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SUMMARY. - We present several known and one mew description
of orthomodular structures (orthomodular lattices, orthomodular
posets and orthoalgebras). Originally, orthomodular structures
were viewed as pasted families of Boolean algebras. Here we in-
troduce semipasted families of Boolean algebras as an alternative
description which is not as detailed, but substantially simpler.
Semipasted families of Boolean algebras correspond to orthomod-
ular structures in such a way that states and evaluation func-
tionals are preserved. As semipasted families of Boolean algebras
are quite general, they allow an easy construction of orthomod-
ular structures with given state space properties. Based on this
technique, we give a simplified proof of Shultz’s Theorem on char-
acterization of spaces of finitely additive states on orthomodular
lattices. We also put some other results into the new context. We
give a detailed exposition of the construction techniques as a tool
for further applications, especially for finding counterexamples to
questions about states on orthomodular structures.
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1. Introduction

In a classical system, the observable events form a Boolean algebra.
The states are described by a mapping which assigns to each event
its probability. So the states may be identified with probability mea-
sures.

The logic of quantum mechanics is more general — it is non-
distributive. For its system of events, several corresponding alge-
braical structures were suggested, e.g., orthomodular lattices, ortho-
modular posets, etc. Their study was initiated in [7] and further mo-
tivated in [18]. Combinatorial techniques (using hypergraphs) were
introduced in this field by Greechie [9] and generalized by Dichtl
[22]. Since that, they are an essential tool in the theory of ortho-
modular structures (see [16, 40]). Further constructions extended
this technique — particular pastings used e.g., in [15, 20, 37|, past-
ing of orthomodular posets [35], hypergraph representation of state
spaces [34], and recently the technique of regulators [21]. At present,
almost every researcher in the field of orthomodular structures has
to use the combinatorial techniques at least to find examples or to
demonstrate his notions and ideas. In this paper, we try to collect
some of them in a unified and new formulation.

The paper is organized as follows: First we introduce a pasted
family of Boolean algebras as a basic structure. We define its past-
ing and formulate conditions under which it is an orthoalgebra, or-
thomodular poset or orthomodular lattice. We use hypergraphs to
describe pasted families of Boolean algebras, resp. the corresponding
orthomodular structures, and we show that they allow to determine
the elements of the structure, the states and the evaluation function-
als. Then semipasted families of Boolean algebras are introduced as
a new structure. They are again represented by hypergraphs. We
derive a new type of correspondence — a functional isomorphism.
It allows to determine the states and evaluation functionals, but not
the elements of the structure. Its advantage is that each hypergraph
corresponds to a semipasted family of Boolean algebras and each
such family represents — up to a functional isomorphism — an or-
thomodular lattice. This makes its use in examples very easy. The
effectiveness of this technique is then used in several simplified or
new proofs of properties of the states spaces of orthomodular lat-
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tices. Possibilities of further development are outlined at the end of
the paper.

2. Classical logics

Before a generalization to quantum logics (described by orthomodu-
lar structures), we demonstrate the basic notions on classical logics
(represented by Boolean algebras).

In the classical probability theory, the events of a system form
a Boolean algebra, A. If A is finite, it is isomorphic to 2" for some
n € N and it is completely determined by its atoms which are defined
as follows:

DEFINITION 2.1. Let L be a poset with a least element, 0. For
a,b € L, a < b, we define the interval [a,b]y = {c € L:a < c < b}.
An atom in L is an element a € L\ {0} such that [0,a]r, = {0,a}.
We denote by A(L) the set of all atoms of L. A poset is called
chain-finite iff each its chain (=linearly ordered subset) is finite.

Throughout this paper, intervals without indices are reserved for
intervals of real numbers; all other intervals are indexed by the re-
spective poset. We always consider an interval [a, b];, with the partial
ordering inherited from L. We denote the bounds of posets by 0, 1
(eventually with indices, e.g., 0p, 1;), while the symbols 0, 1 are
reserved for real numbers or constant functionals.

The system of events, described by a Boolean algebra, A, may
be in different states. Each pair of an event, a € A, and a state, s,
is assigned a value, s(a) € [0,1], called the probability of event a at
state s. Thus states may be understood as mappings s: A — [0, 1].
Here we assume only finite additivity of states:

DEFINITION 2.2. Let A be a Boolean algebra. A state on A is a
mapping s: A — [0, 1] such that

(SBA1) s(1) =1,
(SBA2) a,be A, aAb=0= s(aVb)=s(a)+ s(b).

