:

Corollary (6.3). There exist manifolds of arbitrarily high Hee-
gaard genus containing no genus reducing knot.

The definition of destabilizing knot is somewhat cumbersome,
and was constructed in order to allow for the surface Σ to destabilize
in the knot exterior (and hence in all of the surgered manifolds).
In that case, we see a new Heegaard surface after surgery. One
might ask why bother with such phenomenon, but in fact there are
examples (e.g. certain Seifert Fibered Spaces and the Casson–Gordon
examples) that show its importance: in those example new Heegaard
surface appear as a result of a new destabilization of a surface that
was already stabilized.

The author would like to thank Eric Sedgwick for inspiring con-
versations. This research was done while visiting Oklahoma State
University. Many thanks to the math department there and in par-
ticular William Jaco for the very warm and kind hospitality.
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2. Background

Most of our definitions (e.g. manifold, Heegaard surface, compression
etc.) are standard and the reader is referred to [6], [7], [15] for
discussion. We work in dimension 3, in the smooth and orientable
category.

A stabilization of a Heegaard surface is the addition of a trivial
handle to the surface. As was discussed in [12], if a knot γ ⊂ M lies
on a Heegaard surface a single stabilization suffices to get a Heegaard
surface for the knot exterior, M \ N(γ), see also Figure 1.

It is sometimes convenient to consider the collection of all Hee-
gaard surfaces (up to isotopy) arranged as a graph, the isotopy class
of each surface represented as a vertex, the vertices arranged in layers
according to the genera of the surfaces, and two surfaces connected
by an edge if and only if one is a single stabilization of the other.
Uniqueness of stabilization implies that this graph is a forest; the
Reidemeister-Singer Theorem says that this forest is a tree. For a
given manifold M the tree thus obtained is called the Heegaard Tree
of M .

Corollary 6.6 of [13] is crucial for our work here (cf. Theorem 0.1
of [10] and Corollary 4.2 of [12]). It asserts that, when considering
fillings on a manifold with boundary torus, only finitely many such
will contain a Heegaard surface onto which the core of the attached
solid torus is not isotopic. Since we are interested in the case were
there are infinitely many genus reductions after surgery on a single
knot, this theorem allows us to consider only the case where the
genus reduces and the core of the attached solid torus is isotopic
onto the new Heegaard surface.

From this point on we shall only be considering surgeries and
Heegaard surfaces where the core of the attached solid torus is iso-
topic into the Heegaard surface. When a destabilization does occur
after surgery (or filling), we call it a tame destabilization if the core
of the attached solid torus is isotopic onto the destabilized surface.

3. The Process

There is only one way in which a Heegaard surface can have a desta-
bilizing knot. We now describe this process.
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While reading the explicit description below, it is worth keeping
in mind that it yields quite a few corollaries, in particular we shall
see that we in fact destabilize a single surface (although M \ N(γ)
may contain infinitely many surfaces of minimal genus), and the same
destabilization happens infinitely often. (Destabilization is a replace-
ment of a once punctured torus by a disk, “the same destabilization”
means the same once punctured torus.) Note that a core of a one han-
dle in a compression body corresponds to infinitely many meridian
disks, that is to say there are infinitely many disks in the handlebody
which intersect the given knot once exactly, and therefore the above
fact is not obvious.1 There may well be other destabilizations that
occur infinitely often.

Let γ be a destabilizing knot for Σ ⊂ M . In infinitely many
different surgeries we obtain Σ′, a surface obtain by destabilizing Σ
once. Picking a sufficiently large filling, the core will be isotopic into
Σ′. The picture is given in Figure 1.

Figure 1: A Tame Destabilization

It is clear from the picture that Σ is indeed a surface for the knot
exterior M \ N(γ) = M ′ \ N(γ′) and therefore for all surgeries on
γ. Furthermore, whenever we have a tame destabilization, it is clear
that there are infinitely many filings that yield that destabilization

1To clarify this further, given a core of a handle of a compression body H ,

i.e. a knot γ ⊂ H that is isotopic onto ∂H and meets some compressing disk

for H once, slide this compressing disk over any other compressing disk that is

disjoint from the knot, and the resulting disk will be a new compressing disk for

H meeting γ once. Their boundaries will not be isotopic in ∂H .

