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Summary. - We consider hyperbolic 3-manifolds Mn(K), which are
n-fold cyclic branched coverings of 2-bridge knots K. We show
that for n ≥ 5 the orientation-preserving isometry group of
Mn(K) either is a lift of a symmetry group of K or has a very
special structure.

1. Introduction

The class of hyperbolic 3-manifolds with cyclic symmetry have been
subject of extensive literature. It is known that the isometry group
of a hyperbolic 3-manifold with finite volume is a finite group and,
conversely, that any finite group can be realized in this way [4]. There
is no general method for computing the isometry group of a given
hyperbolic manifold. Sometimes it is possibly by algebraic methods
(see, for example [5]), by geometrical methods (see, for example [7]),
or by computer systems (see, for example [2]). On the other hand
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very much is known about the symmetry groups of knots and links
(see [1], [3]). Particularly, the class of 2-bridge knots is completely
studded.

Thus a natural question is if one can compute the isometry group
of a branched covering of a hyperbolic knot from the symmetry group
of a knot.

The case of 2-fold branched coverings of π-hyperbolic knots ad-
mitting strongly invertible involution, was investigated in [8].

In the present paper, we consider the isometry groups of man-
ifolds Mn(K) which are n-fold cyclic coverings of 3-sphere S3

branched over a 2-bridge knot K. Recall that if a 2-bridge knot K
is not torus then it is hyperbolic, i.e. S3 \ K is a hyperbolic man-
ifold [13]. We consider only hyperbolic 2-bridge knots below. So,
Mn(K) is hyperbolic for n ≥ 3 with only exceptional case n = 3
if K is the figure-eight knot. Denote by On(K) a 3-orbifold whose
underlying space is S3 and singular set is a 2-bridge knot K with
singularity index n.

We would like to relate the orientation-preserving isometry group
G = Iso+(Mn(K)) of the manifold Mn(K) to the isometry group of
the orbifold On(K).

We say that Mn(K) has no hidden symmetries (with respect to
the given branched covering) if every isometry of Mn(K) is the lift
of some isometry of On(K).

As a consequence of Thurston’s hyperbolic surgery theorem [13],
for large values of n any Mn(K) has no hidden symmetries. The
following estimation of such n for hyperbolic manifolds which are
cyclic branched coverings of links was given in [9].

Theorem 1.1. [9] (a) Let M = Mn(L) be a (hyperbolic) n-fold cyclic
branched covering of a hyperbolic link L. Let v = vol(S3 \L) and vn

the volume of the smallest hyperbolic 3-orbifold with torsion of order
n. If n ≥ (v/vn) − 1, then M has no hidden symmetries.

(b) For sufficiently large n there exists a hyperbolic knot whose
(hyperbolic) n-fold cyclic branched covering have hidden symmetries.

Among famous examples of manifolds with hidden symmetries
are Hantzsche–Wendt Euclidean manifold (that is the 3-fold cyclic
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branched covering of the figure-eight knot) and Seifert–Weber hy-
perbolic dodecahedral manifold (that is the 5-fold strongly cyclic
branched covering of the Whitehead link) (see discussion in [9])

The aim of the present paper is to improve the part (a) of The-
orem 1.1 in the case of cyclic branched coverings of 2-bridge knots.
More exactly, the following statement holds.

Theorem 1.2. Let n ≥ 5 and M = Mn(K) be a (hyperbolic) n-fold
cyclic branched covering of a hyperbolic 2-bridge knot K. Let v =
vol(S3 \ K) and vn the volume of the smallest orientable hyperbolic
3-orbifold with torsion of order n. If n ≥

√
v/(4vn)+1, then M has

no hidden symmetries.

Concerning the structure of the isometry group G we can indeed
provide much more information than what is stated in Theorem 1.2
above, supporting evidence that hidden symmetries may occur only
in exceptional situations. Indeed we do not know any explicit exam-
ple of hidden symmetries for cyclic branched coverings of 2-bridge
knots, and we formulate

Question 1.3. Does any (hyperbolic) n-fold cyclic branched cover-
ing of a (hyperbolic) 2-bridge knot has no hidden symmetries?

