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Hyperbolic 2-fold Branched Coverings
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Summary. - In the Kirby list is presented the following problem:
describe the equivalence classes in the set of knots under the re-
lation K1 is equivalent to K2 if their 2-fold cyclic branched cov-
erings are homeomorphic 3-manifolds. In this paper we consider
the basic case of hyperbolic manifold. In the first part of this pa-
per we want to present briefly the results, yet available in some
previous works, which solve this problem. In the second part we
present examples of knots with the same 2-fold branched covering
which show that the theorem, which describes the possible rela-
tions between two knots in the same equivalence class, is the best
possible.

1. Introduction

The 2-fold branched coverings of knots in the 3-sphere are a ba-
sic class of 3-manifolds largely studied in low dimensional topology.
Such a representation of a 3-manifold is, in general, not unique. In
the Kirby list ([5]) is presented the following problem: describe the
equivalence classes in the set of knots under the relation K1 is equiva-
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lent to K2 if their 2-fold cyclic branched coverings are homeomorphic
3-manifolds.

We consider separately two aspects of the problem in the Kirby
list.

Problem 1.1: How many inequivalent knots can have the same 2-
fold branched covering M?

Problem 1.2: How are related two inequivalent knots with the same
2-fold branched covering M?

In this paper we consider the basic case of hyperbolic manifolds.
The solutions of these problems when M is hyperbolic are presented
in some previous papers by Marco Reni and by the author; in the
first part of this paper we want to present briefly these results with
the aim of giving a complete description of the situation.

Moreover the solution of these two problems in the hyperbolic
case is strictly related via Thurston’s orbifold geometrization theo-
rem to the structure of the orientation-preserving isometry group G
of M , and in particular to the structure of any Sylow 2-subgroups
of G (for Thurston’s theorem see [16], [1] and [3]). Thus the re-
sults presented in this paper are also interesting because they give
a description of Sylow 2-subgroups when M is the 2-fold branched
covering of a knot in the 3-sphere or more general when M is a Z2-
homology sphere. We consider both the algebraic structure of the
Sylow 2-subgroup of G and their “geometric” structure that is the
reciprocal positions of the fixed-point sets of the elements.

In the second part of the paper we construct examples of inequiv-
alent knots in the 3-sphere with the same 2-fold branched covering
which show that the description, we give in Theorem 2.5, of the
possible relations between two knots with the same 2-fold branched
covering, is the best possible.

2. Solution of the Problems 1.1 and 1.2

First I want to recall some preliminary facts about 3-manifold that
describe the relation between 2-fold cyclic branched covering and
Z2-homology 3-sphere.

- The 2-fold branched covering of a knot in the 3-sphere is a
Z2-homology sphere ([7, pag. 16]).
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- The quotient of a Z2-homology sphere by an involution with
non-empty fixed-point set is a Z2-homology 3-sphere.

The algebraic structure of the Sylow 2-subgroups of the orientation-
preserving isometry group of a Z2-homology 3-sphere was described
by Marco Reni [12] who proved the following theorem:

Theorem 2.1. [12] Let M be a closed orientable Z2-homology 3-
sphere and S a finite 2-group of orientation-preserving diffeomor-
phisms of M . Then one of the following case occurs:

- S is cyclic, dihedral of order at least 16, quasidihedral or a
quaternion group and the unique central involution acts freely;

- S contains with index at most two the centralizer CSh of an
involution h with connected fixed-point set. The group CSh is a sub-
group of a semidirect product Z2(Z2a × Z2b), for some nonnegative
integers a and b, where Z2 acts on Z2a ×Z2b inverting each element.

If M is hyperbolic, the orientation-preserving isometry group G
of M is finite and Theorem 2.1 applies to the Sylow 2-subgroups of
G; thus it is possible to prove the following theorem.

Theorem 2.2. [12] There are at most nine conjugacy classes of non-
free involutions in the orientation-preserving isometry group of a
closed orientable hyperbolic Z2-homology 3-sphere.

