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Towers of Covers of Hyperbolic

3-Manifolds

Mark Baker, Michel Boileau and Shicheng Wang (∗)

Summary. - Our main result is the construction of an infinite tower
of covers of hyperbolic integral homology spheres.

1. Introduction

The following conjectures are well-known and important in
3-manifold theory.

Conjectures 1.1 - 1.3. Let M be a closed orientable hyperbolic 3-
manifold. Then M has:

1.1. Infinite virtual first Betti number

1.2. A finite covering M̃ with positive first Betti number

1.3. A finite covering M̃ which is Haken

We consider a ”local version” of these conjectures by restricting
attention to towers of covers of the given hyperbolic 3-manifold. In
this context, we have the following questions:

Questions 1.4 - 1.6. Given a closed orientable hyperbolic 3-
manifold M and an infinite tower of (finite-sheeted) covers ... →
Mn → Mn−1 → ... → M1 → M0 = M :
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1.4. For any integer b > 0 is there an integer n = n(b) such that
the first Betti number b1(Mn) ≥ b?

1.5. Is there an integer n such that b1(Mn) ≥ 1?

1.6. Is there an integer n such that Mn is Haken?

In this note, we give a negative answer to Questions 1.4 and 1.5

by constucting the first example (to our knowledge) of an infinite
tower of covers with all the Mn hyperbolic integral homology spheres
(Proposition 3.1).

Using the same techniques, we construct a closed orientable hy-
perbolic 3-manifold M with the property that, for any tower of
abelian covers starting with M , b1(Mn) = 3 for all n (Proposi-
tion 3.3).

While we suspect that the answer to Question 1.6 is ’no’, we
are unable to produce an infinite tower of covers with all the Mn

hyperbolic non-Haken 3-manifolds. However we can construct such
towers of arbitrary finite length (Proposition 4.1).

Concerning the relation between Betti number and injectivity
radius for covering towers of hyperbolic manifolds, we mention the
following question due to D. Cooper:

Question 1.7. Given an infinite tower of covers of hyperbolic ra-
tional homology spheres, is the injectivity radius of every Mn in the
tower always uniformly bounded above?

Note that a positive answer to Question 1.7 implies that Conjec-
tures 1.1 and 1.2 are true. Indeed, one can use the residual finite-
ness of hyperbolic 3-manifold groups to construct, for any hyperbolic
manifold, a tower of covers in which the injectivity radius of the Mn

tends to infinity with n (see [4, 3.58] for further details).
Although the answer to Question 1.7 is probably ’no’, in all of

our towers the injectivity radius is indeed uniformly bounded above.

2. Totally null-homotopic knots and coverings

In this section we give definitions and the two key propositions used
to construct our towers of hyperbolic manifolds (see also [1, §4]).
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Definition 2.1. Let M be a closed orientable 3-manifold. A knot
k ⊂ M is totally null-homotopic if it bounds a singular disk D ⊂
M whose regular neighborhood N(D) is null-homotopic in M (i.e.
i⋆(π1N(D)) = {1}, where i⋆ : π1N(D) → π1M is induced by the
inclusion of N(D) in M).

Remark 2.2. If k ⊂ M is null-homotopic, there is a prefered merid-
ian-longitude coordinate system (m, l) on ∂(M − intN(k)) such that
l is null-homologous in M − intN(k). Therefore any simple closed
curve on ∂(M − intN(k)) has a unique slope (p, q) in this system,
where p and q are coprime.

Proposition 2.3. Every closed orientable 3-manifold contains a to-
tally null-homotopic hyperbolic knot.

This proposition is proved in [1, Prop. 4.2], using results of R.
Myers [6]. It allows us to transform any tower of coverings of 3-
manifolds into a tower coverings of hyperbolic 3-manifolds with the
same homology groups and covering automorphism groups in the
case of regular covers. More precisely, we have the following:

Proposition 2.4. Given a tower of (finite-sheeted) covers of closed
orientable 3-manifolds ... → Nn → Nn−1 → ... → N0, there is a
tower of finite coverings of closed orientable hyperbolic 3-manifolds,
... → Mn → Mn−1 → ... → M0 such that:

i) For each integer n, there is a homology equivalence fn : Mn →
Nn.

ii) The covering map p⋆
n : Mn → Mn−1 is the pull-back of the

covering map pn : Nn → Nn−1 by the homology equivalence
fn : Mn → Nn.

As a corollary of Proposition 2.4 we have:

Corollary 2.5. Any finite orientation preserving group acting freely
on a closed orientable 3-manifold acts freely and isometrically on
some closed orientable hyperbolic 3-manifold of the same homology
type.
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Proof of Proposition 2.4. Let

... → Nn → Nn−1 → N1 → N0. (1)

be a tower of covers of closed orientable 3-manifolds. By Proposi-
tion 2.3, there exists a totally null-homotopic hyperbolic knot k in
N0. We choose a simple closed curve α in ∂N(k) of slope (1,m), such
that the surgery manifold M0 = N0(k, α) is hyperbolic. There are
infinitly many such curves by Thurston’s hyperbolic surgery Theo-
rem [7].

