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Summary. - In this paper we present several results and state some
open problems on the classification of topological and geometric
structures of closed connected oriented (smooth) four–manifolds.
In particular, we discuss many interesting classes of closed four–
manifolds satisfying additional properties, that is, spin manifolds,
manifolds with special homology (resp. homotopy), exact mani-
folds, geometric manifolds, and smooth manifolds. The results,
some of them due to the authors and their collaborators, are ob-
tained by using methods and techniques from algebraic and dif-
ferential topology, and homological algebra.
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1. Spin Manifolds

Let SO(n) be the special orthogonal linear group. The following
facts are well-known:

1) π1(SO(n)) ∼= Z2;

2) The universal covering space S̃O(n) of SO(n) is Spin(n);
3) There is a fibration map

Z2 −−−→ Spin(n)
ρ

−−−→ SO(n)

with fiber Z2;
4) The fibration map ρ induces a map between the classifying

spaces

BSpin(n) −−−→ BSO(n) ∼ Gn(Rn+m)

where BSO(n) is approximated by the set of all n-dimensional vector
subspaces of Rn+m.

Let Mm ⊂ Rn+m be a closed connected oriented smooth m-
manifold which embeds smoothly in Rn+m (m = 4 in our case). We
can now consider the Gauss map

ν : Mm → Gn(Rn+m) ∼ BSO(n).

For any point x ∈M , let Ox(M) be the vector subspace orthogonal
to the embedding Mm ⊂ Rn+m, briefly called the normal space of
M at x. Then ν(x) is the (linear) subspace of Rn+m passing through
the origin and parallel with Ox(M). The manifold M is spin, i.e.
w2(M) = 0, if and only if there exists a lifting ν̄ of the Gauss map ν
such that the diagram

Mm ν̄
−−−→ BSpin(n)

∥∥∥
y

Mm −−−→
ν

BSO(n)

commutes. Any lifting ν̄ of the Gauss map ν is called a spin structure

on M .
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Let Mm
1 and Mm

2 be closed oriented spin smooth m-manifolds
with spin structures

Mm
i

ν̄i−−−→ BSpin(n)
∥∥∥

y

Mm
i −−−→

νi

BSO(n)

for i = 1, 2. Then M1 is said to be spin cobordant to M2 if there
exist a compact connected oriented smooth (m+ 1)-manifold Wm+1

with ∂W = M1 ∪ (−M2) and a spin structure on W

W
ν̄W−−−→ BSpin(n)

∥∥∥
y

W −−−→
νW

BSO(n)

such that
ν̄W |∂W = ν̄1 ∪ ν̄2.

The spin cobordism group ΩSpin
m is the set of all equivalence classes

of closed oriented spin smooth m-manifolds modulo spin cobordant
relation (see for example [37]).

Theorem 1.1. A closed oriented spin smooth 4-manifold M is null
cobordant in ΩSpin

4 , i.e. is the boundary of a compact oriented spin
smooth 5-manifold W 5 if and only if the signature of M vanishes.

The Rohlin theorem gives an isomorphism

ΩSpin
4 −−−→

∼=
Z

which sends any cobordism class [(M, ν̄M )] to σ(M)/16 (here σ(M)
is the signature of M). In particular, the Kummer surface K4 =
{z4

0 + z4
1 + z4

2 + z4
3 = 0} ⊂ CP 3 is a generator of ΩSpin

4 .
The following result was proved by Cappell and Shaneson [2] in

1979 (see also [22] and [43]).

Theorem 1.2. A closed oriented smooth 4-dimensional manifold em-
beds smoothly in Euclidean 6-space if and only if it is spin and has
zero signature.
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Cochran investigated in [13] the question of when a spin closed
smooth 4-manifold M with trivial signature also embeds smoothly
in R5. The main result of [13] gives sufficient conditions in terms
of π1(M), which work in a broad range of situations. For instance,
H1(M) a product of at most two cyclic groups or π1(M) a free prod-
uct of cyclic groups suffices. The proof is direct and was obtained
by surgery of Kervaire–Milnor type [33] [36] [38], and is not an ap-
plication of the usual surgically proved embedding results (see [48]).
Furthermore, all geometrically “simple” 4-manifolds which embed in
Euclidean 6-space (e.g. the topological product of two closed surfaces
and the product of a closed 3-manifold with the circle) do indeed em-
bed in R5. More generally, if H2(M) is finite or H2(π1(M)) ∼= 0, then
Theorem 4.1 of [13] gives necessary and sufficient conditions for M
to embed in R5. This yields the first known examples of closed 4-
manifolds with π1

∼= Zp ×Zp ×Zp which embed in R6 but not in R5

(see [12]). Here we state Theorem 4.1 mentioned above (see [13, p.
259]).

Theorem 1.3. Let M be a closed connected orientable smooth 4–
manifold, and let G = π1(M). Then M embeds smoothly in R5 if
and only if the following conditions hold:

i) there exist finitely presented groups Gi and homomorphisms
gi : G→ Gi, i = 1, 2, such that the pushout of the diagram

G
g1

−−−→ G1

g2

y
y

G2 −−−→ 1

is trivial;

ii) the gi induce an isomorphism H1(G) ∼= H1(G1)⊕H1(G2), and
an epimorphism (ψ1, ψ2) : H2(G)→ H2(G1)⊕H2(G2);

iii) there exist spin structures σi on M and maps fi : M → BGi

which induce the gi and such that [(M,σi, fi)] = 0 in ΩSpin
4 (Gi) for

any i = 1, 2;

iv) there exist one–half rank subgroups C and D such that C ⊕
D ∼= H2(M), D ⊥ D with respect to the intersection pairing, and
C ⊂ kerψ2, D ⊂ Kerψ1; and
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v) either H2(G1) torsion–free and H2(G2) ∼= 0 or H2(G1) and
H1(G2) torsion–free.