A state is called two-valued if it attains only the values 0 and 1.
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We shall define states also on other structures — orthomodular
lattices, hypergraphs, etc. We always denote by S(L) the set of all
states on L — the state space of L. We assume S(L) C [0,1]F with
the product (=weak) topology. It is always compact and convex. As
such, it is a convex hull of the set of its extreme points which are
called pure states. This means that a state s is pure iff it cannot
be expressed as a nontrivial convex combination of other states. In
Boolean algebras, pure states coincide with two-valued states [46].
In more general structures these two notions are different.

3. Motivating examples

In this section, we present several physical experiments which demon-
strate some quantum phenomena and which are described by simple
orthomodular structures. We will refer to them for demonstration
of different descriptions and features of orthomodular structures.

EXAMPLE 3.1. Assume that we observe a fire-fly closed in a box
divided by transparent walls into four quadrants (Fig. 1). The fire-fly

xB

a
A

Figure 1: Experiment from Ex. 3.1

can move between the quadrants. Assume that the fire-fly keeps the
light burning all the time. An observer at point A can distinguish
whether the fire-fly is in the left or in the right half of the box.
Similarly, an observer at point B can distinguish the upper and lower
half. In the classical case, we may place two observers to points A,



STATE SPACES OF ORTHOMODULAR STRUCTURES 147

B and distinguish four states corresponding to the presence of the
fire-fly in particular quadrants.

In quantum systems, a simultaneous observation is often im-
possible. Measurements are destructive (they change the state of
the system irreversibly), e.g., a single photon can be observed only
once. (The same situation, characterized by irreversible changes of
the state during measurements, is typical also in many other fields
— sociology, psychology, artificial intelligence etc.) In our exam-
ple, this phenomenon may be modelled by having only one observer,
placed either in A or in B. So we may choose one of two possible
observations, but we cannot perform both at the same time (and at
the same state). For the observer placed in A, the observable events
form a Boolean algebra A = {04,a,a'*,1,}, where a (resp. a'4)
represents the event “the fire-fly is observed in the left (resp. right)
half’, and 04 (resp. 14) represents the impossible (resp. sure) event.
(We index the logical operations — including negation — and rela-
tions by the corresponding structure. We omit these indexes if this
does not lead to confusion.) For the observer in B, the observable
events form a Boolean algebra B = {0p,b,'% 15}, where b is the
event “the fire-fly is observed in the upper half”.

We have no tool to observe the conjunction of @ and b and other
events which are supposed to exist in the classical probability theory.
Our system is described by two Boolean algebras, A and B. Their
intersection is nonempty, because their bounds (impossible and sure
events) are the same: 04 = 0p, 14 = 15. (From now on, we omit
the indices when they are unimportant.)

All observable events from a “logic” L = {0, a,a'*,b,b'5, 1} which
inherits the ordering and negation of A and B.

Knowing the internal structure, we can consider four internal
states of the system. They are described by the results of the ob-
servation performed at the states, so we can represent them as map-
pings from L to the set of truth values, {0,1}. Each of these states
corresponds to one row in the following table:
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s(a) s(b)

_— -0 O

0
1
0
1
All the remaining values follow from the rules

(S0)  s(0)=0

and
(S1) s(z') =1 — s(x).

(Later on, we shall see how the states are recognized from the event
structure, without a knowledge of the internal organization of the
system.) The four states described so far are the pure states. Tak-
ing into account that the observations — influenced also by other
circumstances — give only probabilistic results, we must admit also
mixtures of states, i.e., their convex combinations. All states s on L

satisfy (S0) and (S1) and

s(a) =p, s(b) =g,
where p, g € [0,1] can be chosen arbitrarily.

EXAMPLE 3.2. We take the same system as in Ex. 3.1 with the only
difference that the fire-fly can also put out the light. This situa-
tion corresponds to a new event, d, with the meaning “the fire-fly
is not observed from A”. The events observable from position A
form a Boolean algebra A, isomorphic to 23, having atoms A(A) =
{a,d,(a V4 d)*}. Similarly, the events observable from position B
form a Boolean algebra B with atoms A(B) = {b,d, (bVgd)'P}. All
observable events are L = {0, a, b, d, aVad, bVpd, (aVad)?,
(bvpd)B, a4, ¥B, d'4, 1} (notice that d'4 = d'B). The pure states
are given by the following table:

