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Continuous Dependence Results
for an Inverse Problem in the
Theory of Combustion of

Materials with Memory
FaBrizio CorLoMBO *)

SUMMARY. - We prove theorems of continuous dependence on the
data for both direct and inverse problems for semilinear integrod-
ifferential equations. Such results are applied to the specific case
of the combustion of a material with memory.

1. Introduction

This paper is a natural continuation of [2] in which we have proved
existence and uniqueness results for an inverse problem in the theory
of combustion.

In fact, in [2] we have developed the theory for general integrodif-
ferential semilinear systems of type (6)-(9), whose unknowns have
values in a Banach space X. The combustion of a material with
memory is a particular case of such system. We use as fundamen-
tal tool the analytic semigroup theory, and, recalling that the first
abstract approach to parabolic linear identification problems using
semigroup theory has been done in [4], the results in [2] generalize the
ones in [4]. More precisely, in [2] we have proved that, under suitable
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assumptions on the data, the abstract semilinear non local inverse
problem (6)—(9) admits a unique solution in the space Holder contin-
uous functions. Then we have applied the previous theorem to the
specific case of combustion (1)-(5) proving existence and uniqueness
of a solution; but we have not consider the continuous dependence
on the data for the abstract as well as for the concrete case. In this
note we are going to complete [2] giving the continuous dependence
results for both direct and inverse problems in the abstract case as
well as in the concrete case for the combustion system. Moreover,
since the equations governing the evolution of the temperature and
the density of a material with memory are not very well known, in
the form we consider in [2], in section 6 of this note, we give the
physical deduction of equations (1)—(2).

The considerations reported in section 6 leads to equations govern-
ing the evolution of both the temperature v and the density p of a
material with a thermal memory, which is represented by the convo-
lution kernel h. So we are now in the position to state our direct and
inverse problems. Let €2 be an open bounded set in R" (n € N\{0})
with a smooth boundary 02 and consider the following system:

Dyu(t, z) = div (dq(z)Vu(t, z))
t
+/0 h(t — 5)div (dy (2)Vu(s, 7)) ds

+f(u(t,z), p(t,z)), (t,z)€[0,T] x L, (1)

Dip(t,z) = div (da(z)Vp(t, 7))

+g(u(t,z), p(t, z)), (t,x) € [0,T] x Q, (2)
’LL(O,:II) = ’LL()(iII), p(o,m) = pO(m)a T e Qa (3)
Dyu(t,z) = Dy,p(t,z) =0, (t,z) €[0,T] x 092, (4)

/Q o(2)ult,z)dz = 0(t), € [0,T]. (5)
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Here f,g : R xR — R, di,da,ug, po : @ = R, £:[0,T] - R,
@ : 0 — Q are given functions, while D, denotes the outward normal
derivative on 0f2.

The direct problem consists in: given h : [0,T] — R, find two func-
tions u: [0, T] x Q@ = R, p:[0,T] x Q2 = R satisfying the equations
(1)=(4)-

The inverse problem consists in: find three functions u : [0,T] x Q —
R, p:[0,T] xQ — R and h : [0,T] — R satisfying the equations
(1)-(5).

Along with the specific identification problem (1)-(5) we will con-
sider the following abstract versions related to a Banach space X:

¢
u'(t) = Au(t) + /0 h(t — s)Au(s) ds + f(u(t), p(t)), te€0,T],

p'(t) = Bp(t) + g(u(t), p(t)), t €[0,77, (7)
u(0) = up, p(0) = po, (8)
P (u(t)) = £(t), t €[0,77, (9)

where A: D(A) C X — X and B: D(B) C X — X are two linear
closed operators and ® is a known linear bounded functional on X.
We assume that f : X x X — X and g : X x X — X are known
nonlinear operators, ug and py € X are given elements as well as
the function £ : [0,7] — R. The abstract direct problem consists in:
given h: [0,T] — R, find two functions u: [0,T] — X, p:[0,T] —
X satisfying the equations (6)—(8).

The abstract inverse problem consists in: find three functions u :
[0, 7] - X, p:[0,T] - X and h : [0,T] — R satisfying the equa-
tions (6)-(9)

The plan of the paper is as follows. In section 2 we recall some basic
results of the analytic semigroup theory, which is a fundamental tool
in our approach and we give the main properties of the operators
in (6)-(9) so that we can state our main abstract theorems for the
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direct (c.f.(6)-(8)) and for the inverse problem (c.f.(6)-(9)). In sec-
tion 3 we give an application of the abstract theorems of section 2
in the case X = LP(Q). In section 4 we recall a theorem, proved in
[2], that assures the equivalence of problem (6)-(9) with a suitable
fixed point system which is the starting point to prove the contin-
uous dependence theorems. Moreover, we recall the main lemmas
to estimate operators appearing in the equivalent fixed point system
(51)-(53).

In section 5 we state and prove the continuous dependence theorems
for both direct and inverse problems in the fixed point form (51)-(53)
from which we easily deduce theorems 2.1 and 2.2. Finally in section
6 we deduce the evolution equations governing the combustion of a
material with memory.