The Theorem 1.2 is a corollary of the following result.

Theorem 1.4. For n ≥ 5 let M = Mn(K) be the (hyperbolic) n-fold
cyclic branched covering of a 2-bridge knot K and G its orientation-
preserving isometry group. Then one of the following three cases
occurs:

(i) M has no hidden symmetries;

(ii) G is large;

(iii) n is odd and G is special.

By ”G is large”, we mean that G contains a normal abelian sub-
group of order p2 which does not descend to the 2-bridge knot K
where p is an odd prime number such that n divides (p − 1) or
(p + 1). So the order of G satisfies the inequality |G| ≥ 4np2.

By ”G is special”, we mean that M is an integral homology 3-
sphere, G is isomorphic to PSL(2, p) where p is an odd prime number
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such that n divides (p−1)/4 or (p+1)/4. So the order of G satisfies
the inequality |G| ≥ p(p − 1)(p + 1)/2.

Proof of Theorem 1.2. In both cases when G is large or special in
above sense, we have an inequality |G| ≥ 4n(n − 1)2. Consider
the quotient orbifold Mn(K)/G. Since G is a group of orientation-
preserving isometries, Mn(K)/G is a orientable hyperbolic orbifold
with torsion of order n and

vol(Mn(K)/G)=
n · vol(On(K))

|G|
<

n · vol(S3 \ K)

4n(n − 1)2
=

v

4(n − 1)2
≤vn,

where we used that n ≥
√

v/(4vn)+1. Thus, we got a contradiction
with the assumption the volume vn is smallest.

This complete the proof of Theorem 1.2.

We refer [1] and [3] for properties of 2-bridge knots and [13] for
the hyperbolic manifolds and orbifolds theory. The technique used
for the proof of Theorem 1.4 will be developed in Sections 2–4, and
the proof will be given in Section 5.

2. Auxiliary results from finite group theory

The technique of the proof of Theorem 1.4 is based on properties
of Sylow subgroups, and we refer to [11] and [12] for facts on finite
group. For reader convenience, in this section we list basic properties
which will be used below. Recall that a subgroup is called a p-
subgroup if its order is a power of p.

Proposition 2.1. [11, p. 88, Theorem 1.6] If H is a proper subgroup
of a p-group G, then we have NG(H) = {g ∈ G | Hg = H} 6= H.
Thus, the normalizer of a proper subgroup H is strictly larger than
H.

A subgroup of a group G is said to be a Sylow p-subgroup if it
is of order pn where |G| = pnm with (p,m) = 1.

Proposition 2.2. [11, p. 99, Theorem 2.7] Let H be a normal sub-
group of a group G. If S is a Sylow p-subgroup of H, then G is
generated by H and the normalizer NG(S) of S in G.
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Let p be a prime number. An abelian group E is said to be an
elementary abelian p-group if every element x of E satisfies xp = 1.
The following important property of elementary abelian p-groups
will be used below.

Proposition 2.3. [11, p. 160, (5.23)] Let E be a finite elementary
abelian p-group which is not cyclic, and let M be the set of all max-
imal subgroups of E: M = {E0 | |E : E0| = p}. If E acts on a finite
additive group A and if p is prime to the order |A| of A, then we
have A = 〈CA(E0)〉, i.e. A is generated by the centralizers CA(E0)
of the subgroups E0, where E0 ranges over M.

Consider the case when a Sylow 2-subgroup is dihedral. Simple
groups, i.e. without proper normal subgroups, having dihedral Sylow
2-subgroups are classified.

Proposition 2.4. [12, p. 505, Theorem 8.6] Let G be a simple group
with a dihedral Sylow 2-subgroup. Then, either G is isomorphic to
PSL(2, p) for an odd prime power p > 3 or G ∼= A7.

The following result is usually referred as the Z∗-theorem.

Proposition 2.5. [12, p. 315, Theorem 2.14] Let t ∈ G be an invo-
lution and S2 a Sylow 2-subgroup of G containing t. Denote by O(G)
the maximal normal subgroup of G of odd order (”the core of G”).
Then the canonical image of t is central in the factor group G/O(G)
if and only if t does not conjugate in G to any element of S2 \ {t}
(”t does not fuse to any different element of S2”).

