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Finite Simple Groups Acting on

3-Manifolds and Homology Spheres

Marco Reni and Bruno Zimmermann (∗)

Summary. - Any finite group admits actions on closed 3-manifolds,
and in particular free actions. For actions with fixed points, as-
sumptions on the type of the fixed point sets of elements drasti-
cally reduce the types of the possible groups. Concentrating on
the basic case of finite simple groups we show in the present pa-
per that, if some involution of a finite simple group G acting
orientation-preservingly on a closed orientable 3-manifold has
nonempty connected fixed point set, then G is isomorphic to a
projective linear group PSL(2, q), and thus of a very restricted
type. The question was motivated by our work on the possible
types of isometry groups of hyperbolic 3-manifolds occuring as
cyclic branched coverings of knots in the 3-sphere. We char-
acterize also finite groups which admit actions on Z2-homology
spheres, generalizing corresponding results for integer homology
spheres.

1. Introduction

The main result of the present paper is the following

Theorem 1.1. Let G be a finite nonabelian simple group of diffeo-
morphisms of a closed orientable 3-manifold. Then, if G contains an
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involution with nonempty connected fixed point set, G is isomorphic
to a projective linear group PSL(2, q), for some odd prime power q.

We study here only the most basic case of finite simple groups,
using quite involved results from the classification of finite simple
groups. Considering suitable composition series, also the case of
arbitrary finite groups can be analyzed; as the proofs in the general
case become much longer and more technical we do not follow this
line here, illustrating the methods only for the most basic case of
simple groups. In the situation of Theorem 1.1, it remains open
which of the linear fractional groups PSL(2, q) really occur; for the
moment, the only known example seems to be the alternating group
A5

∼= PSL(2, 5).

Theorem 1.1 shows that, if a finite simple group of diffeomor-
phisms of a 3-manifold contains an involution with nonempty con-
nected fixed point set, then this simple group is of a very restricted
type. On the other hand, it is easy to see that every finite group
admits actions on closed 3-manifolds, for example free actions (and
also isometric actions on closed hyperbolic 3-manifolds). It is shown
in [5] that every finite group admits free actions also on rational
homology 3-spheres. The situation changes drastically for integer
homology 3-spheres. If a finite group G acts freely on a Z-homology
(3-) sphere then G has periodic cohomology (of period four) and is
again of a restricted type (see [1], [8] or [17]). The same occurs for ar-
bitrary (i.e. not necessarily free) finite group actions on Z-homology
3-spheres; a characterization of the groups is given in [10] and [19].

We consider now the case of Z2-homology 3-spheres. Theorem
1.1 implies the following

Corollary 1.2. Let G be a finite nonabelian simple group of dif-
feomorphisms of a Z2-homology 3-sphere. Then some involution in
G has nonempty connected fixed point set and G is isomorphic to a
projective linear group PSL(2, q), for an odd prime power q.

As a consequence of a result in [16], free actions of arbitrary finite
groups on Z2-homology n-spheres (i.e. in arbitrary dimensions) can
be characterized as follows.
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For a group G, we denote by O(G) the maximal normal subgroup
of odd order of G (see [16, p. 293]); note that O(G) is solvable by
the Feit-Thompson theorem.

Theorem 1.3. Let G be a finite group of diffeomorphisms of a Z2-
homology n-sphere such that every involution in G has empty fixed
point set. Then either G is solvable or it is of the following type:

G/O(G) contains a normal subgroup G0 of odd index such that
the center Z(G0) of G0 has order two and G0/Z(G0) is one of the
following groups:

PSL(2, q), PGL(2, q), or the alternating group A7,

for an odd prime power q greater than three.

Now we consider arbitrary finite group actions on Z2-homology
3-spheres. Let M be a Z2-homology 3-sphere and G a finite group of
orientation preserving diffeomorphisms of M . As above, we denote
by O(G) the maximal normal subgroup of odd order of G. It is easy
to see that also the quotient manifold M/O(G) is a Z2-homology
3-sphere on which G/O(G) acts.

Given two groups G1 and G2 and a central involution in each of
them, we denote by

G1 ×Z2 G2

the central product of G1 and G2 with the two central involutions
identified, i.e. G1 and G2 commute elementwise and G1 ∩ G2 = Z2

is generated by the identified central involutions (so G1 ×Z2 G2 is
a factor group of the direct product of the two groups, see [15, p.
173]).