2. Notation and main abstract results.

Let X be a Banach space with norm || - || and let 7' > 0. We denote
by C([0,T]; X) the usual space of continuous functions with values

in X equipped with the sup—norm.
For g € (0,1) we define

CP([0,7]: X) = {u € C([0,T]: X) : [ulgr,x

= sup (t—s)Jlu(t) — u(s)|| < oo} (10)
0<s<t<T
and, setting ||ullo,7,x = |lullc(o,r;x), we endow it with the norm
lullprx = llullor.x + lulprx- (11)

We now recall some results from the analytic semigroup theory. Let
A:DA)CX = X, B:D(B) C X = X be two linear closed oper-
ators (possibly with D(A) # X, D(B) # X) satisfying the following
assumptions:

H1 there exists 6 € (w/2,7) such that any

A € C\{0} with |arg\| <8 and A =0

belong to the resolvent sets of A and B;

H2 there exists M > 0 such that

max (JAT = 4) " zox), IMAT = B) Yl oix)) < M

for any A € C\{0} with |arg\| < 6.
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For any pair of Banach spaces X7 and Xs, £(X7; X2) denotes the
space of all bounded linear operators from X; to Xy equipped with
the sup—norm. When X; = Xy = X, we set £L(X) = L(X; X).
According to assumptions HI, H2, it is possible to define the two
semigroups {e4};>¢, {€/P};>0 of bounded linear operators in £(X)
so that t — et, ¢ — e!B are analytic functions from (0, 00) to £(X)
(for more details see [6], [7]). Moreover there exist positive constants
¢r(0) for k € N such that

[ Akt ) S E@OM,  t>0, (=1,2)  (12)

where we have set, for the sake of simplicity, A1 := A and Ay := B.
Let us now endow D(A4;) with the graph-norms and let us define
the two families of interpolation spaces D4, (8,p) (8 € (0,1), p €
(1,4+00], i = 1,2) between D(A;) and X by the following equations
according as p € (1,400) or p = +oc:

DAi(/Bap) = {m €eX: |$|DA¢(57P)

+00 1
- (/ H0=001 | 4ot dt) < <}, (13a)
0

[2lD4(5.00) = sup 17| Ase" iz (13b)
>

Moreover, we set

Da,(n+p,p) (n=0,1, i =1,2) turn out to be Banach spaces when
equipped with the norms

lellpy i = 3 IALell + [ATelp, 3y (=1,2).  (15)
j=0

For more details about interpolation spaces see [8].

If the given data and the operators appearing in (17)-(20) do not
satisfy suitable regularity conditions and if we do not require suitable
relations among the data the direct problem (6)-(8) as well as the
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inverse problem (6)—(9) in general do not have solution. So we require
that f,g : X x X — X be a pair of nonlinear operators with the
following properties:
H3 f,g€C*X x X;X);
Hj € C3(D(A) x D(B:D(A)), g € CX(D(A) x D(B): D(B)).
H5 f and g are bounded and Lipschitz continuous operators on each
closed ball in X x X along with their derivatives up to the second
order.
More exactly, there exist the following functions

n,,@:ﬁ+ xﬁ+—>ﬁ+, (16)

which are continuous and nondecreasing in each of their arguments,
such that

IDi fllc(xxx,x) + 1Digllcx xx,x) + 1D Dif ||l ox x x,00x x x,x))
+1D;Digll £(x x x,0(x % X,X))
< ,B(HU”, ||:0||)a 1= u, p, .7 =u,p, (17)

| Di f (ua, p2) — Dif (w1, p1)llcixxx,x)
1 Dig(uz, p2) — Dig(u1, p1)ll c(x x x,x)

2 2
<B(D e, Y ledl)
=1 =1

X(Jug —wll +1lp2 = pll), i =wu,p, (18)

|1D;D; f (u2, p2) — DjDif(ulapl)HL(XXX,E(XXX,X))
+D;jDig(uz, p2) — DjDig(uy, p1)ll cx x x,c(x x x,x))

2 2
< B( D luell, - leell)
=1 =1

X(ug —wil +llp2 =), i=wp, j=up, (19

I1Di f (w, p)l| 4y xD(B), DAY + [1Dig(ws p)l| £D(A)xD(B),D(B))
< n(lullpeay, llellos)); = up, (20)
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| D; f (ug, p2) — Dif (u1, p1)ll c(p(a)yxD(B),D(A))
+Dig(uz, p2) — Dig(u1, p1)ll £(p(ayx(B),D(B)))

2 2
< (32 luell, 3 loel) Qe = wall + llow = prl), i = wp,

=1 =1
(21)
IDiD; f(w, p) |l £(D(A)xD(B),£(D(A)xD(B), D(A)))
+I1DiDjg(u, p)|| c(D(a)xD(B),(D(A)xD(B),D(B)))
ST/(HUHD(A)?HIOHD(B))a [ =u,p, j =u,p, (22)

|DiDj f(u1, p1) — DiDj f(u2, p2)ll £(D(A)x D(B),£(D(A)xD(B),D(A)))
+1DiDjg(u1, p1) — DiDjg(ua, p2)lll2(D(a)x D(B),L(D(A)xD(B),D(B)))

2
<> lluellpeay, > lleellpa))

=1 =1
X(luz = uillpeay + llp2 = prllomy),  i=u,p, j=u,p. (23)

And finally we make the following assumptions related to some pair
B € (0,1) and € € (0,1 — B):

H6 D(A) =D(B);

H7 wy € Da(1+ B,p), Aug € Da(B +¢€,p), po € Dp(1 + B3,p);

HS  Aug + f(uo, po) € Da(l +B,p), Bpo+ g(uo,p0) € Dp(l+ B,p);
H9 &€ L(X;R);

H10 ®[Aug] # 0;

Hi1 ¢e€ C*8([0,T];R).