Since k is null-homotopic in N0, it follows (from [1, Prop. 3.2])
that there is a degree one map f0 : M0 → N0 which is also an integer
homology equivalence due to the choice of (1,m) surgery slope.

The fact that k is totally null-homotopic in N0 implies that, for
the covering p1 : N1 → N0, each component of p−1(k) is mapped
homeomorphically to k, hence p1 induces a covering:

p⋆

1 : M1 = N1(p
−1
1 (k), p−1

1 (α)) → M0 = N0(k, α) (2)

which is the pull-back of the covering p1 : N1 → N0 by the homology
equivalence f0 : M0 → N0.

Now f0 lifts to a degree-one map f1 : M1 = N1(p
−1
1 (k), p−1

1 (α)) →
N1, which is still an integer homology equivalence because each com-
ponent of p−1

1 (k) bounds a singular disk in N1 and all these singular
disks are mutually disjoint (see [1, Lemma 4.3]).

By repeating this construction for p2, p3 and so on, we get the
desired induced tower of coverings of hyperbolic 3-manifolds :

...... → Nn(q−1
n (k), q−1

n (α)) → Nn−1(q
−1
n−1(k), q−1

n−1(α)) →

... → N1(p
−1
1 (k), p−1

1 (α)) → N0(k, α) (3)

where qn = pn ◦ pn−1 ◦ ... ◦ p1. This completes the proof of Proposi-
tion 2.4.

Remark 2.6. Let kα ⊂ M0 = N0(k, α) be the core of the surgery
solid torus. Then kα is lifted isometrically to any manifold in the
tower of coverings (3), therefore the injectivity radius of the hyper-
bolic 3-manifolds in the tower is uniformly bounded by the length of
kα.
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3. Towers of hyperbolic integeral homology spheres

In this section we prove the following:

Proposition 3.1. There exists an infinite tower of regular covers of
hyperbolic integeral homology spheres.

Proof. By Proposition 2.4, it suffices to construct an infinite tower
of regular covers of non-hyperbolic integral homology 3-spheres.

Let p : S3 → Σ3 denote the 120-sheeted regular covering from
S3 to the Poincare homology sphere Σ3, and N0 = Σ3#Σ3 be the
connected sum of two Poincare homology 3-spheres. Starting with
N0, we construct an infinite tower of regular covers of (non-prime)
homology 3-spheres as follows.

The first stage in the tower is given by

p1 : N1 = S3#{120 copies of Σ3} → N0 = Σ3#Σ3 (4)

where the restriction of p1 to S3 is the covering p which acts transi-
tively on the 120 two-spheres of connected sums (see also [5]).

Noting that N1 is homeomorphic to the connect sum of 120 copies
of Σ3, we choose one of the Σ3 in N1 and construct the covering

p2 : N2 = S3#{120×119 copies of Σ3} → N1

= Σ3#{119 copies of Σ3} (5)

where the restriction of p2 to S3 is the covering p which exchanges
120 sets of 119 two-spheres of connected sums.

This process can be infinitely repeated: setting r0 = 2, and defin-
ing inductively rn = 120(rn−1 − 1), the cover pn has the form

pn : Mn = S3#{rn copies of Σ3} → Mn−1

= Σ3#{(rn−1 − 1) copies of Σ3} (6)

Hence we get an infinite tower of regular covers between non-
prime homology spheres and applying Proposition 2.4 to this tower
yields the desired infinite tower of coverings of hyperbolic homology
spheres.
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Remark 3.2. Each homology sphere in the first tower of covers has
a fundamental group that is a non-trivial free product. It follows
that each hyperbolic homology sphere in the tower of covers obtained
by Proposition 2.4 has a fundamental group which is a non-trivial
amalgamated product and hence is Haken. Moreover by Remark 2.6
there is a uniform upper bound for the injectivity radius of all the
hyperbolic homology 3-spheres in this tower of covers.

The arguments used in the proof of Proposition 2.4 also allow us
to show:

Proposition 3.3. There exists a closed orientable hyperbolic 3-
manifold with first Betti number b1(M) = 3 such that in any tower
of abelian covers starting at M , the Betti numbers remain constant
and equal to 3.

Proof. Consider the 3-torus T 3. Since any finite cover of T 3 is abelian
and homeomorphic to T 3, any tower of abelian covers starting at
N0 = T 3 consists of manifolds homeomorphic to T 3.