For the definition of spin cobordism groups ΩSpin
4 (G), where G is

a group, we refer to [14], [39] and [40]. One consequence is (see [13,
Theorem 6.2])

Theorem 1.4. Let M be a closed connected orientable smooth spin
4–manifold with trivial signature. Then if any of the following con-
ditions hold, M will embed smoothly in R5.

a) H1(M) is the direct sum of fewer than 3 cyclic groups;

b) π1(M) is a free product of any number of cyclic groups; or

c) π1(M) ∼= G1 ×G2, where

H4(Gi) ∼= H3(Gi; Z2) ∼= H2(Gi; Z) ∼= Tor(H1(Gi),Z2) ∼= 0

for any i = 1, 2.

As general references for the algebraic and differential topology of
4-manifolds and surgery theory see [20], [22], [26], [34], [36], and [48].
Basic concepts and results of homological algebra can be found in [3].

2. Four-manifolds with vanishing second homology

We consider closed oriented smooth 4-manifolds M with second in-
tegral homology group H2(M ; Z) ∼= 0.

Examples 2.1. 1) Four-manifolds homotopy equivalent to the con-
nected sum Q = #k(S

1 × S3) (see [4], [6], [27], and [29]). In this
case, we have also π2

∼= 0.

2) The boundary of a regular neighborhood of an acyclic con-
nected 2-complex (arising from a finitely presented group) embedded
in Euclidean 5-space.

3) Four-manifolds obtained from the standard 4-sphere S4 by
surgery on 2-knots (see for example [26]). Let K be a 2-knot in
S4. Then the closed 4-manifold obtained from S4 by surgery on K is
defined as:

M(K) = (S4\S2 ×
◦

D2) ∪S2×S1 (D3 × S1).
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Of course, we have π1(M(K)) ∼= π1(K). It is known that M(K)
is aspherical if and only if π1(K) is an PD+

4 -group and the image
of the fundamental class [M(K)] ∈ H4(M(K); Z) is non zero in
H4(π1(K); Z) (see for example [26]).

If H2(M ; Z) ∼= 0, then H1(M) ∼= H3(M) ∼= FH3(M) is a free
abelian group (use Poincaré duality), i.e. H1(M) ∼= ⊕kZ. Applying
the Universal Coefficient Theorem we get

0 −−−→
∼=

ExtZ(H1(M),Z2) −−−→ H2(M ; Z2) −−−→

−−−→ HomZ(H2(M),Z2) −−−→
∼=

0,

hence H2(M ; Z2) ∼= 0, i.e. M is a spin manifold. The signature of
M vanishes since the integral intersection form of M is trivial (use
H2(M ; Z) ∼= 0). So Theorem 1.1 and Theorem 1.2 apply in our case
to give the following

Theorem 2.2. Let M be a closed oriented smooth 4-manifold with
H2(M ; Z) ∼= 0. Then M embeds smoothly in R6. Moreover, there
exists a compact connected oriented smooth spin 5-manifold W 5 such
that M = ∂W .

By a sequence of surgeries we can always assume that W is
simply-connected. For this, we observe that a surgery along an em-
bedding

ϕ : S1 ×D4 →W 5

does not disturb the boundary ∂W = M and the property w2 = 0.
So we obtain a spin simply-connected 5-manifold W with ∂W = M .

The following result was proved in [10].

Theorem 2.3. If H2(M ; Z) ∼= 0, then we can do surgery on the
group H2(W ; Z) ∼= π2(W ). In other words, there is a spin simply-
connected smooth 5-manifold W with ∂W = M and π2(W ) ∼= 0.

Applying the homology exact sequence of the pair (W,M) we
get:

i) H5(W ) ∼= 0 since ∂W = M is nonempty;
ii) H4(W ) ∼= H1(W,∂W ) ∼= 0 since we have the exact sequence:

H0(W ) −−−→
∼=

H0(M) −−−→ H1(W,∂W ) −−−→ H1(W ) ∼= 0
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iii) The isomorphism H3(W ) ∼= H2(W,∂W ) and the exact se-
quence:

0 ∼= H1(W ) −−−→ H1(M) −−−→
∼=

H2(W,M) −−−→ H2(W ) ∼= 0

imply that H3(W ) ∼= H1(M) ∼= H1(M) ∼= ⊕kZ.

Hence W has the homotopy type of a wedge ∨kS3. Now let us
consider the double

DW = W ∪M W.

We have:

1) π1(DW ) ∼= 0;

2) H2(DW ) ∼= H1(M) ∼= ⊕kZ;

3) DW is spin.

It follows from Barden’s classification theorem of closed simply-
connected smooth 5-manifolds [1] (see also [45]) that DW is diffeo-
morphic to the connected sum #k(S

2 × S3).

Summarizing, we have the following result [10]

Theorem 2.4. Let M be a closed oriented smooth 4-manifold with
H2(M ; Z) ∼= 0.

1) Then M bounds a compact smooth spin oriented 5-manifold
W which is homotopy equivalent to a wedge ∨kS3 of 3-spheres, where
k is the rank of H1(M);

2) Furthermore, M embeds smoothly in the connected sum of k
copies of S2 × S3 (hence in R6).

Example 2.5.

Q = #k(S
1 × S3),

W = #k(D
2 × S3),

DW ∼= #k(S
2 × S3).

In this case, we have also a compact 5-manifold V = #k(S
1 × D4)

such that ∂V = Q and π1(V ) ∼= ∗kZ ∼= π1(Q). Moreover, we have

X = W ∪Q V = S5,

hence Q embeds smoothly in S5 (or R5).
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Question 2.6. What can we say for a generic 4-manifold M with
H2(M ; Z) ∼= 0?