REMARK 2.1. Observe that HS ensures, via the closed graph theorem,
that A='B, B™'A € L(X). Conditions H7 and HS, appear in hypoth-
esis of lemma 4.3 and point i) of theorem 2.2 in [2], and they are eas-
ily satisfied if we require that ug € DAo(2+B,p), wvo € Dp(2+3,p).
Moreover, conditions H9—H11 are indispensable to obtain a suitable
fized point equation for the unknown convolution kernel h.
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We are now in position to state our main results. For the direct
problem and for the inverse one, respectively, we have

THEOREM 2.2. Let HI-H8 and estimates (18)-(23) hold. The map
(UOapﬂah) - (U,,O) (24)

is continuous from Da(2 + B,p) X Dp(2 + B,p) x CA([0,T]:R) to
C*+B([0,T]; X)%. Moreover the following estimate holds

lu —ulloxprx +1lp— Pllorsr.x < a1(B.e,0,p, M, T, m)
X (||h — W

o.rR + uo — ugllp 245, + llP0 — P6|\D3(2+6,p))’ (25)

where a1 is continuous in its arguments for small T.

Proof. 1t is a consequence of theorem 5.1. O

THEOREM 2.3. Let assumptions H1-H11 and estimates (18)-(23) hold.
Let (u, p,h) and (u', p', ') be the solutions of problem (6)-(9) related
to data (ug, po, ®,£4) and (ug, py, @', '), respectively. Then the map

(uo; po; ®,£) = (u, p; h) (26)

is continuous from D 4 (243, p)x Dp(2+, p)x L(X; R)xC?5([0,T))
to C?8([0,T]; X)? x CP([0,T]). Moreover the following estimate
holds

lu—|lgr,x + llp— P'lls+s1,x + |h — B |ls18,7R
< as(B,¢e,0,p, M, T, m) max{T"' % T¢}

x (1@ = @'l ) + [@(Auo)] ™" — [@(Aup)] |
H1e = Ellczoy) + o — Wl aap) + 190 = ollpy ) (27)

where ag is continuous in its arguments for small T.

Proof. 1t is an immediate consequence of theorem 5.3 and (53). O
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3. An application of the abstract results to the
combustion system.

We are going to apply the abstract continuous dependence results
of the previous section to problem (1)-(5). We give the stability
result for the example in [2]. Let ©Q be an open bounded set in R"
with boundary of class C? and let dy,dy € C1(4R), apk, Dy, ang €
C(ﬁaR) (hak = 17"'an)a G € 02(§;R)7 G2 € C(ﬁaR) be given
functions satisfying

n JEE—
> ans(@)énle > plé?, Vo eQ, VEeR”, (29)
h,k=1

for some constants p > 0, 6; > 0 (i = 1,2). Then the linear differen-
tial operators

Ai(z,Dy) = Y Dy, ldi(z)ani()De,] + Ci(2),  (i=1,2),

h.k=1
(30)
are uniformly elliptic in Q. We now choose
X=IPQ)  (p€(n+o0)) (31)

as our reference Banach space. Consequently, we can choose (i =
1,2)

D(Aip) = {u € W?P(Q) : Aju € LP(Q), (Dyu)|ao =0},  (32)

as domains of 4; , (i = 1,2) defined by (30), where v is the conormal
outward unit vector related to 9Q (¥ is proportional to the vector
with components Y, vp(z)api(z) (k= 1,...,n), v denoting the
outward normal unit vector relative to 02).

Then we recall the following characterizations concerning the in-
terpolation spaces related to A; ([8]), where § # 1/(2p) and p €
(n,400):

Da,(B,p) = W2PP(Q) if Be(0,1/(2p)), (33a)



198 F. COLOMBO

Da(B.p) = W,PP@Q) if Be(1/(2p),1), (33b)
where
W2PP(Q) = {u € W?P(Q) : (Dpu)|aq =0 }. (34)

Finally, we can define the set G of admissible data consisting of all
functions ug, po, ¢, £1, f and g satisfying the following assumptions,
for some € (0,1)\{1/(2p)}:

H12 f,g € W3tRALo(R2), [r] denoting the integer part of r € R;
H13 g, po € WH28P(Q);

H1} DyAlug=D,Bipy=0 on 0Q j=0,1;

H15 D,A[Aug + f(uo,po)] = D,B[Bpo + g(ug,po)] =0

on 0 if B € (1/(2p),1);

H16 ¢ € LY(Q), £ € C**A([0,T));

H17  [o $(x)Aug(z) dz # 0. Moreover, we consider the pair of func-
tions related to the Arrehenius kinetics, (cf. (98))

f(u,p) = —g(u, p) = p" exp(y — v/u) (35)

where v is a positive constant and depends on the material under
consideration.

THEOREM 3.1. Let n > 3 + [20] and let assumptions H12-H17 be
satisfied. Then there exists T* € (0,T], depending on the norms of
the data only, such that for every T € (0,T*) problem (6)-(9) admits
a unique solution

(u, p,h) € [C*H([0, 7]; LP () 0 CHH([0, 7 WP ()]
x [P ([0, 7); LP(€2)) N CHHE([0, 7] WP ()] x CP([0. T R).

Let (u, p,h) and (u',p',h') be the unique solutions related to the data
(wo, po, ¢, £) and (ug, py, ¢, ¢'), respectively. Then there exists a pos-
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itive constant C(T), continuous in T for small T > 0 such that

Il = ll 28 o2 + 1 = Pllc2vs o.r1w 20

I = Blles qo.nmy < O sup
ve

l/wwm:lm u¢—¢wwmf”

([ s a@u@ras) "= ([ doawu@pr ) |

+e -2 ||C‘—’([0,r]) + [Jug — Uo||W4+w,p(ﬁ)

oo = phllwisssa b if BE©1/@p).  (36)

For the case B € (1/(2p),1) we replace W20 (Q) by
Wy 2P (Q) in estimate (36).