Conversely, given a compressing disk D in a compression body H whose bound-

ary does not separate ∂H , take any curve γ ⊂ ∂H meeting ∂D once, and push

it into H . This yield a core of a one handle for which this compressing disk is a

meridian.
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exactly, namely those fillings were the core of the attached solid torus
meets the surface framing (of Σ) once exactly.2

The most important observation is the following, in which we
refer to the shaded disks in Figure 1:

Observation 3.1. If Σ has a destabilizing knot then there exist two
disks on opposite sides of Σ meeting minimally at exactly two points.

For the existence of genus reducing knot we in fact get a necessary
and sufficient condition:

Observation 3.2. M has a genus reducing knot if and only if there
exist Σ ⊂ M , a minimal genus Heegaard surface, and two disks on
opposite sides of Σ, meeting minimally at two points, so that one of
the two separates a solid torus from the handlebody in which it is
embedded.

To prove the the “if” direction, call the side containing the disk
that chops off a solid torus the inside and the other side the outside.
Note that there are infinitely many fillings after which the outside
disk meets the meridian of the attached solid torus once exactly.

Observation 3.1 is all that is necessary to understand our claims
about destabilizing knots.

Remarks 3.3. 1. Using Observation 3.1, it is easy to construct
a Heegaard surface that has no destabilizing knot. Many con-
ditions exist in the literature that imply there do not exist two
disks on opposite sides of a Heegaard surface meeting twice.
One such condition is Casson’s rectangle condition which we
shall exploit in Section 6. Another condition can be found,
for instance, in Hempel’s work ([9]) where he shows that for
“many” Heegaard surfaces any two disks on opposite sides fill
the surface. Clearly, this is even stronger than we need.

2. On the other hand, if Σ is a unique Heegaard surface of mini-
mal genus for some manifold (say of genus g), and γ is a knot,
isotopic onto Σ, that is not a core of a 1-handle of one of the
complementary handlebodies, Σ will remain a Heegaard surface

2The surface framing is not, in general, an isotopy invariant.
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for any surgery of slope meeting the surface framing once ex-
actly. On the other hand, all but finitely many surgeries meet-
ing the surface framing more than once will yield manifolds of
genus g + 1. Therefore these manifolds have a genus reducing
knot.

Note that a curve on the boundary of a handlebody is a core if
and only if it intersects some compressing disk for that handle-
body once exactly.

Claims 3.4. 1. For all but finitely many fillings on a genus re-
ducing knot the genus reduces by one exactly.

2. A genus reducing knot is a destabilizing knot for some minimal
genus surface.3

Proof. To prove both claims:
Suppose γ is a genus reducing knot in M . Let M ′ be a mani-

fold obtained by large surgery on γ for which the genus went down,
where by “large” we mean that the core of the attached solid torus is
isotopic onto the minimal genus Heegaard surfaces of M ′, i.e. tame.
(As mentioned above, by [13] all but finitely many surgeries on a
given knot are tame.) Let Σ′ be a minimal genus Heegaard surface
for M ′. The discussion above proves that, firstly, a single stabiliza-
tion of Σ′ yields a Heegaard surface for M . Hence the genus of M ′

equals that of M minus one. Secondly, Σ′ will be a Heegaard sur-
face for infinitely many surgeries on γ, those surgeries which yield
a Lickorish twist (see [8]). Since we get the same Heegaard surface
destabilizing after infinitely many surgeries, it is clear that a genus
reducing knot is a destabilizing knot.

Although the phenomena genus reducing knot and destabilizing
knot are very similar, it is considerably easier to study the latter
as the destabilizing knot may destabilize a Heegaard surface that
is already stabilization of some surface. It seems very likely that
the Casson–Gordon examples and their generalizations (see [9]) form

3Here and throughout this paper we do not use finiteness results about Hee-

gaard surfaces.
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destabilizing knots is S3, although S3 has no non-stabilized positive
genus Heegaard surface by Waldhausen (see [18]). Torus knots, with
their lens space filling, provide examples of destabilizing knots in S3

as well. (To prove that the examples of Casson–Gordon are destabi-
lizing knots, one needs to show that the surfaces they obtain are not
Heegaard surfaces for the knot exterior.)

A neat example is provided by small Seifert Fibered Spaces (all
examples of Seifert Fibered Spaces are due to Moriah and Schul-
tens’s classification of Heegaard surfaces in totally orientable Seifert
Fibered Spaces, see [11]).