We are going to construct a compact smooth 5-manifold V with
∂V = M , π1(V ) ∼= π1(M), and H2(V ; Z) ∼= 0. For this, we need the
hypothesis f∗([M ]) = 0, where

f : M → Bπ1(M)

is the classifying map for the universal covering, and [M ] ∈ H4(M ; Z)
is the fundamental class of M . Under this condition, there is a
compact smooth 5-manifold V with boundary ∂V = M , and π1(V ) ∼=
π1(M). Now it is impossible in general to kill π2(V ). But after a
finite sequence of surgeries of Kervaire-Milnor type, we can simplify
H2(V ; Z). In fact, we can always assume that H2(V ; Z) is isomorphic
to either 0, Z2, or Z (for the proof see [10]).

The closed smooth 5-manifold

X = W ∪M V

satisfies the following properties:
i) π1(X) ∼= 0 by Van Kampen’s theorem since π1(V ) ∼= π1(M);
ii) H2(X) is isomorphic to either Z, Z2, or the trivial group;
iii) X is diffeomorphic to either X∞, X−1 or S5 (by Barden’s

classification theorem).
Recall that X−1 and X∞ are constructed as follows. Let B → S2

be the non-trivial D3-bundle, and let B∗ be the same with opposite
orientation. Then we have H2(∂B) ∼= Z ⊕ Z with generators p and
q. In fact, ∂B is homeomorphic to CP 2#(−CP 2). Let

g−1 : ∂B → ∂B

and
g∞ : ∂B → ∂B

be diffeomorphisms such that

(g−1)∗(p) = p, (g−1)∗(q) = −q,

and (g∞)∗ is the identity on H2(∂B). Then we define:

X−1 = B ∪g−1 B
∗
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and

X∞ = B ∪g∞ B∗.

It follows that H2(X−1) ∼= Z2 and H2(X∞) ∼= Z.

The following result was proved in [10]:

Theorem 2.7. Let M be a closed oriented smooth 4-manifold with
H2(M ; Z) ∼= 0. Suppose that f∗[M ] = 0, where f : M → Bπ1(M) is
the classifying map for the universal covering, and [M ] ∈ H4(M ; Z)
is the fundamental class. Then M embeds smoothly either in S5

(hence in R5), X−1, or X∞.

We complete the section with three open problems.

Problem 2.8: Construct examples of closed connected smooth 4-
manifolds M with H2(M ; Z) ∼= 0 which embed smoothly in one of
the above 5-manifolds but not in the other two.

Problem 2.9: Construct examples of closed connected smooth 4-
manifolds M with H2(M ; Z) ∼= 0 which do not embed in R5.

Problem 2.10: Classify up to homotopy equivalence (resp. up to
homeomorphism, up to diffeomorphism) closed smooth oriented 4-
manifolds with H2

∼= 0.

A partial result concerning Problem 2.10 was proved in [4] (see
also [8]):

Theorem 2.11. Let M4 be a closed orientable topological 4-manifold
with π1

∼= ∗kZ (free group on k free generators), and H2
∼= 0. Then

M is homotopy equivalent (resp. s-cobordant) to #k(S
1×S3). In par-

ticular, a closed orientable topological 4-manifold M is TOP home-
omorphic to S1 × S3 if and only if π1(M) ∼= Z and H2

∼= 0 (or
equivalently, χ(M) = 0).

3. Four-manifolds with special third homotopy

We first consider the class of closed topological 4-manifolds M4 (pos-
sibly nonorientable) with π3(M) ∼= 0.

The following result was proved in [5]:
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Theorem 3.1. Let M4 be a closed connected topological 4-manifold
such that π3(M) ∼= 0. If π1(M) is finite, then M is TOP home-
omorphic to either S4, CP 2, ∗CP 2 (the Chern manifold), RP 4 or
the unique non-smoothable homotopy RP 4 (fake RP 4). If π1(M) is
infinite, then M is aspherical.

Remark 3.2. If the Borel conjecture holds in dimension 4 ( ho-

motopy equivalent aspherical 4-manifolds are TOP homeomorphic),
Theorem 3.1 yields a complete list of all homeomorphy types of closed
4-manifolds with π3

∼= 0. Recall that the conjecture is true for exam-
ple for π1 poly-(cyclic or finite), i.e. π1 admits a finite composition
serie whose factors are all infinite cyclic or finite cyclic.

To prove the theorem above, let us first assume that M̃ is com-

pact, i.e. π1(M) is finite. Then M̃ (3) = M̃\
◦

B4 is homotopy equiva-
lent to a wedge ∨rS

2
i .

Since the homomorphism

⊕rπ3(S
2
i )→ π3(M̃

(3)) ∼= π3(∨rS
2
i )

is injective, the exact homotopy sequence

π4(M̃, M̃ (3)) ∼= H4(M̃, M̃ (3)) ∼= Z −−−→ π3(M̃
(3)) −−−→ 0

implies that r ≤ 1. Recall that π3(M̃ ) ∼= π3(M) ∼= 0. There-

fore, M̃ (3) is homotopy equivalent to either zero or S2. Then M̃
is homotopy equivalent to either S4, CP 2 or ∗CP 2. By Freedman’s
theorem [19] [20], M̃ is TOP homeomorphic to one of these mani-
folds. Therefore, the only possibilities for M are finite quotients of
S4, CP 2, or ∗CP 2. So M must be TOP homeomorphic to either
S4, CP 2, ∗CP 2, RP 4 or the unique non-smoothable homotopy RP 4

(fake RP 4) by [20] and [44].

Let us assume now that M̃ is not compact, i.e. π1(M) is infinite.

Then we haveH1(M̃) ∼= H4(M̃) ∼= 0, andH2(M̃) ∼= π2(M̃) ∼= π2(M).

Suppose ϕ : S2 → M̃ represents a generator of H2(M̃) ∼= π2(M̃ ). We

are going to prove that ϕ is null homotopic, and hence H2(M̃ ) ∼= 0.
Since π3(M) ∼= 0, the composition

S3 η
−−−→ S2 ϕ

−−−→ M̃
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is homotopic to zero, where η is the Hopf map. Then ϕ extends to
a map

φ : S2 ∪η D
4 = CP 2 → M̃.