Proof. The continuous dependence estimate is a consequence of the-
orem 2.3 and the existence and uniqueness of a solution of theorem
4.1 in [2]. O

4. An equivalent problem and preliminary lemmas

In this section we reformulate the integrodifferential problem (6)—(9)
in terms of an equivalent fixed point system by suitable operators.
Moreover we recall the equivalence theorem and all the suitable lem-
mas to estimate operators defined in the sequel. Such lemmas are
proved in [2] and they will let us show our main results in the fol-
lowing sections 4 and 5. Let

(u, p, h) € [C*F9([0,TT]; X) N C+7(0, T]; D(A)))]
x[C*2([0.T]; X) n C*([0. T, D(B))] x C7([0,T]; R)

be a solution to problem (6)—(9). With (u,p,h) we associate the
triplet (v, 7, h) defined by

u'(t) = v(t) <= u(t) = ug + 1 * v(t), (37)
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p(t) =m(t) <= p(t) = po+ 1+ m(t). (38)

We define the operators

Lafw(t) = A /0 et 0p(s) ds, Talul(t) = /0 o194 4 (s) ds
(39)

Lo[w](t) := B /0 te<t*s>3w(s) ds, Law](t) := /0 te“*S)BBw(s)ds

(40)

Lslh, z](t) := / th(s)Ae(t_s)Axds (41)
0

Nylh, w](t) ::/U h(t — s)w(s) ds (42)

Nolw, 2)(t) = Duf (ug + 1% A" w(t), po + 1% B~ 2(t)) — Duf(uo, po)
(43)

Ns[w, 2](t) = Dy f(uo + 1% A™ w(t), po + 1% B~'2(t)) — D, f (uo, po)
(44)

Ni[w, 2](t) = Dug(ug + 1+ A™ w(t), po + 1 % B~2(t)) — Dug(uo. po)
(45)

Nslw, z](t) = Dyg(ug + 1 * A_lw(t),pg 4+ 1% B_lz(t)) — D,g(uo, po)
(46)

M; (ug, po) = Dy f(ug, po)A™", Ma(ug, po) = D, f(ug, po)B~" (47)

Mj3(ug, po) = Dug(ug, po)A~ ", My(ug, po) = Dpg(uo, po)B~ " (48)
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and we introduce the functions

wo(t) = Ae" [Aug + f(ug, po)],  z0(t) := Be'P[Bpg + g(ug, o),
(49)

x = [®(Aug)] L. (50)

We can now rewrite our identification problem in the following fixed—
point form:

w = wo + Lg[h, AU(]] + Ll[Nl (h, w)] + Ll[NQ(w, Z) (Ailw)]
+L1[Ny(w, 2) B~ ' 2] + L1 [Mj (ug, po)w]
+ L1 [Ms(ug, po)z)] := wo + S1(w, 2, h), (51)

z = 29 + Lo[Ny(w, 2) (A" w)] + Lo[N5(w, z2) B~ ' 2]
—|—Z3[M3(’LL0, pU)w] + Z3[]\/—[4(u07 pO)Z] =20+ SQ(wa 2, h)7 (52)

h=hy— X(D{Lg[h,Au(]] + L[N (h,w)]
4Ly [Na(w, 2) A= w] + L1 [N3(w, 2) B~ 2] + Ny (h, w)
+No(w, 2) A w + N3(w, 2) B~ 'z + M (ug, po) S1(w, 2, h)

+M>(ug, po)Sa(w, z, h)} := hg + S3(w, z, h), (53)
where
ho(t) = x{€"(t) — ®[wo(t)]} — Xx®[Du f (w0, po) A~ "wo (t)
+D, f (ug, po) B 2o (t)].- (54)

Thanks to definitions (37)-(50) and (54) we can state the following
theorem 4.1 and we recall lemmas 4.2-4.9 whose proofs are in [2].

THEOREM 4.1. Let assumptions HI1, H2 and H11 be satisfied. Let
(u,p, h) € [C*9([0, T]; X)NCH4((0, T); D(AY)] x [C*+8 (0, T]; X)
C'*t8([0,T); D(B))] x C8([0,T]; R) be a solution to problem (6)-(9).
Then the triplet (w, z, h), where

w = Au/, z= By, (55)
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belongs to C5([0,T); X) x C5([0,T]; X) x CA([0,T];R) and solves
problem (51), (52), (58). Conwversely, if (w,z,h) € CP([0,T]; X) x
CA([0,T]; X)xCB([0, T]; R) is a solution to problem (51), (52), (53),
then the triplet (u, p,h), where

u=ug+1%x A w, p=po+1xB7lz (56)
belongs to [C*+5([0, T]; X) N CY3([0, T]; D(A))] x [C*+([0, T}
X)Nn C'B([0,T); D(B))] x C8([0,T]; R) and solves problem
(6)-(9).

LEMMA 4.2. Let h € C5([0,T];R), g € C?([0,T); X). Then hg be-
longs to CP([0,T]; X) and satisfies the estimate
Ikgllsrx < lIhllsrrllgllsrx- (57)

LEMMA 4.3. Let L3 be the operator defined in (41). If h € C([0,T];
R) and Aug € DaA(B + &,p), then the following estimate holds for
any € € (0,1 —f) :

||L3[h, AUO] ”ﬁ7T7X <T‘c (/87 £,0, M, T) ”h

0.7.R|[ AU || D 4 (542,p)-
(58)

The function ¢y is continuous and nondecreasing in T.

LEMMA 4.4. Let Ly and Ny be the operators defined in (40) and (42),
respectively. Then operator Ly Ny maps CP([0,T7;

R) x C([0,T]; X) into C3([0,T]; X) and satisfies the following esti-
mate for any (h,w) € C?([0,T);R) x C([0,T]; X) :

L1 [Ny (B, )l x < e2(B.e,60,p, M, T)T?|[Bl| 7R |lw

or.x- (59)
The function co is continuous and nondecreasing in T'.