Theorem 1.4. Let G be a finite group of orientation preserving dif-
feomorphisms of a Z2-homology 3-sphere M . Then G is of one of
the following three types (where q and q′ denote odd prime powers).

1) G/O(G) is solvable, and hence also G (as a consequence of
the Feit-Thompson theorem).

2) G/O(G) contains a subgroup of index at most two isomorphic
to PSL(2, q) or to Z2 × PSL(2, q); any involution of PSL(2, q) has
nonempty connected fixed point set (acting on M/O(G)).
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3) i) G/O(G) has a subgroup of index at most two isomorphic to
a central product

SL(2, q) ×Z2 G0

where G0 is solvable with a unique involution; the unique involutions
of SL(2, q) and G0 act freely.

ii) G/O(G) has a normal subgroup of index at most four isomor-
phic to a central product

SL(2, q) ×Z2 SL(2, q′)

where the central involution acts freely.

Theorem 1.4 generalizes corresponding results for integer homol-
ogy 3-spheres in [10] and [19] to the case of Z2-homology 3-spheres.
As the proof is quite long and involved, we will not give the details
here and refer to the proofs of the main results in [10] and [19] which
have to be modified suitably.

Interesting examples of Z2-homology 3-spheres are obtained as
2-fold (or 2n-fold) cyclic branched coverings of knots in S3 (see [7, p.
16]), and by Dehn surgery of type a/b on knots in S3, with a odd.
In fact, our results were motivated by our work on cyclic branched
coverings of hyperbolic knots and links in S3. In [18], [11] and [13]
(see also the survey article [12] where Theorem 1.1 was announced),
the following problem is considered: in how many different ways
can the same hyperbolic 3-manifold M occur as a cyclic branched
covering of different knots and links in the 3-sphere. The answer
depends largely on the structure of the finite isometry group of M ,
and also on the symmetry group of the knot or link. A solution was
obtained for various situations; for example, the situation is well-
understood if M is a cyclic branched covering of a non-invertible
knot, or if the finite isometry group of M is solvable (moreover, un-
der a mild restriction, the isometry group of M is solvable for even
branching orders n > 4). The solvable case is generic for isometry
groups of hyperbolic 3-manifolds which are cyclic branched cover-
ings of knots: for a given hyperbolic knot and large branching or-
ders this is an easy consequence of a shortest geodesic argument in
Thurston’s hyperbolic Dehn surgery theorem. For small branching
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orders, the isometry group may be nonsolvable; an example is the
Seifert-Weber hyperbolic dodecahedral space which is a 5-fold cyclic
branched covering of the Whitehead link and has the alternating
group A5

∼= PSL(2, 5) as a group of isometries. A nonhyperbolic
example is the spherical Poincaré homology 3-sphere which occurs
as a cyclic branched covering of torus knots and again has the group
A5

∼= PSL(2, 5) as a group of isometries. All such examples be-
long to the phenomenon of ”hidden symmetries” considered in [14].
However, such nonsolvable situations seem to be quite rare and are
not yet well understood, in particular there remains the interesting
question which nonsolvable or simple groups really occur as finite
isometry or diffeomorphism groups of 3-manifolds which are cyclic
branched coverings. At present, the only known example of such a
simple group seems to be A5

∼= PSL(2, 5), and in fact this might be
the only one.

2. Preliminaries

We need to describe the local action of a finite group of diffeomor-
phisms in the neighbourhood of an invariant simple closed curve in
a 3-manifold. More precisely, let G be a finite group of orientation
preserving diffeomorphisms of a closed orientable 3-manifold M , and
suppose that G contains an element h with nonempty connected fixed
point set K. Any element g of G which commutes with h maps the
fixed point set K of h to itself. Therefore g induces a reflection
(strong inversion) or a rotation on K: we shall call such elements
h-reflections resp. h-rotations (an element which acts trivially on K
is also an h-rotation).

So the centralizer CGh of h in G is the set of h-rotations and
h-reflections, and the subgroup of h-rotations is normal in CGh of
index one or two. We have

Proposition 2.1. Let G be a finite group of orientation preserving
diffeomorphisms of a closed orientable 3-manifold; suppose that G
contains an element h with nonempty connected fixed point set K.
Then the normalizer NGh of h in G is isomorphic to a subgroup of
a semidirect product Z2 ⋉ (Za × Zb), for some nonnegative integers
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a and b, where Z2 operates on the normal subgroup Za × Zb (the
subgroup of h-rotations) by sending each element to its inverse.