Now we have H3(M̃ ) ∼= 0 by the commutativity of the following
diagram

π4(M̃
(4), M̃ (3))

θ
−−−→ π3(M̃

(3)) −−−→ π3(M̃
(4)) ∼= 0

∂4

y
yi∗

π3(M̃
(3), M̃ (2)) π3(M̃

(3), M̃ (2))

∂3

y
yk∗

π2(M̃
(2), M̃ (1)) ←−−−

j∗
π2(M̃

(2)) ←−−− π2(M̃
(1)) ∼= 0.

Here we have used the isomorphisms π3(M̃
(4)) ∼= π3(M) ∼= 0. In

fact, we obtain isomorphisms

H3(M̃ ) = Ker ∂3/ Im ∂4
∼= Ker k∗/ Im i∗ ∼= 0.

Observe that H3(M̃ ) ∼= H4(M̃ ) ∼= 0 yield H4(M̃) ∼= 0 by the Univer-
sal Coefficient sequence

0 −−−→ ExtZ(H3(M̃ ),Z) −−−→ H4(M̃ ) −−−→

−−−→ HomZ(H4(M̃),Z) −−−→ 0.

Let us consider the induced homomorphism

φ∗ : H∗(M̃ )→ H∗(CP 2).

We prove that φq = 0 for any q > 0. Let x ∈ H2(M̃) with φ2(x) =

u ∈ H2(CP 2). Since H4(M̃) ∼= 0, we have x2 = 0, and whence
u2 = (φ2(x))2 = 0 in H4(CP 2) ∼= Z. This gives u = 0, i.e. φ2 = 0.
Thus, φq = 0 for any q > 0. Hence ϕ is homotopic to zero, i.e.
H2(M̃ ) ∼= 0. So M̃ is contractible, i.e. M is aspherical.

The above discussion suggests in a natural way the following:

Problem 3.3: Classify the homotopy (resp. homeomorphism, dif-
feomorphism) type of closed (smooth) connected 4-manifolds with
special third homotopy; for example, π3

∼= Z, . . . , Z∞. Which are
the admissible fundamental groups for such manifolds?
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Examples are given by closed 4-manifolds M with universal cov-
ering space M̃ = S3 × R (hence π2

∼= 0 and π3
∼= Z), which were

considered in [25]. In this case, the fundamental group π = π1(M)
is an extension of Z or the infinite dihedral group D = Z2 ∗ Z2 by a
(maximal) finite normal subgroup F . Moreover, F has cohomologi-
cal period dividing 4, and the associate covering space MF is a finite
orientable Poincaré complex of (formal) dimension 3.

If π/F ∼= D, then M is nonorientable and π acts trivially on
π3(M).

If π/F ∼= Z, and τ : MF → MF is a generator of the group
of covering transformations, then M is homotopy equivalent to the
mapping torus M(τ) (for more details see [25] and [26]).

4. Exact manifolds

Let us consider closed smooth connected oriented 4-manifolds M
such that H1(M ; Z) ∼= Z. Following [31] and [32], a leaf of M is
a bicollared 3-submanifold V of M which represents a generator of
H3(M ; Z) ∼= H1(M ; Z) ∼= Z. We can specify an orientation of V
uniquely by the orientation of M and a generator of H1(M ; Z), and
always take V connected.

A closed smooth 4-manifold M with π1
∼= Z is split or TOP-split,

respectively, if it is diffeomorphic or homeomorphic to the connected
sum (S1 × S3)#M1, where M1 is the unique simply-connected 4-
manifold obtained from M by a 2-handle surgery killing π1(M).

Kawauchi introduced in [31] and [32] the concept of exact 4-
manifold, i.e. a closed connected smooth 4-manifold M with first
integral homology group H1(M ; Z) ∼= Z which admits an exact leaf,
a special leaf satisfying a certain exactness condition (see Theorem
4.1). This concept was motivated by an attempt to correct an error
in [30] on the TOP-splittability for closed 4-manifolds with π1

∼= Z.
In fact, Hambleton and Teichner [23] gave an example of a non-TOP-
splittable topological 4-manifold with π1

∼= Z and Witt index zero,
and showed that every 4-manifold with π1

∼= Z and Witt index ≥ 3 is
necessarily TOP-splittable, where the Witt index of a 4-manifold M
with H1(M ; Z) ∼= Z is defined to be the integer (β2(M)−|σ(M)|)/2.

In [32] it was proved a criterion of TOP-splittability for closed
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4-manifolds with π1
∼= Z (see Corollary 4.4). This result shows

that the exactness on closed 4-manifolds M with H1(M ; Z) ∼= Z is
a generalization of the TOP-splittability on 4-manifolds with π1

∼=
Z. Some different criteria of TOP-splittability (also for closed 4-
manifolds with more general fundamental groups) were given in [6]–
[7] and [20]. In [23] it was constructed a non-TOP-splittable topolog-
ical 4-manifold with π1

∼= Z. However, as stated in [32], it appears
unknown whether there exists a non-TOP-splittable smooth closed
4-manifold with π1

∼= Z.
For a leaf V of a 4-manifold M with H1(M ; Z) ∼= Z, let MV

be the 4-manifold obtained from M by splitting it along V . The
boundary ∂MV is the disjoint union (−V +) ∪ V − of the two copies
V ± of V under the natural identifications

i± : V ∼= V ± ⊂ ∂MV .