LEMMA 4.5. Let N; (j = 2,3,4,5) be the operators defined in (43)-
(46). Under assumptions (18)-(23) N; (j = 2,3,4,5) maps C([0,T7;

X)2 into C8([0,T]; L(X)) and satisfies the following estimates for
any w,z € C([0,T]; X) :

[N (w, 2)]

sreex) < T Pes(llwllorx, l|zllorx. T). (60)

The function cg is continuous and nondecreasing in each of the ar-
guments pointed out.
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LEMMA 4.6. Let Ly and Lo be the operators defined in (39) and
(40), respectively. Then operators L;N; (i = 1,2, j = 2,3,4,5)
map C([0,T]; X)? into C5([0,T]; L(X)) and satisfy the following es-
timates for any pair w,z € CA([0,T]; X) :

| Li[Nj (w, )|l g ey < T 7
XC4(||UJ||(]’T7X, ”ZHO,T,XaT)a 1= 1523 .7 = 2533415' (61)

The function cy4 is continuous and nondecreasing in each of the ar-
guments pointed out.

LEMMA 4.7. Let M; (j = 1,2,3,4) and L (1 = 1,3) be the op-
erators defined in (47), (48) and (39), (40), respectively. Then
operators LiM; (i = 1, i = 3, j = 2,3,4,5) map C?([0,T]; X)?
into CP([0,T); L(X)) and satisfy the following estimates for any pair
w,z € CA([0,T]; X) :

| Li[M 425 (uo, po)w]llgr,x
< es(luollpay: leollo(s), T)T Pllwllgrx, i=1,2, j=0,1. (62)

The function cs is continuous and nondecreasing in each of the ar-
guments pointed out.

LEMMA 4.8. Let Nj (j = 2,...,5) be the operators defined in (43)-
(46). Under assumptions (18)-(23) operators N; (j = 2,3,4,5) map
CA([0,T]; X)? into CB([0,T); L(X)) and satisfy the following esti-
mates for any quadruplet wy,ws, 21,29 € CP([0,T); X) :

ILFIN; (wg, z2) — Nj(wi, 20)llo/,c(x)

2 2
< T”ﬂcG(IIUUH, looll. > llwellorx, D ||zf”°’T’X’T)

(=1 =1
X (Hw? - wl”(],T,X + ”22 - Zl”O,T,X)a Zak = 03 15 .7 = 25334553
(63)
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| L [Nj(wa, z2) — Nj(wi, 21)]|g.7,0(x)

9 2
< 7' Per(Jluoll. lleoll: Y lwellozrox, Y- lzelloirx. T)

=1 =1
X (Hw? - wl”(],T,X + ”22 - Zl”O,T,X)a Zak = 03 15 .7 = 25334553
(64)
||Lf[Nj(w2, z2) — Nj(wr, Zl)]H,B,T,C(X)
2 2
< ey (Jluoll Ipoll, 3 lwelloszc, 3 lzellorx, T)
=1 =1
X (||w2 — w10, T,X + ”22 - zl”O,T,X)a Zak = 07 ]-a j = 2a374a57
(65)

where cg, 7, cg are continuous and nondecreasing functions in each
of the arguments pointed out.

LEMMA 4.9. Let M; (j = 1,2,3,4) and L (1 = 1,3) be the op-
erators defined in (47), (48) and (39), (40), respectively. Then
operators LiM; (i = 1, i = 3, j = 2,3,4,5) map C?([0,T]; X)?
into C8([0,T); £L(X)) and satisfy the following estimates for any pair
w,z € C([0,T]; X) : fori=1,2, j =0,1

”Ei[(Mi+2j (uo, po) — Mi+2j(u61 Pf)))w]”,@,T,X
< CQ(HUOHD(A)a ||,00||D(B)a ||U6”D(A)a ”p6||D(B)aT)
|ﬁaT7X' (66)

The function cg is continuous and nondecreasing in each of the ar-
guments pointed out.

xT' ((luo = wpllpay + oo = i) )l

LEMMA 4.10. The convolution operator

t
Ny (w, h) = /0 h(t — s)w(s) ds (67)

maps C([0,T]; X) x C?([0, T);R) into CP([0,T];R) and satisfies the
following estimate

IN1(w, B)llgrx < (2T + T 7)|lw

ls,r.x |1hllo,rR- (68)

Proof. Tt is a particular case of proposition 3.1 in [4]. O
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5. Proofs of the main abstract results

We are now in position to state and prove the main results related
to the direct abstract problem in fixed point formulation (51)-(53),
i.e. we suppose that h is a given data and we study the continuity of
the map (ug, po, h) — (u, p) which is a consequence of the following
continuous dependence result.

THEOREM 5.1. Let H1-H8 and estimates (18)-(23) hold. Let (w, z)
and (w',2") be the unique solutions to problem (51) and (52) re-
lated to data (wo, 20, h) and (wy, zy, h'), respectively. Then the map
(ug, po, h) = (w, 2) is continuous from D4 (2+ B,p) x Dp(2+ B, p) X
CP([0,T]; X) to CP([0,T]; X)%. Moreover the following estimate holds

|lw—w'llgrx + Iz = 2'llprx < c13(8,,0,p, M, T, m)

X (Hh — h'llo;rr + llwo — wollpa248,) + 110 — 96||DB(2+,3,P)>' (69)

REMARK 5.2. We point out that, theorem 5.1 can be obviously gen-
eralized studying the continuity of the map (ug, po,h, f,g9) = (w, 2).
Such generalization is reasonable because, in the combustion case the
operators f and g are given by the Arrehenius kinetic (c.f.(98)) that
contains the two parameters n and v which are experimentally de-
termined with some error. However in the sequel we prove theorem
5.1, only, since the generalization is obvious, but needs too many
calculations.