Proof. By a result of Newman [9] (see also [6]) a periodic transfor-
mations of a manifold which is the identity on an open subset is the
identity. Thus the action of an element of the normalizer NGh (which
maps K to itself) is determined by its action in a neighbourhood of
K where it acts as a standard rotation or reflection, and the group
of rotations is an abelian group of rank one or two.

The proof of Theorem 1.1 will be based on a difficult result which
was an important step in the 70’s towards the classification of finite
simple groups: the classification of simple groups with sectional 2-
rank at most four (that is every 2-subgroup is generated by at most
four elements). This is the culmination of the efforts of many math-
ematicians and was completed by Gorenstein and Harada, see [16, p.
513, Theorem 8.12]). It seems likely that for the proof of Theorem
1.1 one could avoid this deep result and use more elementary argu-
ments; but at present this would result in a very long and technical
proof.

The first step in the proof of Theorem 1.1 will be a Lemma which
enables us to use the Gorenstein-Harada classification.

Lemma 2.2. Let G be a finite group of orientation preserving dif-
feomorphisms of a closed orientable 3-manifold. If G contains an
involution with nonempty connected fixed point set, then it has sec-
tional 2-rank at most four.

Proof. The proof of Lemma 2.2 depends on two algebraic results
which are commonly used in finite group theory to determine the
structure of Sylow 2-subgroups from local conditions. The first result
is due to MacWilliams, the second one to Harada. Recall that an
elementary abelian group is a direct product of cyclic groups of the
same prime order.

Proposition 2.3. ([16, p. 514, Theorem 8.15]) A 2-group with no
elementary abelian normal subgroup of rank three has sectional 2-
rank at most four.
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Proposition 2.4. ([16, p.514, (8.14)]) A 2-group S which contains
an elementary abelian subgroup A of rank three such that the central-
izer CSA of A in S is contained in A has sectional 2-rank at most
four.

Proposition 2.3 reduces the proof of Lemma 2.2 to the case that
a Sylow 2-subgroup S of G contains an elementary abelian normal
subgroup A′ of rank three. We can assume that S contains an in-
volution h with nonempty connected fixed point set. Now h acts by
conjugation on A′ ∼= Z2 ×Z2 ×Z2, and it is easy to see that the sub-
group of elements fixed by h is either equal to A′ or a subgroup of the
form Z2×Z2. In any case it follows that the centralizer CSh of h in S
contains an elementary abelian subgroup A of rank three such that
h ∈ A. Then CSA is contained in CSh. By Proposition 2.1, CSh is a
subgroup of a semidirect product Z2⋉(Za×Zb). This implies that A,
which is isomorphic to Z2×Z2×Z2, has to contain some h-reflection
t, and also a subgroup Z2 × Z2 of h-rotations. It follows easily that
CSA is equal to A (because in CSh, the h-reflection t commutes
only with the elements in A), and an application of Proposition 2.4
finishes the proof of Lemma 2.2.

For the proof of Theorem 1.1 we need also the following two
results (which were the first steps towards the Gorenstein-Harada
Theorem):

Proposition 2.5. ([16, p.505, Theorem 8.6]) A simple group with a
dihedral Sylow 2-subgroup is isomorphic to the alternating group A7

or to PSL(2, q), for an odd prime power q ≥ 5.

Proposition 2.6. ([16, p. 582, Theorem 11.1]) A simple group with
an abelian Sylow 2-subgroup of rank two is isomorphic to PSL(2, q),
for q ≡ 3 or 5 mod 8.

3. Proof of Theorem 1.1

By hypothesis G contains an involution h with nonempty connected
fixed point set. By Lemma 2.2, G has sectional 2-rank at most four
and hence is one of the groups in the Gorenstein-Harada list of finite
simple groups of such type ( [16, p. 513, Theorem 8.12]). Now the
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centralizer CGh of the involution h is of the special type given in
Proposition 2.1. We will check which of the simple groups in the
Gorenstein-Harada list contain an involution with such a centralizer
which we will call admissible in the following.

We shall first show that no group in the list with more than
one conjugacy class of involutions contains an involution with an
admissible centralizer. The Gorenstein-Harada Theorem gives the
following list of simple groups with sectional 2-rank at most four and
more than one conjugacy class of involutions (the algebraic properties
of the simple groups can be found in [4]):

M12; PSp(4, q), for q odd; J2; An, for 8 ≤ n ≤ 11; PSL(3, q)
and PSU(3, q), for q odd, q ≥ 5; PSL(4, q), PSU(4, q), PSL(5, q) and
PSU(5, q), for q odd.