Let M̃ be the infinite cyclic connected covering space of M . For a
subspace A of M , let Ã denote the preimage of A under the covering
projection p : M̃ → M . For a generator t of the infinite cyclic
covering transformation group of M̃ , the pair

(M̃V , (−Ṽ
+) ∪ Ṽ −)

is the disjoint union of the covering translations

(tiMV , (−t
iV +) ∪ tiV −)

(i = 0,±1,±2, . . . ) of the pair (MV , (−V
+) ∪ V −) by identifying

(MV , (−V
+) ∪ V −) with a lift of it to M̃ , and Ṽ is the disjoint

union of tiV (i = 0,±1,±2, . . . ) under the identification of V with

−V + = t−1V − in M̃ . From a technical reason, we often regard
MV as MV = cl(M\V × [−1, 1]) for a bi-collar neighborhood of
V in M . Following [31] and [32], let us denote the torsion part
of an abelian group G by tG and the torsion-free group G/tG by
bG. Let Λ = Z[Z] = Z[t, t−1] be the integral Laurent polynomial

ring. The homology H∗(M̃ ; Z) is naturally regarded as a finitely
generated Λ-module. For a Λ-moduleH, let TH denote the Λ-torsion
part of H, and let BH denote the Λ-torsion-free part H/TH. Let
Eq(H) = ExtqΛ(H,Λ).
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For a leaf V of a closed smooth 4-manifold M withH1(M ; Z) ∼= Z,
the image of the natural homomorphism

ĩ∗ : H2(Ṽ ; Z)→ BH2(M̃ ; Z)

is called the leaf submodule of BH2(M̃ ; Z) on Ṽ , and it is denoted
by X(Ṽ ).

The Λ-intersection form

S : H2(M̃ ; Z)×H2(M̃ ; Z)→ Λ

is defined by

S(x, y) =

+∞∑

i=−∞

s(tix, y)ti

where s denotes the integral intersection form on H2(M̃ ; Z). Then
S induces a non-degenerate (but not necessarily non-singular) Λ-
Hermitian form

BH2(M̃ ; Z)×BH2(M̃ ; Z)→ Λ

which is also called the Λ-intersection form, and denoted by S.
Kawauchi gave in [31] and [32] an algebraic characterization of

an exact leaf (see Theorem 4.1), and an algebraic characterization
of an exact 4-manifold (see Theorem 4.2). Moreover, he proved the
stable existence of an exact 4-manifold (see Theorem 4.5).

Theorem 4.1. For a leaf V of a closed smooth 4-manifold M with
H1(M ; Z) ∼= Z, the following conditions are equivalent:

1) The natural semi-exact sequence

0 −−−→ tH2(M̃, Ṽ ; Z)
e∂

−−−→ tH1(Ṽ ; Z)
ei∗−−−→ tH1(M̃ ; Z)

induced from the homology exact sequence of the pair (M̃, Ṽ ) is exact;
2) The natural semi-exact sequence

0 −−−→ tH2(M̃, M̃V ; Z)
e∂′

−−−→ tH1(M̃V ; Z)
ei′∗−−−→ tH1(M̃ ; Z)

induced from the homology exact sequence of the pair (M̃, M̃V ) is
exact;
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3) There is a splitting

BH2(M̃ ; Z) ∼= P ⊕X(Ṽ )⊕ Y

such that X(Ṽ ) is the leaf submodule on Ṽ and the following prop-
erties (3.1)-(3.3) are satisfied:

(3.1) The direct summands P and X(Ṽ ) ⊕ Y are orthogonal, i.e.
P⊥(X(Ṽ )⊕ Y ), with respect to

S : BH2(M̃ ; Z)×BH2(M̃ ; Z)→ Λ.

(3.2) There is a Λ-basis for P which are represented by 2-cycles in
MV and on which the restriction

S|P : P × P → Λ

is represented by an integer matrix with determinant ±1.

(3.3) The direct summand Y is Λ-free, and X(Ṽ )⊥ = X(Ṽ ), i.e.
X(Ṽ ) is self-orthogonal, with respect to the restriction

S|X(Ṽ )⊕Y : (X(Ṽ )⊕ Y )× (X(Ṽ )⊕ Y )→ Λ.

Following [31] [32], a closed connected smooth 4-manifold M with
H1(M ; Z) ∼= Z is said to be exact if there is an exact leaf V of M , i.e.
V satisfies one of the conditions (1)-(3) of Theorem 4.1. Kawauchi
showed in [32] that the exactness on a closed 4-manifold M with
H1(M ; Z) ∼= Z can be algebraically characterized. We now state his
theorem.

Theorem 4.2. A closed connected smooth 4-manifold M with first
integral homology group H1(M ; Z) ∼= Z is exact if and only if there

is a splitting P ⊕X ⊕ Y of BH2(M̃ ; Z) such that
1) P is orthogonal to X ⊕ Y with respect to

S : BH2(M̃ ; Z)×BH2(M̃ ; Z)→ Λ;

2) There is a Λ-basis for P on which the restriction

S|P : P × P → Λ
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is represented by an integer matrix with determinant ±1; and
3) The direct summand Y is a free Λ-module and X⊥ = X with

respect to the restriction

S|X⊕Y : (X ⊕ Y )× (X ⊕ Y )→ Λ.

In this case, we have a connected exact leaf V of M with X(Ṽ ) =

X and a Λ-basis for P consisting of 2-cycles in MV ⊂ M̃ . Note
that Theorems 4.1 and 4.2 hold for topological 4-manifolds M with
H1(M ; Z) ∼= Z as well as the following corollary holds for topological
4-manifolds with π1

∼= Z because the punctured manifold of every
closed connected 4-manifold is smoothable (see [20] and [22]).

Corollary 4.3. A closed connected smooth 4-manifold M with fun-
damental group π1(M) ∼= Z is exact if and only if it is TOP-splittable
(or equivalently, if and only if the signature of M is trivial).

We now present the proof of Corollary 4.3 given in [32]. Let M
be a closed connected smooth 4-manifold with π1(M) ∼= Z. Then

H2(M̃ ; Z) is proved to be a free Λ-module (for details see the quoted

paper). If M is TOP-splittable, then we can take P = H2(M̃ ; Z) ∼=
π2(M) and X = Y = 0. Conversely, assume that M is exact. Then

we have a splitting H2(M̃ ; Z) = P ⊕X⊕Y as in Theorem 4.2. Using

the fact that H2(M̃ ; Z) is Λ-free, we obtain that X is Λ-projective
and hence Λ-free. Then it follows that the Λ-intersection form S on
H2(M̃ ; Z) is represented by a symmetric integer matrix A. Let M1

be the simply connected 4-manifold obtained from M by a surgery
killing a generator of π1(M) ∼= Z. It is proved in [30] that M and
(S1 × S3)#M1 are homology cobordant. This implies that M and
(S1 × S3)#M1 have the same Kirby-Siebenmann invariant (because
it is a cobordism invariant) and have the same Λ-intersection form
represented by the symmetric integer matrix A. By [20], there is
a homeomorphism from M to (S1 × S3)#M1, and so M is TOP-
splittable.