3. Auxiliary results about cyclic branched covering of

2-bridge knots

We will use many times the following two properties of the symme-
tries of a 2-bridge knot.

(P1) The symmetry group of a 2-bridge knot is dihedral of order
four or eight; in particular a 2-bridge knot has no periods of order
greater than four and no periods of odd order.

(P2) A 2-bridge knot has a cyclic period of order two and one
lift of this cyclic period to the n-fold cyclic branched covering M ,
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which will be denoted by r in the proof, is a hyperelliptic involution,
that is the quotient M/〈r〉 is the 3-sphere S3.

The following result was obtained in [10].

Proposition 3.1. [10, Lemma 1] Let M = Mn(K) be hyperbolic
and let p an odd prime dividing n. Then a Sylow p-subgroup of
the orientation-preserving isometry group of M is either cyclic or a
direct product of two cyclic groups. Moreover if K has no periods of
order p, the Sylow p-subgroup is cyclic.

Applying Proposition 3.1 to the case of 2-bridge knots, which do
not have odd order periods (see property (P1)), we get the following
fact.

Corollary 3.2. Let M = Mn(K) be hyperbolic, where K is a 2-
bridge knot. For any odd prime number p dividing n the covering
group contains a Sylow p-subgroup Sp of the orientation-preserving
isometry group of M . In particular Sp is cyclic and has connected
fixed point set.

Another useful property is the following.

Proposition 3.3. Let M = Mn(K) be hyperbolic, G be its orienta-
tion-preserving isometry group, and H ⊂ G be the covering group of
K.

(i) If g ∈ G normalizes a nontrivial subgroup of H, then g nor-
malizes H.

(ii) Let P ⊂ G be a cyclic subgroup of odd order with connected
fixed point set. If an element of H, which is not an involution,
normalizes P , then H and P commute (so P descends to K).

Proof. (i) The fixed point set of any nontrivial subgroup H1 of the
covering group H (which is cyclic) is the (connected) preimage K̃ of
K in M and H1 acts as a group of local rotations around K̃. If g ∈ G
normalizes H1 then g maps K̃ (that is the fixed point set of H1) to
itself. So gHg−1 is a cyclic group of rotations with fixed point set
g(K̃) = K̃. It follows gHg−1 = H, that is g normalizes H.

(ii) The fixed point set of any element h ∈ H (as well as the fixed
point set of H) is the preimage K̃ of K. If h normalizes P , it fixes
setwise the connected fixed point set, say F , of P . As h is not an



HIDDEN SYMMETRIES OF CYCLIC ETC. 295

involution, it acts as a rotation on F and commutes with P which
locally acts as a group of rotations on F . Also, since P commutes
with h, it fixes setwise its fixed point set K̃. Moreover P acts as a
group of rotations around K̃ because it is of odd order. Therefore P
commutes with H which locally acts as a group of rotations on K̃.

The proof of Proposition 3.3 is completed.

4. Two basic lemmas

Now we will prove Lemma 4.1 and 4.2, which contain the most tech-
nical part of our arguments.

Lemma 4.1. For n ≥ 3 let M = Mn(K), where K is a 2-bridge knot,
and G be the orientation-preserving isometry group of M . Suppose
that:

(i) G contains an involution u such that the centralizer CG(u) of
u coincides with the normalizer NG(H) of the covering group H;

(ii) G has a nontrivial normal subgroup of odd order.

Then either M has no hidden symmetries or G is large.

Proof. The proof follows from statements (a) – (d) below.

(a) The group G contains a normal elementary p-subgroup (that
is a direct product of cyclic groups) for some odd prime number p.

It is a routine matter in finite group theory to show that a finite
group which contains a normal subgroup of odd order contains also a
normal elementary p-subgroup for some odd prime number p. Indeed
a nontrivial normal subgroup of odd order is solvable by the Feit-
Thompson Theorem (see, for example, [12, p. 356, Theorem 3.1])
and it contains a characteristic nontrivial abelian subgroup (see, for
example, [11, p. 121, Corollary 2]), so it also contains a characteristic
nontrivial elementary p-subgroup for some odd prime number p.

