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Summary. - It has been proved by Accola that any 3-fold unbranched
covering of a Riemann surface of genus two is hyperelliptic (a
2-fold branched covering of the 2-sphere) if the covering is non-
regular, and 1-hyperelliptic (a 2-fold branched covering of a torus)
if it is regular. In the present paper, we show that the correspond-
ing result holds for closed 3-manifolds when replacing the genus
by the Heegaard genus.
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1. Introduction

A closed Riemann surface is said to be hyperelliptic if it admits a
conformal involution such that the quotient space of the surface by
the action of the involution is the 2-sphere S2. Similarly, a closed
orientable 3-manifold is hyperelliptic if it admits an involution such
that the quotient space of the manifold by the action of the invo-
lution is homeomorphic to the 3-sphere S3. It is well known that
both Riemann surfaces of genus two and 3-manifolds of Heegaard
genus two are hyperelliptic, and it is interesting to ask which prop-
erties of hyperelliptic surfaces carry over to hyperelliptic 3-manifolds
(see [8],[10] for some results on hyperelliptic 3-manifolds, and [7] for
hyperelliptic Riemann surfaces).

It is known that any 2-fold unbranched covering of a Riemann
surface of genus two is hyperelliptic ([5],[6],[1]), and it is proved
in [9] that this result remains true in dimension three: any 2-fold
unbranched covering of a closed orientable 3-manifold of (Heegaard)
genus two is hyperelliptic. In the present paper, we study the case
of 3-fold unbranched coverings. In the case of Riemann surfaces, the
following result was obtained in [2, Corollary 1].

Theorem 1.1. (Accola) Let S4 → S2 be an unbranched 3-fold cov-
ering of closed Riemann surfaces of genus four and two, respectively.

i) If the covering is regular (Galois), then S4 is 1-hyperelliptic
(called elliptic hyperelliptic in [2]: a 2-fold covering of a Riemann
surface of genus one, see also [7, p.249]).

ii) If the covering is non-regular, then S4 is hyperelliptic.

In the present paper we will show that the corresponding result
holds also in dimension three. Our main result is as follows.

Theorem 1.2. Let W2 be a 3-manifold of Heegaard genus two, and
let W be an unbranched 3-fold covering of W2.

i) If the covering is regular then W is hyperelliptic or a 2-fold
branched covering of a 3-manifold of Heegaard genus one (that is of
a lens space or of S2 × S1).

ii) If the covering is non-regular then W is hyperelliptic.

We recall that a (branched or unbranched) covering is regular if
the group of covering transformations acts transitively on each fiber,
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so the base space is obtained as the quotient by the action of the
covering group; equivalently, the covering corresponds to a normal
subgroup of the (orbifold) fundamental group of the base space, and
the covering group is isomorphic to the factor group.

So there are some common features between hyperelliptic Rie-
mann surfaces and hyperelliptic 3-manifolds when considering the
Heegaard genus instead of the genus. However, in general the sit-
uation for 3-manifolds is much more complicated. For example, a
hyerelliptic Riemann surface has a unique hyperelliptic involution
which lies in the center of its automorphism group. On the other
hand, hyperelliptic 3-manifolds may have an arbitrarily high num-
ber of non-conjugate hyperelliptic involutions (however it has been
shown in [10] that, in the case of hyperbolic 3-manifolds, there is
a universal, in fact quite small bound on the number of conjugacy
classes of hyperelliptic involutions, independent of the 3-manifold).

2. Preliminary results

In this section we collect some results which are needed for the proof
of Theorem 1.2.

We first sketch the proof of a Lemma which can be found in
standard books on finite transformation groups. To state this Lemma
we recall some terminology about abelian groups.

Any finitely generated abelian group G can be expressed as a
direct sum G = Z

r⊕T2⊕T2′ where T2 is the subgroup of elements of
G whose order is a power of two, and T2′ the subgroup of elements of
G whose orders are odd. We call T2 the 2-torsion, T2′ the odd torsion

and r the rank of G. We note that T2 and T2′ are characteristic
subgroups of G (but not Z

r, in general).

Lemma 2.1. Let N be a compact 3-manifold and u an involution
acting on N . Denote by Nu the underlying topological space of the
quotient N/u and by H1(N)u the subgroup of the elements of the first
homology group H1(N) of N which are fixed by u for the induced
action on H1(N). Then the rank and the odd torsion of the first
homology group H1(Nu) of Nu are equal, respectively, to the rank
and the odd torsion of H1(N)u.
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Proof. The Lemma is standard in finite transformation group the-
ory (see, for example, [3, p. 119-120]). It follows from a trans-
fer argument [3, p. 119, 2.2] that there exist two homomorphisms
π∗ : H1(N)u → H1(Nu) and µ∗ : H1(Nu) → H1(N)u such that the
two maps

π∗µ∗ : H1(Nu) → H1(Nu)

µ∗π∗ : H1(N)u → H1(N)u

are ’multiplication times 2’. The Lemma follows from the remark
that ’multiplication times 2’ is an isomorphism when restricted to
the odd torsion of H1(Nu) and H1(N)u. A similar kind of argument
proves that the ranks of H1(Nu) and H1(N)u are equal.