Proof. (of theorem 5.1) We remark that in [2] we have proved exis-
tence and uniqueness for the inverse problem only, since the existence
and uniqueness theorem for the direct problem follows easily by stan-
dard arguments and the lemmas of section 4. We can now define the
closed ball (for suitable m > 0):

Bm(ﬂ) = {(uo,po,h,w,z) € B(ﬁ) : ”(uﬂapﬂahawaz)”B(ﬁ) < 5m}
(70)
where
B(B) :=Da(2+ B,p) x Dp(2+ f,p)
xC7([0,T];R) x CP([0,TT; X) x C*([0,TT; X)



206 F. COLOMBO

and

”(anpo,h,waz)HB(ﬂ) = HUOHDA(Q—i—ﬂ,p) + HPUHDB(Q—i—ﬂ,p)
+|h

srr + |wlsrx + 1|2ls7x-

Keeping in mind the existence and uniqueness results, we let (w, z),
(w', 2") be the solution of (51) and (52) related to the date (ug, pg, h),
(ug, ph, h'), respectively. For the differeces w — w' and z — 2’ from
(51) and (52) we derive the following equations:

w—w' =wy —wj+ S1(w, z,h) — S1 (v, 2", h')
= wy — wy + L3lh, Aug] — Ls[h’, Aug] + L1[N1(h,w)] — L1 [Ny (W, w")]
+ L1 [No(w, 2) (A" w)] — Li[No(w', 2') (A" "))
+L1[N3(w, 2) B™' 2] — L1[N3(w', 2') B~ 2]
+La[Mi(ug, po)w) — Ln[Mi (uf, pf)w']
+L1[Ma(uo, po)2)] — La[Ma(ufy, py)2")], (71)

z—2 =20 — 2z, + Sa(w, z,h) — Sa(w', 2, H')
= 29 — 2 + Lo[Ny(w, 2) (A~ 'w)] — Lo[Ny(w', 2') (A~ )]
+Lo[N5(w, 2)B™'2] = Lo[N5(w', 2/)B™"2'] + Ls[M3(uo, po)w]
— Ls[Ms(up, ph)w') + La[Mi(uo, po)2] — Ls[Ma(up, p) ). (72)

From (71) and (72), after some calculation, we easily deduce the
estimates

lw—w'

ls,rx < llwo — wollgrx + I1L3[h — b, Augl|| 3.1, x
+ILa[h', A(uo — wp)]ll x4+ I L[N (h = B w)]lls,r.x
HI L[Ny (B w — w") |1, x
+| L1 [(No(w, 2) — No(w', 2')) (A~ w)]ll g, x
+| L1 No(w', 2') (A~ (w — w")]l| g0 x
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+|LA[(N3(w, 2) — No(w', 2)(B~ ' 2)]llp,1.x
+| L1 N3 (w', 2') (B~ (2 = 2)]ll g0 x
L1 [(M) (ug, po) — M (ug, po))w]llpr,x
L [M (ug, o) (w — )]l g,
| L1 [(Ma(uo, po) — Ma(up, ph)) 2]l g, x
H La [Ma (ug, p) (2 — 2 p.rx (73)

Iz = 2'llsrx <llz0 — 2llp.r.x
+| La[(Na(w, 2) = Ny(w', 2)) (A w)] ||z x
| Lo [Ny(w', 2) (A~ (w — w')]llp.1.x
+[| L2 [(Ns(w, z) — N5(w', 2")) B~ 2]|lg,1,x
+||La[Ns (w', ") B~ (z = 2")]llp,1.x
+{|Z3[(Ms (uo, po) — Ms(up, p))w] |, x
| L[ Ms (ug, pf) (w — w')] | 5,7, x
+| Ls[(Ma(uo, po) — Ma(up, p)2]llg.r,x
+| Ls[Mi (uf, o) (2 — 2)]ll.7x - (74)

Thanks to lemmas 4.2- 4.10 we obtain the two following estimates

|s.r.x
11 (88,0, M, T) (IIh = B llo;r;m | At 1o 43+

lw —w'llgrx < llwo — wy

I oz Ao = ut)lp s (512, )
+19¢5(8,,0,p, M, T) (1 = W g, lwllo,r, x
+IR s rrllw — w'“o,T,X)
+T' P max{meg(m,T), cs(m,T),
meg(m, T), c5(m, T), [|A™ | x)5 1B~ lpx) b

% (o = w'llgrx + 1z = 2llgrx + lluo = upllpa o+

Hloo = ollos(e ) (75)
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Iz = 2'llpr.x < 20 — 20l p.7.x
+T1P max{meg(m, T), c4(m, T), meg(m, T),
es(m, T), [|A" i) 1Bl

% (Jlw = wllgrx + 11z = 2 llsrx

Hluo — thllpyzssg + 100~ dollopiaisn)-  (76)
Inequalities (75) and (76) can be rewritten as

|w —w'l|lgrx < llwo —wollsr,x
+Clﬂ(ﬁa6a0apa M7 T’m) maX{Tﬂ’TliﬂaTe}
X (||Z —2lgrx + llp—Pllgrx +11h = Pllorr + lluo — ugllpy246,p)

oo = Pollop@enm + A0 = )lpasien)s  (70)

||Z - Z,| B, 1T,X < ||ZO - 26| 6,T,X +Tﬂcll(/836703pa Ma T7 m)
X (Ilz — Zlgrx +llp = p'llsrx

Hluo — thllo g + 00— Abllppaisn)- (79)

Now, acting on (77), taking all term ||w — w’'||3,7,x to the first hand
side, we get

Jow = w'llgr,x < (1= cro(B.e,0,p, M, T,m)