We can rule out directly the following groups because the cen-
tralizer of any involution in these groups is not solvable:

J2; An, for 10 ≤ n ≤ 11; PSL(3, q) and PSU(3, q), for q odd,
q ≥ 5; PSL(4, q), PSU(4, q), PSL(5, q) and PSU(5, q), for q odd.

The remainining groups contain involutions with solvable cen-
tralizers.

The group M12 possesses two conjugacy classes of involutions.
The centralizer of an involution which is not central in any Sylow
2-subgroup is not solvable. The centralizer of an involution which
is central in some Sylow 2-subgroup has order 192 and contains a
subgroup isomorphic to the permutation group on four letters S4

which is not admissible.

An analogous argument holds for the remaining groups PSp(4, q),
for q odd, A8 and A9 which have isomorphic Sylow 2-subgroup and
two conjugacy classes of involutions. The centralizer of any involu-
tion contains an elementary abelian 2-subgroup of rank four and is
not admissible.

So G has only one conjugacy class of involutions, and conse-
quently all involutions in G have connected fixed point set. We can
assume that h is a central involution in a Sylow 2-subgroup S of G,
so S = CSh consists of h-rotations and h-reflections. By Proposi-
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tion 2.1, the subgroup A of h-rotations of S is abelian of rank at
most two. We shall prove that S is dihedral or abelian of rank two.

If A is cyclic then S is dihedral because the Sylow 2-subgroup of
a simple group cannot be cyclic.

Suppose that A has rank two. We will show that S = A in
this case, that is that S does not contain h-reflections. Suppose,
on the contrary, that S contains an h-reflection; then S contains an
elementary abelian 2-group B of rank three. The group B contains
seven involutions with nonempty connected fixed point set, so there
are seven distinct rotation axes which are all invariant under B.
We want to count the total number of intersection points between
these axes. Note that exactly three axes (of order two) meet in each
intersection point. The rotations of each axis form a subgroup Z2×Z2

of B, so there are exactly four reflections and four intersection points
on each axis. It follows that the total number of intersection points
between the seven axes is 28 divided by 3 which is a contradiction.

Thus we have proved that a Sylow 2-subgroup of G is dihedral
or abelian of rank two, and we can apply the classification of sim-
ple groups with such Sylow 2-subgroups given in Propositions 2.5
and 2.6. To finish the proof of Theorem 1.1, by Propositions 2.5
and 2.6 we have only to prove that G is not isomorphic to A7. The
centralizer C of an involution h in A7 has order 24; moreover the cen-
tralizer in C of any element of order three is isomorphic to Z2 × Z6,
and no involution contained in Z2 × Z6 is central in C. By Proposi-
tion 2.1, the centralizer C is not admissible, and hence A7 does not
occur.

This finishes the proof of Theorem 1.1.

4. Proofs of Corollary 1.2 and Theorem 1.3

For the Proof of Corollary 1.2, let G be a finite group acting on
a Z2-homology sphere M . Assuming that all involutions in G are
without fixed points we will show that G is not simple.

As all involution are free, also a Sylow 2-subgroup S2 of G acts
freely on M . By [2, p. 148, Theorem 8.1], the group Z2×Z2 does not
act freely on a Z2-homology sphere (of any dimension), therefore S2
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has no subgroups Z2 × Z2. As the center of the finite 2-group S2 is
nontrivial and contains an involution (unless S2 is trivial), it follows
that S2 has a unique involution. By a theorem of Burnside ( [3,
p. 99, Theorem 4.3]), S2 is either cyclic or a generalized quaternion
group. By [16, p. 144, Corollary 2] and [16, p. 306, Example 3], the
group G cannot be nonabelian simple.

Thus, for a nonabelian simple group G as in Corollary 1.2, some
involution has nonempty fixed point set which is connected by [2, p.
144, Theorem 7.9]. Corollary 1.2 follows now from Theorem 1.1.

The Proof of Theorem 1.3 is similar. Again the Sylow 2-subgroup
S2 of G is cyclic or a generalized quaternion group. If S2 is cyclic,
by [16, p. 144, Corollary 1] and the Feit-Thompson theorem, G is
solvable. If S2 is quaternionic, by [16, p. 506, Theorem 8.7] the group
G is either solvable or of the type described in the Proposition.
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