This finishes the proof.

By an n-fold branched covering of a link L in the 3-sphere S3,
we mean an n-fold branched covering of S3 branched along the link
L. We use the notation M → S3(L).

By applying the Lemma to the case that Nu is the 3-sphere S3,
we get the following:

Proposition 2.2. Let N be the 2-fold branched covering of a link
L in S3 and u the covering involution of the covering N → S3(L).
Then the involution u lifts to any regular unbranched cyclic covering
M of odd order of N . Moreover the set of all lifts of u to M generates
a dihedral group of order 2n.

Proof. It follows from the Lemma and the fact that the underly-
ing topological space of the quotient N/u is S3, that the subgroup
H1(N)u of elements of H1(N) which are fixed by the induced action
of u has trivial odd torsion and rank zero. Any regular odd order
cyclic covering of N corresponds to an epimorphism ψ of H1(N) onto
a cyclic group of odd order (so the existence of such a covering im-
plies that either the rank r or the odd torsion T2′ of H1(N) is not
trivial). We will show that the kernel of ψ is invariant under the
action of u.

The kernel of ψ contains the 2-torsion T2 (which is invariant
under the action of u). Suppose that the element t ∈ kernelψ has
infinite order. If u maps t to t′ then it maps t′ to t (because u has
order two), and hence tt′ is fixed by u. As u has no fixed points of
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infinite or odd order, it follows easily that tt′ is in the 2-torsion T2 of
H1(N), and consequently also t′ is in the kernel of ψ. Finally, since
u fixes no non-trivial element of the odd torsion T2′ (which is also
invariant under the action of u), it is easy to see that u sends each
element of T2′ to its inverse, and in particular leaves invariant every
subgroup of T2′ . It follows that the kernel of ψ is invariant under the
action of u, and consequently u lifts to M .

Let now Zn be the covering group of a regular odd order cyclic
covering M of N . The covering group Zn is isomorphic to the quo-
tient of H1(N) by the kernel of ψ, and it follows from the above that
a lift of u to M , acting on Zn by conjugation, sends each element
of Zn to its inverse. It follows that the lifts of u to M generate a
dihedral group Dn of order 2n.

This finishes the proof of Proposition 2.2.

We shall need a result which estimates the Heegaard genus of a
3-manifold occuring as a branched covering of a link L in S3 in terms
of n and the bridge number of the link L.

Let M be a closed orientable 3-manifold. Recall that a pair
(Hg,H

′

g) of handlebodies of genus g is called a Heegaard splitting of
genus g of M if M = Hg ∪ H ′

g and Hg ∩ H ′

g = ∂Hg = ∂H ′

g is a
closed orientable surface of genus g. The minimal genus among the
genera of all Heegaard splittings of M is called the Heegaard genus of
M . The 3-sphere S3 is the only 3-manifold of Heegaard genus zero.
The Heegaard genus of M is equal to one if and only if M is a lens
space L(p, q) or S2 × S1; it is natural to consider these manifolds
of Heegaard genus one as 3-dimensional analogous of the Riemann
surface of genus one, i.e. the torus T 2.

Recall that an m-bridge presentation of a link L in S3 is a decom-
position of the pair (S3, L) into a union (B1, α1)∪ (B2, α2) where Bi

is a 3-ball and αi is a set of m arcs which is trivial in Bi, for i = 1, 2.
We say that L is an m-bridge link if m is the minimal number for
which L admits an m-bridge presentation.

The following is a special case of a more general result relat-
ing Heegaard splittings and bridge numbers for arbitrary branched
coverings of links, see e.g. [4, page 169, Proposition 11.3].
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Proposition 2.3. A 3-manifold which is a 3-fold branched cover-
ing of an m-bridge link L in S3, with branching index two at each
component of L, has a Heegaard splitting of genus m− 2.

Finally we need also the following (see [11, Sublemma 15.4] or [4,
page 135, E 9.5])

Proposition 2.4. The first homology H1(M,Z2) of the 2-fold bran-
ched covering M of an r-component link in S3 is isomorphic to
(Z2)

r−1.

3. Proof of Theorem 1

i) The regular case

We recall that W2, being a genus two 3-manifold, admits a hyper-
elliptic involution, say τ ; the underlying topological space of the
quotient W2/τ is S3, and the singular set (branch set) is a 3-bridge
link L (see [13]). Let W be a 3-fold regular unbranched covering of
W2.