Now, as in the proof of Proposition 2.4, we choose a totally null-
homotopic hyperbolic knot k in T 3 and a simple closed curve α in
∂N(k) of slope (1,m), such that the surgery manifold M = T 3(k, α)
is hyperbolic. Since k is totally null-homotopic in T 3, there exists
a degree one map f : M → T 3 which is an integeral homology
equivalence. In particular H1(M ; Z) = Z

3 and the core kα of the
surgery solid torus is null-homologous in M . It follows that any epi-
morphism from π1(M) to a finite abelian group factors through the
epimorphism f⋆ : π1(M) → π1(T

3). Therefore any abelian covering
of M is the pull-back by f of an abelian covering of T 3.

By repeating this construction we show, as in the proof of Propo-
sition 2.4, that any tower of abelian covers starting at M0 = M is
the pull-back by f of a tower of abelian covers starting at N0 = T 3.
In particular all the hyperbolic 3-manifolds in these towers of covers
are homology equivalent to the 3-torus T 3, and hence have first Betti
number equal to 3.
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4. Towers of hyperbolic non-Haken 3-manifolds

Recall that a closed orientable 3-manifold is Haken if it is irreducible
and it contains an incompressible orientable embedded surface.

As remarked above, the hyperbolic integeral homology 3-spheres
in the infinite tower of covers provided in Proposition 3.1 are all
Haken manifolds. We are currently unable to construct an infinite
tower of covers of non-Haken hyperbolic 3-manifolds. However we
can construct such towers of covers of arbitrary finite length.

Proposition 4.1. For any n, there exists a tower of length n of
covers of hyperbolic non-Haken 3-manifolds.

Proof. Let E0 be the complement of the figure eight knot. It is
well known that E0 admits a complete hyperbolic structure and
that it fibers over the circle with fiber a once-punctured torus and
pseudo-Anosov monodromy φ. Let (m0, l0) be the prefered meridian-
longitude system on ∂E0, where l0 is the boundary of a punctured
torus fiber.

Let pn : En → E0 be the cyclic cover of degree 2n. Then En is a
once-punctured torus bundle with monodromy φ2n

. It follows that
p−1

n (l0) has 2n components and p−1
n (m0) is connected. Let ln be a

component of p−1
n (l0) and mn = p−1

n (m0). Since ln bounds a once-
punctured torus fiber of the fibration of En, it is null homologous
in En and (mn, ln) provides a coordinate system on ∂En. Now each
closed simple curve on ∂En has a unique slope given by a pair of
coprime integers (p, q). We denote by En(p, q) the closed 3-manifold
obtained from En by Dehn filling ∂En along the slope (p, q).

It is a direct geometric observation that for a closed curve α ⊂
∂E0 of slope (2nr, 1), r ≥ 1, the preimage p−1

n (α) has 2n components
of slope (r, 1). Hence, for k ≥ n and r = 2k−n, one sees that the
preimage p−1

n (α) of a closed curve α ⊂ ∂E0 of slope (2k, 1) has 2n

components of slope (2k−n, 1). It follows that the sequence of cover-
ings

En → En−1 → ... → E2 → E1 (7)

extends to a sequence of coverings between closed 3-manifolds
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En(2k−n, 1) → En−1(2
k−n+1, 1) → ... → E1(2

k−1, 1) → E0(2
k, 1).

(8)

We will make use of three facts:

Fact 1 The exceptional (i.e. non-hyperbolic) Dehn fillings on the
figure eight knot exterior E0 are known (see [7, Ch.4]). In particular
for k ≥ 3 the Dehn filled 3-manifold E(2k, 1) is hyperbolic, so all the
3-manifolds in the tower (8) are hyperbolic in this case.

Fact 2 Since each En is a once-punctured torus bundle, there
are no closed orientable incompressible embedded surfaces in En and
only finitely many boundary-slopes on ∂En (i.e. slopes which are
realized by a boundary component of an incompressible orientable
surface in En) (see [3] or [2]).

Fact 3 If (p, q) is not a boundary-slope on ∂En, then En(p, q) is
irreducible and non-Haken.

Now let

Sn = {(p, q)| (p, q) is a boundary-slope on ∂Ei, i = 0, ..., n} (9)

By Fact 2 above, Sn is a finite set for any given n. In particular
there is an integer Pn such that p < Pn if (p, q) ∈ Sn.

Given any integer n > 0, we choose k ≥ 3 large enough so that
2k−n > Pn. Then all the 3-manifolds in the tower of coverings (8) of
length n will be non-Haken hyperbolic 3-manifolds by Facts 1 and 3
above. This proves Proposition 4.1.

Remark 4.2. By considering the cores of the Dehn fillings in the
tower of covers (8), one can show that the injectivity radius of the
hyperbolic 3-manifolds is uniformly bounded above.
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