-1
X max{TB,Tl"B,TS}> {ng — )|

ﬂ’T7X

+010(ﬁa €, Oapa Ma Ta m) ma‘X{Tﬁa Tl_ﬁa TE}
x(Il2 = 2 llax + b = W llor.m + o — o 4 24..)

oo = Pbllpp s + 1AM — )lpasien) s (79)

and acting on (78), taking all term ||z — 2'||3,7,x to the first hand
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side, we get

—1
2= #llamx < (1= eun(Boe, 6,0, M, T,m)T”)

X{”ZO - z{]”,@,T,X + 611(,8, g, eapa Ma T7 m)TE

srx + w0 = whllo i) + o0 = Pbllpa(znm) }-
(50)

X (Hw -

Finally, solving the system of inequalities (79) in (80) for |w —
w'llgrx and ||z — 2|50, x we get

||w - w,”ﬂ,T,X < 612(/8767071)7 Ma T7 m)
x (1B = W llo.r.m + lluo = o025

+lpo = ol (2+8,p) + 1 A(ue — ug) D 4 (B42p) + 120 — 26”,6,T,X)a
(81)

“Z - ZIHﬂ,T,X < Cl3(ﬁa £,0,p, M, Tam) (H’LL() - u6|‘DA(2+ﬂ,p)

+l190 = phllps+55) + l120 = ll57.x ) (82)

where c¢19 and c¢i3 are continuous functions of their arguments for
small T' > 0. To get 38 we observe that wy and zy are defined in (49)
and that H8 holds. O

From the above theorem follows easily theorem 2.2.

Now we study the continuous dependence of the solution for inverse
problem (53).

THEOREM 5.3. Let H1-H11 and estimates (18)-(23) hold. Let h and
h' be the solutions to problem (53) related to the data (wg,zo, ®,¥)
and (wy, 2y, @', '), respectively. Then the map (ug, po, ®,£) — h is
continuous from Da(2+ B,p) x Dp(2+ 8, p) x L(X;R) x C?8([0,T])
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to C8([0,T)). Moreover the following estimate holds
Ih = Hllprr < e1s(Bse,6,p, M, T, m) max{T?, "7, T}
% (10 = @'l + |[@(Au0)] = [0(Aup)] |
+e =Ll oy + llvo — uollpa 248, + llpo = PBIIDB(Qw,p))a
(83)

where c15 s positive and continuous for small T'.

Proof. Thanks to the existence and uniqueness theorems in [2] and
theorem 4.1, we define the closed ball (for suitable r > 0)

Zr(ﬁ) = {(u(]a:Oan)aga h) € Z(ﬁ) : ”(u(]ap(]ﬂq)aeﬂ h)”Z(ﬁ) < 57}

where
Z(B) :==Da(2+ B,p) x Dp(2 + B,p)
xL(X;R) x C*([0,T]) x C#([0,T7])
with the norm
(w0, po, @, 4, )| z(5) := lluollDs2+8.) + lP0llDps(245.)
H®llcexir) + 1l o245 o,rm) + 1Plleso,mm) (84)

Let h, h' be the solution of (51) (52) and (53) related to (ug, po, @, %),
(ug, p, @', ¢'), respectively. For the difference h — h' from (53) we
obtain the following equation:

h—h' = ho — hf + S3(w, z, h) — Ss(w', 2, 1) = hy — Il
—x®{ Lalh, Auo] + L1[N1 (, w)] + La[Na(w, 2) A~ ]
+L1[N3(w, 2) B~ ' 2] + Ny (h, w) + Na(w, 2) A" w + N3(w, 2) B~ 2
+M; (uo, po)Si(w, 2z, h) + MQ(UU,,O())SQ(U),Z,h)}
—X'O'{ L[l Aug] + L[Ny (W, )] + L[N (w!, #) A"
+Ly[N3(w', 2")B712'] + Ny (B, )
+No(w', 2 YA ' + N3(w', 2') B2
+ My ph) S1 (W', 2, W) + Ma(up, pp)Salw', 2/ W) b (85)
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From (85), after some calculations, we easily deduce the estimates

|h—Hllgrr < o — Bollgr R + IX® — X' @'l £(x,R)
x{ I Zalh, Auolllg.r.x + 124 [N (h, w)]
HIL1[Na(w, 2) A wlllgrx + L2 [Na(w, 2)B 2]
+[ N1 (b, w) g1, x + [ Na(w, 2) A~ wl| g7 x
+[|N3(w, 2) B~ 2|75 + 1M1 (w0, po) S (w, 2, B) || g7 x
1M1, po) S 10, 2, ) 5.7, }

X'l oy { Ll Auo] = L[, Au] 15,
+|L1[N1 (b, w)] = L1 [N1 (B, w')] [l 3,7, x

+||L1 [N2(w, z) A~ tw] — Ly [Ny (w, z')Ailw']Hg,T,X

+|| L1 [N3(w, 2) B 2] — Li[N3(w', ') B~ 2]
+IN (= b w)llgrx + IINU(F,w —w')|lgrx

+H|No(w = w', 2) A wllgrx + |Na(w, 2 — 2") A7 wl| g x
+H[Nao(w', 2 ) A™Hw — w')|gmx + |N3(w — w',2) B~ 2lgrx
+[|N3(w', 2z — 2") B~ 2|lgrx + [ Ns(w', 2) B~z — 2)sr.x
+H[Mi (wo, po) — Mi(ug, po)1S1 (w, 2, h) |57, x

+[| M (g, po)[S1(w, 2,h) — Si(w', 2, h)]|lp.r x

+H{[[M2 (o, po) — M2 (ug, py)1S2(w, 2, h)||5.7,x

| Mo, p)[Sa (', 2 1) = Sa(w, 2 W] lgrx - (86)