By Proposition 1, τ lifts to an involution t of W , and the group
generated by t and the covering group Z3 of the covering W →
W2 is isomorphic to the dihedral group D3 of order six (we remark
that the transfer argument used for the proof of the Lemma and
Proposition 2.2 can be avoided; we will give an alternative proof at
the end of case i).

The quotient W/t is a non-regular 3-fold covering of S3(L) (that
is of S3 branched along the link L). To complete the proof it is
enough to show that the branching index of this non-regular covering
is two at each point of L. Case i) of Theorem 1.2 follows then from
Proposition 2.3 and the fact that L is a 3-bridge link.

To compute branching indices we study the fixed points of the
involutions of D3 in W .

First of all the fixed point set of τ in W2 is the preimage L̃ of
L. Each component of L̃ lifts to three distinct components in W
which are permuted by the action of the covering group Z3: in fact,
denoting by g a generator of Z3, the three lifts of τ to W are the
three conjugate involutions t, gtg−1 and g2tg−2. Being conjugate,
the three involutions have homeomorphic fixed point sets which are
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permuted by the action of Z3. The fixed point set of any of the three
involutions projects onto L̃ in W2 and onto L in S3.

When factoring W by t, the fixed point set of t projects to the
branch set of the covering W →W/t, and the fixed point set of both
gtg−1 and g2tg−2 projects to the branching set of the non-regular
covering W/t → S3(L), with branching index two at each point.
This finishes the proof in case i).

Finally we indicate an alternative proof that τ can be lifted to
W .

As above, let τ be the hyperelliptic involution of W2, and let τ∗

be the automorphism of π1(W2) induces by τ .

As the 3-fold covering W →W2 is regular, the fundamental group
π1(W ) is the kernel of some epimorphism ϕ : π1(W2) → Z3. We will
show that π1(W ) = Kerϕ is invariant under the action of τ∗.

The singular set of the orbifold S3(L) = W2/τ is a 3-bridge link L.
Therefore, the orbifold fundamental group (see [12]) πorb

1 (S3(L)) =
〈e1, e2, e3〉 is generated by three involutions e1, e2, and e3, corre-
sponding to meridian loops of L. The fundamental group π1(W2)
is a subgroup of index two in the group 〈e1, e2, e3〉 consisting of all
words of even length in these generators; in particular, π1(W2) is
generated by the elements A = e1e2 and B = e1e3. Note that
e2e3 = e2e1 · e1e3 = A−1B. Up to an inner automorphism, the
action of τ∗ on π1(W ) is given by the following rule:

τ∗ : A→ e−1
1 Ae1 = A−1, B → e−1

1 Be1 = B−1.

We will show that τ∗ induces an automorphism of the group
Z3 = 〈c | c3 = 1〉, with respect to the epimorphism ϕ : π1(W2) → Z3.
In fact, up to a choice of notations, there are three possibilities for
the action of the epimorphism ϕ:

(i) ϕ(A) = c, ϕ(B) = c,
(ii) ϕ(A) = c, ϕ(B) = c−1,

(iii) ϕ(A) = c, ϕ(B) = 1.
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Then it is clear that τ∗ induces the automorphism c → c−1 of
Z3, and consequently Kerϕ is invariant under the action of the au-
tomorphism τ∗. Thus, the involution τ lifts to an involution t of
W .

The group of covering transformations G of the regular 6-fold
covering W → W2/τ = S3(L) has order 6 and hence is cyclic or
dihedral. As the orbifold fundamental group πorb

1 (S3(L)) is gener-
ated by three involutions and πorb

1 (S3(L))/π1(W ) ∼= G, also G is
generated by three involutions, and therefore G is a dihedral group
of order six.

ii) The non-regular case

Since W2 admits a non-regular 3-fold unbranched covering, its fun-
damental group π1(W2) contains a non-normal subgroup H of index
three which is the fundamental group of the 3-fold covering W . The
action of the elements of π1(W2) on the three cosets of H in π1(W2)
determines an epimorphism φ : π1(W2) → S3 of π1(W2) onto the
permutation group S3 of three letters. The kernel of φ is a normal
subgroup of π1(W2) and it corresponds to a regular S3-covering of
W2 which we denote by M . See Figure 1 for the diagram of cover-
ings constructed in the following, where ”3” corresponds to a regular
3-fold covering and ”(3)” to a non-regular one.

j

3

�

2

?

2
?

2
j

(3)

�

2

j

(3)

�

2

?

2

?

/S3

along L0along L1

M

W N

W/ū W2 N/u ∼= S3

S3(L0 ∪ L1)

Figure 1.