For a fixed odd prime number p, denote by P a normal elementary
p-subgroup of G. The number p may divide the order n of the
covering group H of the 2-bridge knot or not: the first case will
imply that M has no hidden symmetries and the second case that G
is large. We start with the first case which is easier.

(b) If p divides n, M has no hidden symmetries.
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If p divides n a Sylow p-subgroup of G is cyclic by Corollary 3.2
and has connected fixed point set; in particular P is cyclic and has
connected fixed point set. The group H normalizes P , because P is
normal in G by construction. By Proposition 3.3(ii), P commutes
with H and descends to the 2-bridge knot. By (P1) a 2-bridge knot
has no odd order periods. Since P has odd order, this implies that P
descends to the trivial group, so P is a subgroup of H. We have thus
found a subgroup of H which is normal in G; by Proposition 3.3(i)
M has no hidden symmetries. Thus, the statement (b) is proven.

Suppose now that p does not divide the order n of H. By (P1) 2-
bridge knot has no odd order periods, so p does not divide the order
of NG(H) and the intersection P ∩ NG(H) is trivial. To complete
the proof we shall show that P has rank two, so it has order p2, and
that n divides (p + 1) or (p − 1). It will give that G is large.

Let u be the involution in the hypothesis such that CG(u) =
NG(H). In particular u is a central involution of NG(H). We con-
sider the dihedral subgroup, say D, of order four of NG(H) generated
by u and a lift t of a strong inversion of K (remark that u is not a lift
of a strong inversion of K, because lifts of strong inversions do not
commute with H, so they are not central in NG(H)). The group D
acts by conjugation on P , which is normal in G by the construction.
Applying Proposition 2.3 to the cyclic group P (setting A = P and
p = 2) we will get that P is generated by three centralizers CP (u),
CP (t), and CP (tu).

(c) The centralizer CP (u) is trivial; the centralizers CP (t) and
CP (tu) are trivial or cyclic.

The centralizer CP (u) is trivial because u is such that CG(u)
coincides with NG(H), but the intersection NG(H) ∩ P is trivial.

An element of the centralizer CP (t) commutes with t, so it fixes
setwise the fixed point set, say F (t), of t, which is connected because
t is a lift of a strong inversion. A finite group of isometries fixing
setwise a simple closed curve, so the group CP (t) itself, is a semidirect
product Z2(Z2n × Z2m) where Z2 (a reflection) acts on the normal
subgroup Z2n×Z2m (rotations) by sending each element to its inverse.
Remark that CP (t) is a subgroup of P , so it has odd order. Therefore,
CP (t) is a group of rotations of F (t), so it has rank at most two.
Moreover, the case that CP (t) has rank two occurs only if CP (t)
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contains a cyclic subgroup P ′ of order p fixing pointwise F (t) and
acting as a group of rotations around it. But in this case F (t) is
fixed also by the cyclic group of order 2p ≥ 6 generated by t and
P ′. This is impossible because F (t) intersects the preimage K̃ of K
in M in two points and each of the two intersection points would
be fixed both by H (which has order n ≥ 3) and by a cyclic group
of order 2p ≥ 6, which is excluded, because the isotropy group of a
point in a 3-manifold is a spherical group. We conclude that CP (t)
is trivial or cyclic. An analogous argument holds for CP (tu) which
is also trivial or cyclic.

Thus, the statement (c) is proven.

It follows from (c) and the fact that P is generated by the three
centralizers CP (u), CP (t) and CP (tu), that P is either cyclic or the
direct product of two cyclic groups. In any case, at least one between
the two involutions t and (tr), say t, induces a nontrivial automor-
phism of P . On the other hand any element h of H acts also by
conjugation on P and the induced action is not trivial, because if h
commutes with P , by Proposition 3.3(i), P is a subgroup of NG(H),
a contradiction. So each element of the dihedral subgroup of NG(H)
generated by t and H acts nontrivially on P and we get a dihedral
subgroup D′ of the automorphism group of P with cyclic normal
subgroup H.

(d) If p does not divide n, G is large, i.e. contains a normal
abelian subgroup P of order p2 which does not descend to K and n
divides (p − 1) or (p + 1).