By Corollary 4.3, the non-TOP-splittable topological closed 4-
manifold with π1

∼= Z and Witt index zero, given by Hambleton and
Teichner in [23], is not exact.

The following stable existence theorem on exact 4-manifolds,
proved in [32], also holds for topological 4-manifolds with H1

∼= Z.
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Theorem 4.4. For every closed connected smooth 4-dimensional man-
ifold M with H1(M ; Z) ∼= Z, there is a non-negative integer n such
that the connected sum M#n(S2 × S2) is exact.

Finally, it was proved in [31] that any closed connected smooth
4-manifold M with H1(M ; Z) ∼= Z is exact if it is homology cobor-
dant to a splittable 4-manifold, σ(M) = 0, and the first Alexander
polynomial has no root of unity as a root.

The above discussion suggests in a natural way the following:

Problem 4.5: Construct some examples in the category TOP (resp.
DIFF) of exact 4-manifolds which are non-TOP-splittable (resp. non-
DIFF-splittable).

Problem 4.6: Classify the homotopy (resp. homeomorphism, dif-
feomorphism) type of closed exact (smooth) 4-manifolds.

5. Geometric manifolds

Let X be a simply-connected smooth n-manifold with a complete
homogeneous Riemannian metric such that its isometry group G
acts transitively on X, and contains discrete subgroups ( lattices)
Γ which act freely on X, and such that the quotient X/Γ has finite
volume. A closed connected n-manifold M is said to be geometric

in the sense of Thurston, or equivalently, an X-manifold if it is a
quotient of type X/Γ as defined above. It is well-known that every
closed 1- or 2-manifold is geometric, and there are just the classical
geometries of constant curvature: Euclidean E1 and E2, spherical S2,
and hyperbolic H2. In dimension 3, there are exactly 8 geometries:
in addition to E3, S3 and H3, we have also the products S2 × E1

and H2×E1, the twisted products S̃L and Nil3, and the solvable Lie
geometry Sol3. Much current research on 3-manifold topology has
been guided by Thurston’s Geometrization Conjecture, i.e. every

closed irreducible 3-manifold has a canonical finite decomposition

into geometric pieces. This conjecture has been established for many
classes of 3-manifolds, but there is no a complete proof. The main
problem is still the classification of all hyperbolic 3-manifolds. The
4-dimensional geometries are exactly 19, and were worked out by
Filipkiewicz [16] in his PhD thesis (see also [46] and [47]). One of
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them is in fact an infinite family of closely related geometries Sol4m,n,

including Sol3×E1, and one has no compact realization (only finite
volume) but plays an important role in geometric decompositions.
Here we give the complete list of the 4-dimensional geometries, i.e.
the corresponding model spaces:

compact: S4, CP 2, and S2 × S2;

mixed spherical: S3 × E1, S2 × E2, and S2 ×H2;

solvable Lie: Nil3×E1, Nil4, Sol4m,n, Sol40, and Sol41
(note that Sol3×E1 = Sol4m,n for all m ≥ 1);

Euclidean: E4

mixed aspherical: H2 × E2, S̃L× E1, and H3 × E1;

semisimple: H2 ×H2, H4, and H2(C);

noncompact: F4 (tangent bundle of H2)

Some questions arise in a natural way:

Problem 5.1: When is a closed connected 4-manifold homeomor-
phic, diffeomorphic, homotopy equivalent or s-cobordant to a geo-
metric 4-manifold?

Problem 5.2: Classify the homotopy (resp. homeomorphism, dif-
feomorphism) type of all geometric manifolds? Which are the ad-
missible fundamental groups for the manifolds admitting a geometry
of a specified model?

There are many results in the current literature concerning the
problems above (see for example [24] and [26]), but there is no com-
plete classification. For example, in [28] it was investigated when a
4-manifold which fibres over an aspherical closed surface admits a
geometry.

In order to formulate an analogue of Thurston’s conjecture, Hill-
man introduced in [28] the following definition. A closed n-manifold
M has a geometric decomposition if it may be split along a finite
collection S = {Si} of disjoint 2-sided hypersurfaces Si (cusps) such
that the components (pieces) of the complement M\ ∪ S, are com-
plete geometric manifolds of finite volume. Of course, the decompo-
sition may not be unique.

The following is the main result proved in [28]:
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Theorem 5.3. If a closed 4-manifold M admits a geometric decom-
position, then either

i) M is geometric; or

ii) M has a double covering which is an S2 ×H2-manifold; or
iii) the components of M\∪S have geometry H4, H3×E1, H2×E2

or S̃L× E1; or
iv) the components of M\ ∪ S have geometry H2(C) , or F4; or

v) the components of M\ ∪ S all have geometry H2 ×H2.
In cases (iii), (iv) or (v) the Euler characteristic of M is non-

negative, and in cases (iii) or (iv) M is aspherical.

Thus except for geometries S2×H2, H2×H2, H2×E2, and perhaps
S̃L × E1 no closed geometric manifold has a proper (i.e. the set of
cusps is nonempty) geometric decomposition. This means that there
is no hope of obtaining a direct analogue of Thurston’s program in
dimension 4. However, one can settle Problems 5.1 and 5.2 above
for the class of 4-manifolds which admit geometric decompositions.