Figure 2: Trees for certain Seifert Fibered Spaces

Consider a Seifert Fibered Space over the disk with two excep-
tional fibers. As do all Seifert Fibered Spaces with boundary, it fibers
over S1. When the exceptional fibers are chosen carefully, the fiber
(in the fiberation over S1) has a single boundary component. As it
branch covers the disk with branch set two points and multiplicity
equals that of the exceptional fibers, the genus of this surface can be
made arbitrarily large. Call it g.

The surface we get by tubing together two parallel copies of the
fiber along the boundary is a Heegaard surface for manifolds obtained
by a filling, provided the meridian of the attached solid torus meets
the boundary of the fiber once. This surface has genus 2g and is non-
stabilized. Since the core of the filling is isotopic onto this surface,
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after a single stabilization we get a Heegaard surface (of genus 2g+1)
for the Seifert Fibered Space over the disk we started with. This
surface destabilizes; in fact, a Seifert Fibered Space over D2 with
two exceptional fibers has a unique non-stabilized Heegaard surface
of genus 2.

To clarify this, the Heegaard tree of the Seifert Fibered Spaces
with a horizontal Heegaard surface are shown in Figure 2. Note the
“extra” leaf, which can be of arbitrarily high genus. This leaf does
not exist in the Heegaard tree of a Seifert Fibered Space over the
disk, where the tree in linear.

Sedgwick observed that these examples are non-Haken manifolds
of genus two with non-stabilized Heegaard surfaces of arbitrarily high
genus. It is unknown if there are non-Haken manifolds with infinitely
many Heegaard surfaces, like the Casson–Gordon examples (which
are all Haken).

4. Knots in a Ball

In this section we establish that genus reducing knots are never con-
tained in a ball. It follows from the following lemma, which is of
independent interest:

Lemma 4.1. Let γ ⊂ M be a genus reducing knot. Then g(M) =
g(M \ N(γ))

Proof. Let γ ⊂ M be a genus reducing knot. Let M ′ be a large
surgery of lower genus. Let Σ′ be a Heegaard surface for M ′ so that
g(Σ′) < g(Σ). As discussed above (Section 3), after stabilizing Σ′

once we get a Heegaard surface for M\N(γ). The lemma follows.

Theorem 4.2. A genus reducing knot is not contained in a ball.

Proof. Let γ be a knot contained in a ball. By Haken’s Lemma
([5]) g(M \ N(γ)) = g(M) + g(S3 \ γ̂), where γ̂ is the knot in S3

that is obtained by capping off the ball in which γ lies with another
ball. This number is at least one, so by Lemma 4.1 γ is not a genus
reducing knot.
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5. Genus Reduction in Low Genus Manifolds

The sphere: S3 has no genus reducing knot.

Lens spaces: When a lens space has a genus reduction, pick a large
surgery yielding a manifold of lower genus, hence of genus 0 (i.e.
S3). By [12] the core of the attached solid torus is isotopic onto
a minimal genus Heegaard surface, i.e. S2. So the core is the
unknot. Therefore the exterior of such core is a solid torus,
and the knot is a core of a solid torus in a Heegaard splitting
of the lens space. By Bonahon-Otal (see [1]) there are exactly
two such knots, which are sometimes distinct and sometimes
isotopic.

Genus 2 manifolds: If a manifold of genus 2 has a genus reduction,
pick a large surgery of lower genus (i.e. genus one) and isotope
the knot onto a Heegaard torus. The exterior of the knot is the
union of two solid tori along an annulus, to which we attach
a third solid torus. Such manifolds are sometimes reducible
(connect sum of two lens spaces), and otherwise they are Seifert
Fibered Spaces over S2 with three exceptional fibers, and then
the genus reducing knot is one of the three exceptional fibers.
So the only examples are the obvious knots in the obvious
manifolds.

The 3-Torus: The 3-dimensional torus T 3 has genus 3. It is home-
omorphic to T 2 × S1. Remove a fiber {pt} × S1. There are
infinitely many filling on (T 2 \ {pt} × S1), yielding a manifold
of genus two. However, T 3 can be fibered as T 2×S1 in infinitely
many ways, and in fact any primitive element of π1(T

3) can
be realized as {pt} × S1 in some such fiberation. Thus T 3 has
infinitely many genus reducing knots.

This example is particularly bad since T 3 has a unique Hee-
gaard surface (up-to isotopy).