The covering group of the covering M →W2 is isomorphic to S3

and contains three conjugate involutions; factoring M by the action
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of one of these involutions we get (a manifold homeomorphic to) W .
Factoring M by the action of the unique subgroup Z3 of S3, we get
a manifold, say N , which is a regular unbranched 2-fold covering of
W2.

We have recalled above in case i) that W2, being a genus two 3-
manifold, admits an involution τ such that the underlying topological
space of the quotient W2/τ is S3 and its singular set a 3-bridge link
L. Since W2 admits the regular 2-fold unbranched covering N , its
homology H1(W2,Z2) is not trivial. By Proposition 3, the link L has
at least two components. As L is a 3-bridge link, it has two or three
components, and in particular L is the disjoint union L = L0 ∪ L1

where L0 is the unknot (a 1-bridge link) and L1 is a 2-bridge link
with one or two components.

By Proposition 2.4, the homology H1(W2,Z2) is isomorphic to Z2

or Z2 × Z2. In the first case, there is exactly one 2-fold unbranched
covering of W2 which consequently is N , and the involution τ lifts
to an involution of N . In the second case, there are exactly three
2-fold unbranched coverings of W2 which have been described in [9].
It follows from [9, Proof of the Theorem, case ii] that the involution
τ lifts to each of these three coverings of W2, and hence in particular
to N .

Thus in any case the involution τ lifts to N and the manifold N
is a regular Z2×Z2-covering of L: the covering group of the covering
N → S3(L) is isomorphic to Z2 × Z2 and contains three distinct
involutions. It is proved in [9, Proof of the Theorem] that exactly
one of these three involutions, say v, acts freely on N ; this is the
covering involution of the unbranched covering N → W2. The fixed
point set of a second involution, say u, is the preimage L̃1 of L1 in
N , and the fixed point set of the product uv is the preimage L̃0 of
L0 in N . The underlying topological space of the quotient N/u is
the 3-sphere S3 because N/u is the 2-fold branched covering of the
trivial knot L0 in S3.

The manifold M is a regular unbranched 3-fold cyclic covering
of N . By construction, the free involution v of N lifts to M and
the group generated by all lifts of v to M is isomorphic to S3

∼= D3.
As the underlying topological space of N/u is S3, by Proposition 2.2
also the involution u lifts to M and the group generated by all lifts
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of u to M is also isomorphic to D3. This determines the structure
of the group E generated by all lifts of u and v to M . The group
E has order twelve since it contains a normal subgroup Z3 of index
four. A Sylow 2-subgroup S2 of E has order four and contains two
involutions conjugate, respectively, to a lift U of u and to a lift V of
v, so the Sylow 2-subgroup of E is isomorphic to Z2 × Z2, and its
action on Z3 is determined by the dihedral actions of U and V on
Z3. It follows that E ∼= S3 ⊕ Z2, and we can assume that UV has
order two.

By construction, the quotient M/V is the 3-fold non-regular un-
branched covering W of W2. The involution U descends to an in-
volution ū of W ; so W/ū is a 3-fold non-regular covering of L. To
complete the proof we will show that the branching index of the
non-regular covering W/ū → S3(L) is one on the component L0 of
L and two on (each component of) L1, so W/ū is a 3-fold branched
covering of the 2-bridge link L1. Now Proposition 2.3 implies that
W/ū has Heegaard genus zero and hence is the 3-sphere, so W is
hyperelliptic.

Like in the regular case in order to compute branching indices
we will study the fixed point sets of the involutions.

We have seen above that the preimage L̃ of L in N splits as
L̃0 ∪ L̃1 where L̃1 is the fixed point set of u and L̃0 the fixed point
set of uv. When lifting to M the lifts of u and uv behave in different
ways.

Denoting by g a generator of the covering group Z3 of the covering
M → N , the lifts of u to M are three distinct involutions U , gUg−1

and g2Ug−2 which are conjugated by the action of Z3. So U , gUg−1

and g2Ug−2 have homeomorphic fixed point sets which are permuted
by the action of Z3. Each of these fixed point sets projects onto L̃1

in N and onto L1 in S3.

On the other hand there is exactly one lift UV of uv which is an
involution (and has non-empty fixed poiont set) because the lifts of
uv to M generate a cyclic group Z6. So the fixed point set of UV is
the full preimage of L̃0 in M .

When factoring M by the group S2 generated by U and V , the
union of the fixed point set of UV and the fixed point set of U project
to the branching set of the covering M → W/ū. The fixed point sets



THREE-FOLD COVERINGS ETC. 191

of gUg−1 and g2Ug−2 (which are conjugate to U or V ) project to
the branching set of the non-regular covering W/ū → S3(L) which
is therefore L1 with branching index two.

As noted above, an application of Proposition 2.3 finishes now
the proof of the Theorem.
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