ﬁ’T’X

|l8.1.x

Thanks to lemmas 4.2-4.10 and to estimate (70) we get

||h — h,“ﬁ,T’R S ||h[] - h6||[3,T,R + 014(/876707[)7 M7 T)
<(Ixll|® = @'l (X, R) + 12l ccx,ry Ix = XD + X'l xw)
X{Tacl(ﬁagaoaMaT)(“h — N

lo,7R|[Auo ||DA(6+6,19)
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+||

0wl Ao — )l (31

+T1802 (/87 &, Oapa M’ T) (”h - hl| ﬁ,T,R”wl‘O,T,X
IR szl = w'lor.x )

+711h max{rcg(r,T),cs(r,T),rco(r,T), c5(r, T),
X[ A Ml pex)s 1B o)}

% (Jlw = w'llgrx + 11z = 2/ llsrx
Xlltto = wyllpp 25 + o0 = blIpy24 )
+2T + T9) (IIh = Wll oozl oo oy

—l—Hh'HC([o,T];R)”wlﬂcﬁ([o,T};X))
+T' P27 max{cs (r, T), e3(r, T)}(|lw = w'llo,r,x + |2 = 2llo,r,x)
+T1_608(T7 T)cl3 (/87 &, 9,;0, Ma T7 T) (Hh — I

0,T,R
Hlwo = wglipaz+0) + 100 = Aol D245
+T" 21 cs(r, T) (||U0 = gllp,2+6) + o — P6||DB(2+ﬁ,p)>- (87)

From estimates (82) and (87) we deduce, after some calculation,
estimate (83). O

6. The evolution equations for combustion of a
material with memory

One of the main tools for the formulation of governing equations for
physical problems are the conservation principles. When the prob-
lem considered involves a reaction process coupled with diffusion, the
conservation principle provides us a set of partial differential equa-
tions to be obeyed by the unknown quantities of the system. In our
case such quantities are the mass concentration and the temperature
in heat conduction. Let us first deduce the equation for the density
p(t,z) at time ¢ and position z in a material Q in R".

The principle of conservation states that for any subdomain R of
Q with a smooth boundary S the rate of change of mass density is
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equal to the rate of fluz across S plus the rate of generation within
R. This statement is a balance relation in which the flux, denoted
by the vector J, is the density flow per unit surface area per unit
time. Let v be the outward normal vector on S and ¢ be the rate
of generation per unit volume per unit time in R. Assume that p, J
and ¢ are continuous in z, and that p has a continuous derivative in
t. Then the conservation principle can be written as

Dt/Rozp(t,:v) dz = —/SJ(t,:v)-Vds—i—/ dto)de  (88)

R

where « is a constant. Thanks to the divergence theorem and since
R is a domain independent of time we also have

/ (o Dip(t, z) + div J (L, 2) — q(t, )] dz = 0 (89)
R
For the arbitrariness of the subdomain R it follows that

aDp(t,z) +divJ(t,z) —q(t,z) =0 in Q (90)

We now have to relate the diffusion flux J to the density function
p- In the case of a chemical reaction process the Fick’s law states
that in absence of convection, the fluzx is pointwise proportional to
the negative gradient of the density i.e.

J=—d*Vp (91)

where d* is a strictly positive function in 2. Replacing (91) in (90)
we obtain the evolution equation for the density

Dyp(t,z) = div[dVp(t,z)] + Q(t, x) (92)

where d = d*/a, Q = q/a. The function D is called the diffusion
coefficient in chemical diffusion processes. We point out that in the
case of combustion of several materials, with densities p1,...,0, we
have to consider r evolution equations of type (92) for every density
pi, (j=1,..,1).

Let us now turn our attention to the evolution of the temperature.
Also in this case we use the same conservation principle to get the
equation of continuity

a1 Dyu(t,z) +divJi(t,z) —qi(t,z) =0  in (93)
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We point out that the quantities o, J; and ¢ are defined as above,
but they are related to the heat flux. Fick’s law (91) in the case of
heat conduction is called Fourier’s law and is given by

Ji(t,x) = —diVu(t, ) (94)

To take the thermal memory effects into account, one of the best
modification of Fourier’s law, supported by experiments, leads to
replace (91) by

Ji = —diVult,z) — k/oth(t — $)Vu(s, z) ds (95)

where k is a positive function and h is the convolution kernel, which
accounts for the thermal memory. To obtain the equation for the
evolution governing the temperature we replace (95) into the conti-
nuity equation (90) and get

Dyult, ) = div [dy Vu(t, ) + /0 "Bt — $)dy Vs, z) ds] + Q1 (t.2)
(96)

where we have set for simplicity dy = dj/ai, ka1 = d; for and
Q1 = q1/a. We remark that we have set di = k just for the sake of
simplicity, to obtain operator d; Vu(t,z) also in the integral of (96)
so that in the abstract version of the problem (c.f. (6)) we can use
the same abstract operator A. What follows still hold in the case we
replace operator A in the integral by gA where ¢ is a proportional
coefficient. In the concrete case ¢ generally depends on the space
variables only.

In the case of nonisothermal chemical reaction process involving a
single species of combustible with density p the functions () and
1 depend, in turn on the temperature and on the density of the
material through a given function f. More precisely

Q(t,l‘) = _alf(u(tax)ap(tax))a Ql(tax) = a2f(u(tax)7p(tax))
(97)

where a; is the Thile number and ag/a; is the Prater temperature.
If the reaction is irreversible function f, according to the Arrehenius
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kinetic, is given by

f(u,p) = p"exp(y —v/u) (98)

where + is a positive constant related to the activation energy of the
reaction, and it is called Arrhenius number, 7 is called the order of
reaction and it is a real number, but for most of the reactions is
positive. For more details see for example [1], [3], [5].
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