V2]
S == O oy
SN—

5()
0
1
0
1
0

V)
~~~
S O O Qi
~—



STATE SPACES OF ORTHOMODULAR STRUCTURES 149

All states s on L are uniquely determined by the values
s(a) =p, 5(b) = ¢, s(d) =,
where r € [0, 1] is arbitrary and p,q € [0,1 — r].

ExaMPLE 3.3. Consider a fire-fly in a box divided into three parts
(Fig. 2). The fire-fly may put out the light. In contrast to the

Figure 2: Experiment from Ex. 3.3

preceding examples, the internal walls are not transparent.

The events observable from position A form a Boolean algebra
A with atoms A(A) = {b,c,d}, where b (resp. ¢) means “the fire-fly
is observed in the left (resp. right) part”, and d means “the fire-
fly is not observed”. (Notice that d corresponds to two possible
internal situations: the fire-fly is either in the upper part or its light
is not burning.) Similarly, the events observable from position B,
resp. C, form a Boolean algebra B, resp. C, with A(B) = {a,c, e},
A(C) = {a,b, f}. (The event a means “the fire-fly is observed in
the upper part”, the meaning of the e, f is obvious.) The collection
of all observable events is {0,a,b,¢,d, e, f,a’, b, d' ¢, f',1}. The
pure states are given by the following table:

s(a) s(b) s(c)

0 0
10
0 1
0 0
/2 1/

1/2 1/2 1/2
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Notice that the last pure state attains values different from 0, 1
and it cannot be interpreted as an internal state in classical terms.
Nevertheless, it is not a convex combination of the preceding states.

All states s on L are uniquely determined by the values

s(a) =p, s(b) =gq, s(c) =r,
where p, g,7 € [0, 1] are subject to the inequalities
p+qg<l, p+tr<l1 qg+r<1

The examples presented in this section will be used for demon-
stration of the new notions introduced in the sequel. In fact, they are
crucial examples of the very basic orthomodular structures. Besides
this, they show that it is natural to view a quantum experiment as a
union of classical experiments, and the corresponding quantum logic
as a union of classical logics (Boolean algebras). This approach will
be developed in the following sections.

4. Pasted families of Boolean algebras

In this section, we introduce pasted families of Boolean algebras as
structures for description of quantum systems. This approach was
typical for the early studies of orthomodular lattices [22, 9, 43] and
it is close to the original motivation and interpretation of quantum
logic. We return to it because it forms a natural link between hyper-
graphs (as a tool) and orthomodular structures (as the aim of our
study). Moreover, this approach becomes particularly useful in the
study of semipasted families of Boolean algebras which is built up
the same way in Section 12.

DEFINITION 4.1. A pasted family of Boolean algebras (abbr. PF) is
a family F of Boolean algebras such that, for each A, B € F, A # B,

(PF1) A¢ B,

(PF2) AN B is a Boolean subalgebra of A and of B on which
the operations of A, B coincide,

(PF3) Vae ANB3C € F: [0,a]4aU[0,d]p C C.



STATE SPACES OF ORTHOMODULAR STRUCTURES 151

REMARK 4.2. 1. Although we mean that all operations defined on
Boolean algebras A, B coincide on A N B, this is equivalent to the
condition that the orderings of A, B coincide.

2. The intersection AN B always contains the bounds 0,1. These
bounds, as well as orthocomplements (negations) are the same in all
elements of F, so there is no need to index them by the respective
Boolean algebra.

3. The condition (PF3) is symmetric: There is also some D € F
containing [0,a']4 U [0, a] .

4. Notice that elements of F are Boolean algebras. We often
refer to elements of | J F which are elements of the Boolean algebras
in question (=events of the system).

For a PF F, we use the notation A(F) = Ugcr A(B) and we
call the elements of A(F) atoms of F (they are atoms of the Boolean
algebras in F).

DEFINITION 4.3. Two pasted families of Boolean algebras, F and G,
are isomorphic iff there is a one-to-one mapping i:|JF — |J G such
that, for each B € F, i|B is a (Boolean) isomorphism of B and i(B),
and G = {i(B): B € F}.

DEFINITION 4.4. Let F be a pasted family of Boolean algebras and
let a,b € |JF. We define the distance dx(a,b) in F as the minimal n
for which there exists a sequence (B, ..., By) in F such that a € By,
b € B, and B; N B; ;Dt {0,1} for s = 1,...,n — 1. We define
dr(a,b) = oo if no such sequence exists, and we put dx(a,a) = 0
foralla e |YF.

The definition of a state on a pasted family of Boolean algebras
is a canonical extension of a state on a Boolean algebra.

DEFINITION 4.5. Let F be a pasted family of Boolean algebras. A
state on F is a mapping s:|JF — [0,1] such that, for each B € F,
s|B is a state on B.

EXAMPLE 4.6. In Exs. 3.1, 3.2, { A, B} is a pasted family of Boolean
algebras. In Ex. 3.3, { A, B, C'} is a pasted family of Boolean algebras.
The states of the systems (as described in these examples) correspond