The case that P is cyclic is impossible, because the automorphism
group of a cyclic group is abelian and we know that there exists a
dihedral subgroup D′ of automorphisms of P . If P has rank two,
its automorphism group is the general linear group GL(2, p) over
the finite field with p elements. The group GL(2, p) contains the
normal subgroup SL(2, p) with index (p − 1) and the factor group
GL(2, p)/SL(2, p) is isomorphic to the multiplicative group of the
finite field with p elements. Since this last group does not con-
tain dihedral subgroups, the only possible case is that the intersec-
tion D′ ∩ SL(2, p) contains a subgroup isomorphic to H ∼= Zn. But
SL(2, p) has, up to conjugation, three maximal cyclic subgroups of
order, respectively, (p − 1), (p + 1) and (2p). Thus n, which is rela-
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tively prime with p by hypothesis, divides (p − 1) or (p + 1).

This finishes the proof of Lemma 4.1.

Lemma 4.2. Let M be the (hyperbolic) n-fold cyclic branched cov-
ering of a knot, G its orientation-preserving isometry group. Let
u ∈ G be an involution and S2 a Sylow 2-subgroup of G containing
u. Suppose that u is not conjugate by elements of G to a distinct
involution in the centralizer CS2(u) of u in S2 of G. Then either u
is central in G or G has a nontrivial normal subgroup of odd order.

Proof. If g is an element of S2 which normalizes CS2(u), then it acts
on CS2(u) by conjugation, mapping u to an element gug−1 of CS2(u).
In our hypothesis gug−1 = u because u is not conjugate by elements
of G to a distinct involution in the centralizer CS2(u). So g ∈ CS2(u).
We have thus shown that the normalizer in S2 of CS2(u) is contained
in CS2(u). Whence, by Proposition 2.1, S2 = CS2(u).

The hypothesis that u is not conjugate to any other involution of
CS2(u), implies now that u is not conjugate to a distinct involution
in a Sylow 2-subgroup of G. The result follows from Z∗-Theorem
(see Proposition 2.5).

This finishes the proof of Lemma 4.2.

5. Proof of Theorem 1.4

We will consider two separate situations: if n is even then one of the
cases (i) or (ii) of Theorem 1.4 can occur, and if n is odd then one
of the cases (i), (ii), or (iii) can occur.

Statement 5.1. If n is even, either M has no hidden symmetries
or G is large.

Since n is even, the cyclic covering group H ∼= Zn of K contains
an involution h with fixed point set the preimage K̃ of K in M (which
is also the fixed point set of H). Denote by CS2(h) the centralize of
h in a Sylow 2-subgroup S2 of G.

Lemma 5.2. The involution h is not conjugate to another involution
in CS2(h).
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Proof. If h is conjugate to another involution ghg−1 ∈ CS2(h), then
g(K̃) is the fixed point set for ghg−1, and therefor for gHg−1. Since
ghg−1 ∈ CS2(h), involutions h and ghg−1 commute, so h fixes set-
wise the fixed point set g(K̃) of ghg−1. The element h may act as
a rotation or a reflection on g(K̃). We show that both cases are
impossible.

If h acts as a rotation on g(K̃), it commutes with gHg−1 which is
a group of local rotations around g(K̃). By Proposition 3.3(i) gHg−1

normalizes H and descends to K. Thus, gHg−1 would descend to
a cyclic group of periods of order n ≥ 6 (we have assumed n even
and n ≥ 5). This is impossible because K is a 2-bridge knot and, in
virtue of property (P1), has no periods of order greater than four.

If h acts as a reflection on g(K̃), the knots K̃ and g(K̃) mutually
intersect. Any intersection point is fixed by the action of H and
gHg−1, which are cyclic groups of order n ≥ 6 with trivial intersec-
tion. This is impossible because the orientation-preserving isotropy
group at a point of a 3-manifold is a spherical group. The Lemma 5.2
is proven.

By Proposition 3.3(i), the centralizer CG(h) and the normalizer
NG(H) coincide. Applying Lemma 4.2 for the involution h, we get
that either h is central in G or G has a nontrivial normal subgroup
of odd order. In the first case each element of G leaves K̃ setwise
fixed and descends to K. In the second case the result follows from
Lemma 4.1. Thus, Statement 5.1 is proven.