The statements above (as well as those in Section 4) can be
proved using the Knot Complement Theorem (for genus reducing
knots in lens spaces and for Section 4, see [4]) or the Cyclic Surgery
Theorem (for genus reducing knots in genus 2 manifolds, see [3]).
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We stuck to easier techniques that seem in character with the rest
of this paper, and sometimes generalize to higher genus.

6. Seifert Fibered Spaces

We assume the reader is familiar with the work of Moriah-Schultens
([11]) classifying Heegaard surfaces in totally orientable Seifert
Fibered Spaces. Since horizontal Heegaard surfaces play an impor-
tant role in our game we shall describe them here. This generalizes
the example of small Seifert Fibered Spaces given towards the end
of Section 3.

Let M be a Seifert Fibered Space. Remove a fiber from M .
The resulting manifold fibers over S1, denote the projection by p.
The fiber is a punctured surface, assume it has only one puncture
(else the construction fails and a horizontal surface does not exist).
Decompose S1 into two intervals I1 and I2 meeting at their endpoints
and correspondingly decompose M into p−1(I1) and p−1(I2). Clearly
these are two handlebodies. Now perform a Dehn filling so that the
meridian of the attached solid torus intersects the boundary of a fiber
exactly once. Break the solid torus along two disks into two balls.
Attach one of them to p−1(I1) and the other to p−1(I2). Note that
we just attached to each handlebody a ball along a disk, hence we
still get two handlebodies. Their common boundary is the horizontal
Heegaard surface.

The genus of this Heegaard surface is twice the genus of the fiber
(in the fiberation over S1). This fiber branch covers the base orbifold,
with multiplicity that equals that of the exceptional fibers, and so
its genus goes to infinity with the multiplicities. There are only two
cases when this Heegaard surface has minimal genus, and these are
the two cases listed in the theorem below. Note that Seifert Fibered
Spaces over S2 with at most three exceptional fibers are slightly
different than others; since they were treated in Section 5 (where
we saw that they always have genus reducing knots and those are
fibers), we do not repeat it here:

Theorem 6.1. A totally orientable Seifert Fibered Space (other than
a Seifert Fibered Space over S2 with at most three exceptional fibers)
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has a genus reducing knot unless it has a horizontal Heegaard surface
and is of the following types:

1. Seifert Fibered Space over S2 with 2k + 1, k > 1 exceptional
fibers of multiplicity two and one other of multiplicity 2n +
1, n ≥ 1;

2. Seifert Fibered Space over any surface with one exceptional
fiber.

Remark 6.2. The assumption that the Seifert Fibered Space has
a horizontal Heegaard surface is by no means trivial; most Seifert
Fibered Spaces that fulfill the description given by item (1) or (2)
above do not have such. However, there are infinitely many Seifert
Fibered Spaces of each type that do have a horizontal Heegaard sur-
face.

Proof.Seifert Fibered Spaces without genus reducing knots:

At this point, most of the work has been done. Recall that
Casson’s rectangle condition implies any two disks meet at
least four times. The spaces described in the theorem have
horizontal Heegaard surface as their minimal genus Heegaard
surfaces, and Sedgwick has shown ([16]) that horizontal Hee-
gaard surfaces fulfill Casson’s rectangle condition whenever the
multiplicity of the last fiber attached (in case (1) the fiber of
multiplicity 2n + 1, in case (2) the only exceptional fiber) is
larger than the least common multiple of the other fibers (or is
larger than one in case there are no other exceptional fibers).
This holds here.

Observation 3.1 shows that there are two disks on opposite
sides meeting twice, contradicting Casson’s Rectangle Condi-
tion. Therefore the above mentioned Seifert Fibered Spaces
have no genus reducing knot.

Seifert Fibered Spaces with genus reducing knots: All other
Seifert Fibered Spaces have a minimal genus Heegaard surface
that is vertical. We now show that these manifolds contain a
genus reducing knot:

Assume first M has two or more exceptional fibers. The genus
of such manifold is 2g + e− 1, where g is the genus of the base
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orbifold, and e is the number of exceptional fibers. On each
exceptional fiber there are infinitely many surgeries after which
the fiber is no longer exceptional. Those manifolds contain a
vertical Heegaard surface of genus 2g + e− 2, hence the genus
of the manifold has been reduced.