By Thurston’s orbifold geometrization theorem and Mostow’s
rigidity Theorem we obtain as a consequence of Theorem 2.2 the
following corollary that gives an upper bound to the number of in-
equivalent knots with the same hyperbolic 2-fold cyclic branched
covering.

Corollary 2.3. [12] For a hyperbolic manifold M , there are at
most nine inequivalent knots with M as cyclic branched covering.

Here two knots K and K ′ are inequivalent if there is no orientation-
preserving diffeomorphism of the 3-sphere which maps K to K ′.

Corollary 2.3 gives an universal bound which holds for all hy-
perbolic manifolds and we have an answer to the Problem 1.1. The
natural question which arises is if this bound is the best possible;
sets of four such knots are known, and there is some evidence that
nine may be the exact upper bound.
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In [12], Theorem 2.1, Theorem 2.2 and Corollary 2.3 are proved
applying methods of finite group theory to the study of these mani-
folds and we obtain an algebraic description of the Sylow 2-subgroup.
Now we can start from this algebraic description to obtain geometric
information about Sylow 2-subgroup (for example about the Prob-
lem 1.2) but it is also possible to start from the geometric situation
to obtain Theorem 2.2 and Corollary 2.3.

In [9] using pure combinatorially and geometric methods Marco
Reni and the author prove the following theorem.

Theorem 2.4. [9] Let M be the hyperbolic 2-fold branched cover-
ing of a knot. For any (finite) 2-group S of orientation-preserving
isometries of M which contains the covering involution of the knot,
the singularity graph of the quotient orbifold M/S is combinatorially
equivalent to one of the twelve graphs IA, . . . , IIID (Figure 1).

The number of conjugacy classes of non-free involutions in any
2-subgroup S of the isometry group of M is bounded by the number
of edges of the singularity graph of M/S; thus by Theorem 2.4 we
obtain again Theorem 2.2 and Corollary 2.3.

Theorem 2.4 holds also for the case of 2-fold cyclic branched
covering of links with two components, and we prove again that
there are at most nine inequivalent 2-components links with the same
hyperbolic 2-fold branched covering. This result for two components
links is not yet proved using the algebraic approach while in the case
of links with at least 3 components the Problem 1.1 was solved in [13]
detecting the algebraic structure of the Sylow 2-subgroups; we have
that five is the maximal number of inequivalent links with at least
three components which have the same hyperbolic 2-fold branched
covering.

Theorem 2.4 describes, in some sense, the geometric situation of
the group S by a global point of view; a description of the “local”
situation is more appropriate to give a direct answer to Problem 1.2.
In [8] we describe the singularity graph of the manifold M/D where
D is the group generated by two covering involutions and in this way
we give a precise solution of Problem 1.2.

Before presenting the theorem we have to describe the follow-
ing basic constructions which relate two knots with the same 2-fold
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Figure 1.

branched covering. Let M be the 2-fold branched covering of two
inequivalent knots K and K ′. We suppose that the two covering
involutions of K and K ′ generate a dihedral group D of order 2m+1

and we denote by F the cyclic group of order 2m generated by the
product of the two covering involutions.

The standard dihedral construction I

Each element of F acts freely on M . The quotient orbifold M/D
is the 3-sphere whose singular set is a link with two components of
singularity index two. In this case we say that K and K ′ arise from



170 M. MECCHIA

the standard dihedral construction I.

The standard dihedral construction II

The subgroup F has non-empty connected fixed-point set L (i.e.
each element of F fixes pointwise L). The reflections in D act as
reflections on L. The quotient orbifold M/D is the 3-sphere whose
singular set is a theta-curve (the graph IB in figure 1); two edges
have singularity index two, the remaining one has singularity index
2m. In this case we say that K and K ′ arise from the standard
dihedral construction II.

The standard dihedral construction III

The group F has no global fixed-points but F contains a proper
subgroup with non-empty fixed-point set.