6. Smooth manifolds

In this section we recall some basic results concerning with smooth
and PL structures on topological n-manifolds according to [35] [37]
[42] (even if our attention is devoted principally to dimension 4). Let
DIFF(n) be the groups of diffeomorphisms of Rn, PL(n) the group
of invertible PL maps of Rn, and TOP(n) the group of homeomor-
phisms of Rn. The limit spaces under the inclusions Rn ⊂ Rn+1

are denoted by DIFF, PL, and TOP. These are topological groups
which have (as for Lie groups) classifying spaces BDIFF, BPL, and
BTOP, respectively (note that BDIFF = BO since the stable orthog-
onal group O is homotopy equivalent to DIFF). There are canonical
fibrations BDIFF → BTOP, BPL → BTOP, and BDIFF → BPL
whose fibers are denoted by TOP /DIFF, TOP /PL, and PL /DIFF,
respectively. Any n-manifold Mn (with or without boundary) car-
ries an n-dimensional tangent bundle which is topological, PL, or
smooth according to the structure of M . Suppose that M has an
M-structure (M = TOP, PL, or DIFF). The M -tangent bundle
of M is represented by a classifying map τMM : M → BM. Let us
consider now one of the natural inclusionsM⊂ N . The main result
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of higher dimensional smoothing theory states that a lifting of τNM
(relative to the boundary) to BM corresponds to anM-structure on
M . In other words, we must have a commutative (up to homotopy)
diagram:

Mn
τM
M−−−→ BM

∥∥∥
y

Mn −−−→
τN
M

BN .

The following basic result of smoothing theory can be found for ex-
ample in [20, Theorem 8.3B, p. 119].

Theorem 6.1. Suppose M ⊂ N is one of the natural inclusions,
and if N = TOP, then n ≥ 5. Let Mn be an n-dimensional N -
manifold with an M-structure on its boundary. Then the isotopy
classes ofM-structures on M extending the one given on ∂M corre-
spond bijectively to homotopy classes of liftings (relative to the bound-
ary) of the stable N -tangent bundle to BM.

In this case, the homotopy classes of [M,N/M] represents the
M-structures, up to isotopy, on M (rel ∂M) which are compati-
ble with the N -structure. Recall that two M -structures Σ and
Σ′ on M are said to be isotopic if there is a topological isotopy
H : M × I → M such that H0 : M × 0 → M is the identity,
and H1 : M × 1 → M is an M-isomorphism from MΣ onto MΣ′ .
By Theorem 6.1, the smoothing theory in higher dimensions is re-
duced to obstruction theory. Given an N -tangent bundle on M ,
there are obstructions in H i+1(M,∂M ;πi(N/M)) to the existence
of a refinement to anM-structure. Since the fiber PL /DIFF of the
canonical map BDIFF→ BPL is 6-connected, it follows that smooth
and PL structures are the same, up to isotopy, for any dimension
n ≤ 6 (hence we do not distinguish between the two types of struc-
tures). The fiber TOP /PL of the canonical map BPL → BTOP is
an Eilenberg-Mac Lane space K(Z2, 3). So the unique obstruction to
smoothing a topological manifold Mn (rel ∂M) for n ≥ 5 is a coho-
mology class k(M) ∈ H4(M,∂M ; Z2), called the Kirby-Siebenmann

invariant of M . Unfortunately, the vanishing of k(M) is necessary
but not sufficient in general to smoothing a topological 4-manifold
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M4. However, M4 × R is smoothable (relative to the boundary) if
and only if k(M) = 0. This does not imply in general that M4 itself
is smoothable. If M4 is not compact, the obstruction group is trivial,
and hence M4 × R is smoothable in this case.

The following result, due to Quinn [42], states that any topo-
logical 4-manifold admits smooth structures in the complement of a
discrete set.

Theorem 6.2. Let M4 be a topological 4-manifold, and let M0 be
the manifold obtained from M by removing an interior point from
each compact component. Then M0 has a smooth structure.

Unfortunately, the smooth structure on M0 does not extend in
general to M . There are well–known counterexamples [42] arising
from the results obtained in [15] and [19]. Freedman proved in [19]
that any symmetric unimodular Z–form can be realized as intersec-
tion form of a closed simply–connected topological 4-manifold. Suc-
cessively, Donaldson has shown in [15] that if the intersection form
of a smooth simply–connected closed 4-manifold is positive definite,
then it is equivalent (over Z) to the standard form (represented by
the identity matrix). The integer matrices E8 and 2E8 = E8 ⊕ E8

are unimodular, symmetric, and positive definite; but they are not
equivalent (over Z) to the standard form. Let ‖ E8 ‖ and ‖ 2E8 ‖
be the closed simply-connected topological 4-manifolds realizing E8

and 2E8, respectively, as their intersection forms. The manifold
‖ E8 ‖ is not smoothable since its Kirby-Siebenmann invariant is
1 (mod 2) (recall that if the intersection form λM of M is even,
then k(M) = (1/8) sign(λM ) (mod 2), and that sign(E8) = 8). The
manifold ‖ 2E8 ‖ has trivial (mod 2) Kirby-Siebenmann invariant
(use sign(2E8) = 16), but it is not smoothable by Donaldson’ s theo-
rem. However, Theorem 6.2 says that removing a closed 4-cell from
‖ E8 ‖ (resp. ‖ 2E8 ‖) yields a smooth manifold. Following [42],
an almost smoothing of a compact topological 4-manifold M is a
smooth structure in the complement of a discrete set, i.e. there is
a finite set {x1, . . . , xr} of points in M (called the singular points

of the almost smoothing) such that M\{x1, . . . , xr} is smooth. If
x is a singular point, then there exists an open regular neighbour-
hood U = U(x) of x in M which is homeomorphic to R4 (assume
that x maps to 0 ∈ R4 under this homeomorphism). The almost
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smooth structure of M induces a smooth structure on the comple-
ment U\{x} ∼= R4\{0} ∼= S3× (0,∞), called the end of the singular-
ity. Two ends (of different singular points) are said to be equivalent