If the manifold has one (resp. no) exceptional fibers, and the
minimal Heegaard surface is not horizontal then thr manifold
has genus 2g + 1 (in both cases). Then there are infinitely
many surgeries on the unique exceptional (resp. regular) fiber
yielding a manifold of genus 2g, with a horizontal Heegaard
surface of genus 2g, as described above. Hence it has a genus
reducing knot.

Corollary 6.3. There exist manifolds of arbitrarily high Heegaard
genus containing no genus reducing knot.

Remark 6.4. Although we do not understand Heegaard surfaces of
manifolds other than Seifert Fibered Spaces well enough to classify
their genus reducing knots, it is worth emphasizing that Casson’s
Rectangle Condition, as well as other conditions, prohibit a mani-
fold from having a genus reducing knot. It therefore makes sense to
suggest that many manifolds will not have such knot, although the
author does not have a precise conjecture to suggest. In that sense,
Seifert Fibered Spaces with horizontal Heegaard surfaces look more
like a typical hyperbolic manifold than like Seifert Fibered Spaces.

7. Remarks on Almost Normal Surfaces

In this section we give general remarks, so we do not define many of
the terms used, and treat them informally.

Almost normal surfaces have been introduced by Rubinstein to
study Heegaard surfaces. Their existence has been established (see
[17]), where it is shown that every strongly irreducible Heegaard
surface is isotopic to an almost normal one. This holds in any tri-
angulation. By Casson and Gordon’s seminal work (see [2]) every
non-stabilized Heegaard surface in a non-Haken manifold is strongly
irreducible.
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We begin by showing why one may expect many Heegaard sur-
faces to yield an almost normal surface with a tube (rather than an
octagon). We then show that the existence of a genus reducing knot
implies the existence of almost normal surfaces in certain triangula-
tions. While we do use special triangulations, they are quite natural
and have been studied by Jaco and Rubinstein extensively. Since
their work shows that such triangulations are very useful, it seems
helpful to know some of their properties.

The triangulations we work with are obtained by attaching a
triangulated solid torus to a triangulation of the knot exterior. In
order to make such triangulation useful, Jaco and Rubinstein added
various assumption (in essence, to preserve “efficiency”). However,
we do not assume efficiency, and the only assumption needed is that
the triangulation has a unique vertex, and was obtained by a Dehn
filling procedure, as was described by Jaco and Rubinstein.

By triangulating the knot exterior and then attaching a triangu-
lated solid torus one might not get a minimal triangulation; however,
it is clearly a very good way of thinking of triangulations.

Heegaard surfaces with tube Let M be a manifold containing
a destabilizing knot γ. Assume further that γ is small, i.e.
the only closed incompressible surface in M \ N(γ) is ∂N(γ).
We shall consider triangulations for M , and for other surgeries
on γ, obtained by attaching a triangulated solid torus to a
triangulation of M \N(γ). Consider a large surgery on γ that
contains a new Heegaard surface, say Σ, so that the genus of Σ
is one less than the genus of M \N(γ). Let Σ∗ ⊂ M \N(γ) be
the (perhaps disconnected) twice punctured surface obtained
by isotoping γ onto Σ and then drilling it out, in the language
of [13], the almost Heegaard surface. In that paper it was
shown that Σ∗ is essential.

Therefore Σ∗ can be made normal (in M \N(γ)). After filling,
∂Σ∗ bounds an annulus in the solid torus. Whenever this an-
nulus can be made normal, we attach that normal annulus to
get a closed normal surface However, in most fillings one gets
a Heegaard surface only after stabilizing Σ. As stabilization
is adding a trivial little tube, these surfaces will have tubes in
them, not octagons.
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It is of course possible that these surfaces can be isotoped to
have octagons. However note that Jaco and Sedgwick have
shown that the Heegaard torus in some lens spaces cannot
have an octagon for so-called “layered” triangulations and so
it seems unreasonable to expect an almost normal surface with
an octagon to appear under general circumstances.

Getting almost normal surfaces We get from the above argu-
ment that if M has a genus reducing knot then in some large
filling one can find an almost normal surface of genus g − 1,
where g is the genus of M . This surface will exist in the mani-
fold M , although it is of lower genus than the Heegaard genus
of M .

Since these almost normal surfaces are not Heegaard surfaces,
one can resolve them to normal surfaces. Thus we see almost
normal surfaces not corresponding to Heegaard surfaces, and
normal surfaces not corresponding to essential ones.
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