We denote by 2q the order of the maximal subgroup of F with
non-empty fixed-point set and we denote by L its connected fixed-
point set. The reflections in D act as reflections on L. The quotient
orbifold M/D is the 3-sphere whose singular set is a pince-nez graph
(the graph IC in figure 1); the two loops have singularity index two,
the remaining edge has singularity index 2q. In this case we say that
K and K ′ arise from the standard dihedral construction III.

Finally we can state the following theorem that solves the Prob-
lem 1.2.

Theorem 2.5. [8] Let M be the 2-fold cyclic branched covering of
the inequivalent knots K and K ′. Suppose that M is hyperbolic.
Then K and K ′ arise from the standard dihedral construction I, II
or III.

We note that the Theorem 2.5 holds also for knots in Z2-homology
3-spheres.

In the second part of the paper we present examples of knots
which arise from the standard dihedral constructions and we prove
that all these cases really occur.
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3. Construction of knots with the same 2-fold

branched covering

In this section we present examples of knots with the same hyper-
bolic 3-manifold as 2-fold branched covering; we produce at least one
example for each construction described in Theorem 2.5.

There is the possibility to create knots with the same 2-fold
branched covering applying Dehn surgery on a hyperbolic knot (see
also [18]). By Mostow’s rigidity theorem, the symmetry group of
a hyperbolic knot L can be realized by a finite group of diffeomor-
phism of the couple (S3, L), restricting to isometries of S3 − L. By
the positive solution of the Smith conjecture, this finite group acts
effectively on the knot, so the symmetry group of a hypebolic knot
is a finite cyclic or dihedral group. We are interested in the dihedral
case and consider knots with the following property.

Property 3.1. The knot L is hyperbolic; the orientation-preserving
symmetry group of L is a dihedral group D of order 2n which is
generated by two strong inversions (reflections) i and j.

We shall see that any knot with Property 3.1, for n even, can be
used to construct an example of one of the 3 standard dihedral con-
structions. Let L be a knot with Property 3.1 and M = M(L, 1/a)
be the homology 3-sphere obtained by 1/a-surgery on L. We consider
sufficiently large values of a such that M is hyperbolic and the cen-
tral line L′ of the added solid torus is the unique shortest geodesic.
Thus any element of the orientation-preserving isometry group G of
M restricts to M − L′ = S3 − L. Since by Gordon and Luecke’s
theorem a nontrivial surgery on a nontrivial knot never yields S3,
each diffeomorphism of S3 − L maps a meridian to a meridian and
it can be extended to a symmetry of L.

In this way the elements of G can be first restricted to S3 − L
and then extended to a symmetry of L and we obtain a subgroup
of D isomorphic to G. On the other hand any element of D can be
restricted to S3 − L and since it maps a meridian to a meridian it
can be extended to a diffeomorphism of M . We obtain a group of
diffeomorphism of M isomorphic to D which, by Thurston’s orbifold
geometrization theorem, is conjugate to a subgroup of G. Thus we
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have an isomorphism between G and D; we denote any element of
G with the same letter as the corresponding element in D.

Now we consider the quotient orbifold M/i. The quotient of
M by the strong inversion i is obtained by surgery on a 3-ball in
S3 (the quotient by i of a regular neigbourhood of L) and it is an
orbifold with underlying topological space the 3-sphere. The same
argument holds for the quotient orbifold M/j. We denote by K the
projection of the fixed-point set of i in the quotient M/i and by K ′

the projection of the fixed-point set of j in the quotient M/j.
If n is odd the two involutions i and j are conjugate and the knots

K and K ′ are equivalent. Since we are looking for inequivalent knots,
we suppose that n is even. In this case K and K ′ are inequivalent
(otherwise an isometry of M conjugates i and j by Mostow’s rigidity
Theorem).