if there is a diffeomorphism of the smooth structures “near S3×{0}”,
i.e. a diffeomorphism from S3× (0, ǫ) onto S3× (0, ǫ′) for some suffi-
ciently small ǫ, ǫ′ > 0. Examples of ends and singular points are given
by the so-called displacements of the standard 2-sphere CP 1 = S2 in
CP 2 (see for example [20], [41], and [42]). Analogous constructions
can be obtained by considering the displacements of the standard
wedge S2∨S2 in S2×S2 (see [17] and [20]). It is well-known that the
complement of the standard 2-sphere CP 1 = S2 in CP 2 is diffeomor-
phic to R4 (endowed with the standard smooth structure). Let us
consider a homeomorphism d : CP 2 → CP 2 which is topologically
isotopic to the identity map. Then the image S2

d of CP 1 = S2 under
d is called a displacement of S2 in CP 2. Of course, the complement
of S2

d in CP 2 is still TOP homeomorphic to R4. Moreover, CP 2\S2
d

admits a smooth structure since it is open in CP 2; but, this struc-
ture may not be diffeomorphic to the standard one. Following [42], a
singular point of an almost smoothing of M is said to be resolvable if
its end is equivalent to the end of a certain displacement S2

d ⊂ CP 2.
The following is the main theorem of [42]; it explains the im-

portance of the Kirby-Siebenmann invariant for characterizing the
singular points of an almost smoothing of a compact topological 4-
manifold.

Theorem 6.3. Any compact connected topological 4-manifold M has
an almost smoothing such that:

( i ) If k(M) = 0 (mod 2), then all the singular points are
resolvable;

(ii) If k(M) = 1 (mod 2), all but one are resolvable, and the ex-
ceptional one has an end which is equivalent to the smooth structure
of Freedman’s fake S3 × R (constructed in [18]).

Theorem 6.3 combined with Donaldson’s theorem [15] permits to
obtain a very nice proof of the existence of some exotic smooth struc-
tures on R4 (for details see Corollary 1.4 of [42]). For a construction
of an infinite set of exotic R4’s we refer to [21].

We now report the nice proof of Theorem 6.3 given by Quinn
in [42]. The first step is to reduce to the k = 0 case by introducing
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a singularity if k = 1. Let M4 be a compact connected topologi-
cal 4-manifold. Then the Kirby-Siebenmann invariant k(M) can be
computed as follows. Take an almost smoothing of M with singular
points x1, . . . , xr. The end at xi is a smoothing of S3 ×R. Perturb
the canonical projection S3 × R → R to be smoothly transverse to
0 ∈ R, and let Ni be the inverse image. Then Ni is an orientable
smooth 3-manifold which bounds a framed smooth 4-manifold Wi as
Ωframed

3
∼= 0. Then we have

k(M) =

r∑

i=1

1

8
sign(Wi) (mod 2).

Suppose now k(M) = 1 (mod 2). Use the smoothing of Freedman’s
fake S3×R (see [18]) to define an almost smoothing of a neighbour-
hood of a point p ∈ M , with p corresponding to the +∞ end of
S3 × R. As above, make the projection S3 × R → R transverse to
0 ∈ R. Let Np be the inverse image of 0 ∈ R, and M ′ the com-
plement of the inverse image of (0,+∞). Then M ′ is a compact
4-manifold. An almost smoothing of M ′ fits together with the al-
most smoothing of the neighbourhood of p to give an almost smooth-
ing of M . Then we have k(M ′) + (1/8) sign(Wp) = k(M) (mod 2),
where the smooth 4-manifold Wp has boundary Np as above. Since
sign(Wp) = 8 by [18], it follows that k(M ′) = 0 (mod 2). Thus a
resolvable almost smoothing of M ′ extends to an almost smoothing
of M which satisfies (ii) of the statement. Suppose now k(M) = 0
(mod 2), and consider a smooth structure on M\p by Theorem 6.2.
Let D4 be a 4-ball in M with center p. The smooth product struc-
ture on (M\1

2D
4)×R ⊂ (M\p)×R extends to a smooth structure on

all of M ×R because k(M) vanishes. The projection M ×R→ R is
smoothly transverse to 0 ∈ R on (M\1

2D
4)× R. Approximate it rel

(M\1
2D

4)×R to be transverse to 0 on all ofM×R. The inverse image
N of 0 ∈ R is a smooth 4-manifold which is topologically homeomor-
phic to a connected sumM#P . Now P embeds in Euclidean 5-space,
so its tangent bundle τP is stably trivial. This implies that the first
Pontrjagin class of P vanishes, hence sign(P ) = 0 by the Hirzebruch
formula. We can always assume that P is simply-connected by a
surgery argument. Applying Freedman’s classification theorem of
closed simply-connected TOP 4-manifolds [19] [20], we get that P is
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TOP homeomorphic to h(S2×S2) for some h > 0. Therefore we have
a smooth structure on M#h(S2 × S2). Since (S2 × S2)#CP 2 is dif-
feomorphic to 2CP 2#(−CP 2) (see for example [37]), we obtain that
N#CP 2 is diffeomorphic to M#iCP 2#j(−CP 2) for some i and j.
This defines a resolution of M since N#CP 2 is a smooth 4-manifold
which covers M ∼= (M#iCP 2#j(−CP 2))/(i + j)S2. Moreover, the
smooth structures near the copies of S2 are equivalent to those of
displacements of the standard S2 = CP 1 in CP 2 (see [42] for more
details). This finishes the proof of Theorem 6.3.

We complete the section with some open problems which are
related to the topics of smoothing.

Problem 6.4: Classify all the smooth structures on closed smooth-
able 4-manifolds with special fundamental group (trivial, finite, tor-
sion free, free [4] [6] [27] [29], surface group [9], poly-(finite or cyclic)
[20], elementary amenable [26], etc.), or with special higher homo-
topy (resp. homology).

Problem 6.5: Classify all the smooth structures on closed smooth-
able 4-manifolds which belong to one of the special classes presented
in the paper.
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