Statement 5.3. If n is odd, M has no hidden symmetries or G is
large or G is special.

Let r be the hyperelliptic involution of M described in (P2). The
fixed point set F of r may be connected or not.

Statement 5.3 (i). If F is not connected, either M has no hidden
symmetries or G is large.

By construction r is a lift of a cyclic period of K with connected
fixed point set. So the number of components of the fixed point set
F of r divides n. In particular, F has an odd number of components
which are permuted transitively by the action of H.
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Lemma 5.4. The centralizer CG(r) of r and the normalizer NG(H)
of H coincide.

Proof. The normalizer NG(H) is the set of lifts of the symmetries
of K; in particular NG(H) is generated by the lifts of the strong
inversions of K (see (P1)). A lift of a strong inversion commutes
with r; it follows that NG(H) is a subgroup of CG(r). We have only
to prove the opposite inclusion CG(r) ⊂ NG(H), that is that any
element g ∈ G which commutes with r, normalizes H.

Consider the quotient M/〈r〉. The group CG(r) descends to a
group C̄ of orientation-preserving isometries in M/〈r〉. Denote by
H̄ ⊂ C̄ the projection of H. To prove that any element of CG(r) nor-
malizes H, it is equivalent to prove that any element of C̄ normalizes
H̄, that is that H̄ is normal in C̄.

We know that the quotient M/〈r〉 is homeomorphic to S3 be-
cause r is hyperelliptic. So, by Thurston’s Orbifold Geometrization
Theorem for finite group actions on S3, the groups C̄ and H̄ are
subgroups of SO(4).

It follows from the classification of finite subgroups of SO(4) [14]
that if a finite subgroup A of SO(4) contains a cyclic subgroup B of
order n ≥ 7, then B is normal in A. So, if n ≥ 7 the subgroup H̄ is
a cyclic normal subgroup of C̄ and the proof is complete.

Since we consider n odd, the only left case is that H ∼= Z5. A
cyclic subgroup B ∼= Z5 in a finite subgroup A of SO(4) is also always
normal with the exception of some finite subgroups A containing the
alternating group A5 on five letters. However in our case C̄ does
not contain A5, because if n = 5 the fixed point set of r in M has
five distinct components, so the singular set of the quotient M/〈r〉
is also a link with five components. The group A5 can not be the
group of symmetries of such a link. For example A5 contains ten
distinct subgroups of order three. Each of these cyclic subgroups
induces a permutation of order three of the five components of the
link, fixing setwise at least one component. So there exists at least
one component of the link with two distinct cyclic subgroups of order
three fixing it setwise. The two cyclic subgroups of order three acts
as rotations on the component generating a group Z3 × Z3. But A5

does not contain a subgroup of this type. This finishes the proof of
Lemma 5.4.
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To conclude the proof of Statement 5.3 (i) it is enough to show
that r does not fuse to any other involution of its centralizer and
the result follows from Lemma 5.4, and by applying Lemma 4.2 and
Lemma 4.1 to the involution r. Indeed note that any involution of
CG(r) normalizes H by Lemma 5.4 and descends to K. By con-
struction n is odd, so an involution of CG(r) is either r or a lift of a
strong inversion of K. A lift of a strong inversion has connected fixed
point set, so r can not be conjugate to another involution because
by the assumption in Statement 5.3 (i), its fixed point set F is not
connected.

Statement 5.3 (ii). If F is connected, M has no hidden symme-
tries or G is large or G is special.

In this case H acts as a group of rotations on F and it is easy
to show that the two groups CG(r) and NG(H) coincide. Indeed
an element of G which commutes with r fixes setwise its fixed point
set F and so it normalizes H which acts as a group of rotations on
F . Thus CG(r) = NG(H). In particular, since H has odd order, a
Sylow 2-subgroup of CG(r) is a dihedral group of order four or eight,
depending on the symmetry group of K (see (P1)).

We first prove the following property.

Lemma 5.5. A Sylow 2-subgroup of G is dihedral.