We restrict our attention to a Sylow 2-subgroup S of G which
contains i; S is a dihedral group of order 2m+1. In S there exists
an involution j′ conjugate to j and the quotient orbifold M/j′ is
equivalent to M/j (in particular the singular sets of the orbifolds
are equivalent knots). We consider K ′ as the projection of the fixed-
point set of j′ in the quotient M/j′ ∼= S3. Now we consider F , the
cyclic subgroup of S of order 2m and we have three cases.

i) If F acts freely, K and K ′ arise from the standard dihedral
construction I.

ii) If F has non-empty fixed-point set, then K and K ′ arise from
the standard dihedral construction II.

iii) If F has no global fixed-point set but it contains a proper sub-
group E with non-empty fixed-point set, then K and K ′ arise
from the standard dihedral construction III.

For the case ii) we can obtain a nice class of examples generated
starting from the following class of links.

We denote by Tn the closure of the 3-braid (σ−1
1 σ2)

n (T8 is rep-
resented Figure 2); the links Tn are called the Turk’s head links. For
n ≥ 5 these links are hyperbolic and D, the orientation-preserving
symmetry group of Tn, is a dihedral group of order n ([SW]). We note
that the maximal cyclic subgroup in D has non-empty fixed-point set
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because this group can be represented as a group of rotation around
an axis in the 3-sphere (see Figure 2). In this case the fixed-point
sets of any two strong inversions in D intersect in two points of the
axis of the maximal cyclic subgroup of D (in Figure 2 only one point,
marked with a black point, appears, the other intersection point is
at infinity). In fact the product of any two strong inversions has
non-empty fixed-point set.

Finally we have that for n 6= 0 mod 3 Tn is a knot.

The knots T2m with m ≥ 3 satisfy the Property 3.1; by the pre-
vious consideration for each m ≥ 3 we can obtain two knots arising
from the standard dihedral construction II such that the group of
isometries generated by their covering involution has order 2m.

To obtain examples for the other two cases it is possible to use
the list in ([KS]) of the symmetry groups of the knots up to ten
crossing. We recall the following definitions.

- A knot has a period of order p if there is a cyclic group I of
order p whose elements are orientation-preserving symmetries
of the knot with fixed-point set (may be empty) disjoint from
the knot.

- A knot has a cyclic period of order q if there is a cyclic group
I of order q whose elements are orientation-preserving symme-
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tries with non-empty fixed-point set disjoint from the knot.

For example we can consider the knot 10157 that has a dihedral
group of symmetries of order eight but it has no cyclic period. This
knot is the closure of the 3-braid (σ−1

1 σ2)
4∆2 (see [4]); ∆ is the 3-

braid σ1σ2σ1 and we remember that ∆2 is a generator of the center
of 3-braid group. By a geometric point of view we can imagine to
draw the 3-braid (σ−1

1 σ2)
4 in a strip of paper and then to join the

two ends with a full twist; ∆2 is the full twist. In the Figure 3 10157

is presented in the three dimensional space in this form; a system
of cartesian axes is presented in the figure and the crossings “lie”
in some different planes because we must rotate the strip of paper.
(We can think that the crossings C1 and C5 lie in the xy-plane, the
crossings C3 and C7 lie in two plains which are parallel to the zy-
plane, (−1,−1, 1) is a normal vector to the plane where the crossing
C2 lies, (−1, 1,−1) is the normal vector for C4, (1, 1, 1) for C6 and
finally (1,−1, 1) for C8.)
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A generator of the cyclic group of symmetries of order four is the
product of a rotation of order four around the axis τ and a rotation
of order four around the axis µ (see Figure 4).
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We note that in this case the fixed-point sets of the strong inver-
sions are pairwise disjoint (see Figure 5), in fact the product of any
two strong inversions is a symmetry acting freely.

the axes of the four strong inversions

Figure 5.
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An example for the standard construction III can be obtained
from the knot 74; by the list in [6] we know that D, the group of
symmetries of the knots 74, is a dihedral group of order eight with
a period of order four and a cyclic period of order two and we can
obtain two inequivalent knots which arise from the standard dihedral
construction III. The knot 74 is a 2-bridge knot, and exactly the knot
15/4 (see the first picture in in Figure 6). It is possible to have a
projection of 15/4 as represented in the second picture of Figure 6
(see [11]); to visualize the symmetries we draw the knot on the 2-
sphere (third picture in figure 6). The cyclic period is given by a

Figure 6.

rotation of order two around the axis τ , the symmetry of order 4
is the product of a rotation of order four around the axis τ and a
rotation of order 2 around the axis µ (see the first picture in Figure
7). In the second picture in Figure 7 we draw the fixed-point sets
of the four strong inversions and we mark the intersections between
the knot and the axes of the strong inversions (points qi i = 1, . . . , 8)
and between the different fixed-point sets of the strong inversions
(points pi i = 1, . . . , 3 and one point at infinity). In this case we
note that the fixed-point sets of two strong inversions that generate
D are disjoint, in fact the product of two strong inversions of this
type is a symmetry acting freely; on the other hand the fixed-point
sets of two strong inversions such that their product is the central
involution in D (that has non-empty fixed-point set) intersect in two
points of the axis τ .

To obtain other examples of inequivalent knots which arise from
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standard dihedral construction III, we can use Montesinos knots.
The hyperbolicity of Montesinos links and its symmetry groups are
known (see [2]); there exist Montesinos knots with dihedral symme-
try group of order 2m+1, period of order 2m and cyclic period of
order 2. We note that any Montesinos knot has a cyclic period of
order 2 and has no cyclic period of order 2m with m > 1, thus also
in this case we can not find more general classes of examples.

In general it is easy to find knots with any period and cyclic
period but it is not trivial to investigate the hyperbolicity of these
knots.

For example generalizing the construction presented for the knot
10157 we consider the closures T(m,k) of the 3-braids (σ−1

1 σ2)
2m

∆2k.
We note that for k = 0 we obtain Turk’s head knots.

The knot T(m,k) has a period of order 2m and a cyclic period of
order the maximal common divisor between 2m and k (see also [4]).
A general proof of the hyperbolicity of these knots (if they are hy-
perbolic) and the study of the symmetry groups are non-trivial.

We check the knots T(8,1), T(8,2), T(8,4) by J.Week’s program Snap-
Pea and we have other examples of standard dihedral construction
I and III where the group generated by the covering involutions is a



178 M. MECCHIA

dihedral group of order 16.

Other examples can be obtained by the Wolcott theta curve in-
troduced in [17].

The Wolcott theta curve Θa,b,c is presented in Figure 8 where
a, b, c represent the numbers of full twists in the dashed circles .

e1

e2

e3

θi, j, k

a

b

c

Figure 8.

First we know that for a, b and c different each other and suffi-
ciently large, the Z2 ×Z2 branched covering of Θa,b,c is a hyperbolic
3-manifold Ma,b,c with orientation-preserving isometry group G iso-
morphic to Z2 × Z2 (see [18] and [10]). We denote by t1, t2 and t3
the three involution in G, we know that the quotient orbifolds M/ti
have the 3-sphere as underlying topological space. The singular sets
of M/ti are inequivalent knots (otherwise the covering involutions
are conjugate in G) and any two of them arise from the dihedral
construction II.

We consider now the case with a = b 6= c; for a, c sufficiently
large and not in the form {lm, (l − 1)m)} with l and m integers
and l even, we know that the Z2 × Z2 branched covering of Θa,b,c is
an hyperbolic 3-manifold Ma,b,c with orientation-preserving isometry
group G isomorphic to the dihedral group of order eight (see [10]).
The quotient orbifold Ma,b,c/G is a 3-sphere with singular set a pince-
nez graph. Let t1 and t2 a couple of involution which generate G, it
is possible to prove (drawing the singular set of the various quotient
orbifolds) that the two quotient orbifolds M/t1 and M/t2 have the
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3-sphere as underlying topological space. The singular set of M/t1
and M/t2 are inequivalent knots (otherwise t1 and t2 are conjugate
in G) and they arise from the standard dihedral construction III.

These examples prove that all the situations described in Theo-
rem 2.5 really occur.
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