Proof. Let S2 be a Sylow 2-subgroup of G containing r and consider
the subgroup CS2(r) ⊂ S2. If CS2(r) = S2, the group S2 is dihedral
and the proof is complete.

If CS2(r) is a proper subgroup of S2, by Proposition 2.1 there
exists an element g of S2 which normalizes CS2(r) and conjugates r
to a distinct involution t = grg−1 of CS2(r). Since r is central in
CS2(r), the involution t is also central in CS2(r): the only possible
case is that CS2(r), which is a dihedral group, has order four. In this
case the group CS2(r) contains three involutions: r, t and the product
(tr). The element g, which has order a power of two, acts on CS2(r)
exchanging r and t and commuting with (tr). This implies that (tr) is
the unique involution of S2 which commutes both with g and r. Since
every 2-group has a nontrivial center, the only nontrivial element of
the center of S2 is (tr). We have thus proved that S2 = CS2(tr).
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The involution (tr) is a lift of a strong inversion of K and has con-
nected fixed point set. The group S2, which commutes with (tr) fixes
setwise its fixed point set and so it is a subgroup of a semidirect prod-
uct Z2(Z2n × Z2m) where (Z2n × Z2m) is the group of (tr)-rotations.
The fact that r is a (tr)-reflection and that CS2(r) is a dihedral group
of order four, implies that m = 0. This shows that also in this case
S2 is a dihedral group. Thus, Lemma 5.5 is proven.

To determine the structure of G it is now convenient to consider
its simple composition factors and its Fitting subgroup F , that is
the maximal nilpotent subgroup of G.

If F contains elements of odd order, then we can apply Lemma 4.1
to the involution r and we conclude that M has no hidden symmetries
or G is large.

If F is a 2-group, being normal in G, it is contained in any
Sylow 2-subgroup of G, in particular in S2. The group F can not
be dihedral because it follows from the discussion above that any
dihedral subgroup of S2 contains a r-reflection, say (tr); but H does
not commute with (tr) so it does not normalize a dihedral 2-group
containing (tr). This is a contradiction because by construction any
element of G normalizes F . So, if F is a 2-group, it is cyclic and its
unique involution is central in G. This central involution must be r,
which is the unique involution of G which commutes with H. Hence
G = CG(r) and M has no hidden symmetries.

The only left case is that F is trivial. Since a Sylow 2-subgroup
of G is dihedral, a minimal normal subgroup E of G is simple and
isomorphic to PSL(2, p) for some p odd (see Proposition 2.4) or to
the alternating group A7 on seven letters.

The case A7 is ruled out in the following way. We have al-
ready remarked above that any dihedral subgroup of S2 contains
a r-reflection, say (tr). Therefore a Sylow 2-subgroup of E contains
an element conjugate to (tr). More than that, all involutions of E
lie in the same conjugacy class, so they are all conjugate to (tr).
This rules out the case A7 because the centralizer in G of (tr), which
has connected fixed point set, is a subgroup of a semidirect product
Z2(Z2n ×Z2m) where Z2 acts on Z2n ×Z2m by sending each element
to its inverse, but the centralizer of an involution in A7 is not of this
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type.

By Proposition 2.2 the group G is generated by E ∼= PSL(2, p)
and the normalizer in G of a Sylow 2-subgroup of E. The normalizer
of a dihedral subgroup of S2 contains only elements of order a power
of two, with the exceptional case that it has order four and there
exists an element of order three permuting its three involutions; but
in this last case such order three elements are already contained in
E. This implies that E contains a cyclic subgroup isomorphic to
H ∼= Zn.

The group PSL(2, p) contains, up to conjugation, three maximal
cyclic subgroups of order, respectively, p, (p − 1)/2 and (p + 1)/2.

The fact that n divides (p − 1)/2 or (p + 1)/2 follows because n
does not divide p (the normalizer of a Sylow p-subgroup of PSL(2, p)
can not have the structure of NG(H)).

The fact that M is an integral homology 3-sphere follows from the
result from [6], because the quotient M/〈u〉 is S3 for any involution
u of PSL(2, p) (all the involutions of G are conjugate to r).

This finishes the proof of Theorem 1.4.
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