to the states on the respective pasted families of Boolean algebras.
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In order to avoid some problems with infinite subsets of PFs, we
introduce the following notion:

DEFINITION 4.7. A pasted family of Boolean algebras F is chain-
finite iff there is no infinite set M C |J F such that each finite subset
of M is contained in a Boolean algebra from F.

In particular, all elements of a chain-finite PF are finite Boolean
algebras.

5. Hypergraphs

Since [9, 43], hypergraphs are used as a powerful tool for descrip-
tion and graphical representation of orthomodular structures. In
this section, we summarize the basic notions and the relationship of
hypergraphs to pasted families of Boolean algebras.

DEFINITION 5.1. A hypergraph is a couple H = (V,€), where V is
a nonempty set and £ is a covering of V by nonempty subsets of V
(i.e., UE = V). The elements of V, resp. £, are called vertices, resp.
edges of H.

DEFINITION 5.2. Two hypergraphs Hi = (V1,&1), Hao = (Va, &) are
isomorphic iff there is a one-to-one mapping i: V1 — Vo such that
& = {Z(E) NS 51}

DEFINITION 5.3. Let u, v be two vertices of a hypergraph H = (V, £).
We define their distance dy(u,v) in H as the minimal n for for which
there exists a sequence (Ey,...,E,) in € such that v € Ey, v € E,
and E;NE; 1 # (0 fori=1,...,n—1. We define dy(u,v) = oo if
no such sequence exists, and we put dy(v,v) =0 for all v € V.

DEFINITION 5.4. Let H = (V,€) be a hypergraph. A state on H is
a mapping s:V — [0, 1] such that, for each E € &,

Z s(v) = 1.

veEE

This notion of a state was used without explicit formulation in [9,
43], and studied in detail in [10]. Now we are prepared to formulate
the correspondence between pasted families of Boolean algebras and
hypergraphs:
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DEFINITION 5.5. Let F be a chain-finite pasted family of Boolean
algebras. The couple (V, &), where V = A(F), £ = {A(B) : B € F},
is a hypergraph called the Greechie diagram of F.

In figures, we denote vertices of hypergraphs (Greechie diagrams)
by small circles and edges by smooth curves.

EXAMPLE 5.6. The Greechie diagrams of the PFs from Ex. 4.6 are
drawn in Fig. 3. (The vertices, resp. edges, are labeled by the corre-
sponding atoms, resp. Boolean algebras.)

C

Figure 3: Greechie diagrams from Exs. 3.1, 3.2, 3.3 (cf. Exs. 4.6,
5.6)

PROPOSITION 5.7. Two chain-finite pasted families of Boolean alge-
bras are isomorphic iff their Greechie diagrams are isomorphic.

The proof is routine.
The distance of atoms in a pasted family of Boolean algebras
(Def. 4.4) is the distance in its Greechie diagram. States on a chain-
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finite PF and on its Greechie diagram are in a natural one-to-one
correspondence:

PROPOSITION 5.8. Let F be a chain-finite pasted family of Boolean
algebras and let H be its Greechie diagram. Then the restriction
mapping h:S(F) — S(H) defined by h(s) = s|A(F) is an affine
homeomorphism.

Proof. Let s € S(F). Each edge E of H consists of the atoms of a
(finite) Boolean algebra from F, so ) .ps(v) = 1 and s|A(F) €
S(H). Each element of F can be expressed as a join of finitely many
orthogonal atoms. This implies that two states on F which coincide
on all atoms must be identical. The mapping h is therefore injective
and both h and h~! are continuous. Obviously, h preserves affine
combinations. It remains to prove that A is surjective.

Suppose that ¢ € S(H); we shall find a state s € S(F) such that
t = s|A(F). Obviously, the only candidate is determined by the

equation
sh = Y ),

acA([0,b] B)

where B is any Boolean algebra from F containing b. We only need
to prove that the latter formula is consistent, i.e., independent of the
choice of B. Assume that b € BN C for some B,C € F. According
to (PF3), there is a D € F containing [0,b]c U [0,¥'B]p and we
may choose D such that the atoms of D are A(D) = A([0,b]¢) U
A([0,b'P]). From

we obtain

a€A([0,b]c) a€A([0,b'B]5) acA([0,0] )

The condition of chain-finiteness is necessary in Props. 5.7 and
5.8:

EXAMPLE 5.9. Let A = 2V (the power set of the set of natural
numbers) and let B be the Boolean subalgebra of A consisting of all
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finite subsets of N and their complements. The Boolean algebras
A, B have the same sets of atoms. The restriction mapping h :
S(A) — S(B) defined by h(s) = s|B is not injective, hence not a
homeomorphism. We may view A and B also as singleton PFs, {A}
and {B}. They have the same “Greechie diagram”; the state space
of this diagram is homeomorphic to S(A), but not to S(B).

The “Greechie diagrams” of PFs which are not chain-finite do not
allow to reconstruct the original structure of a PF and its state space.
This is why we define Greechie diagrams only for chain-finite PFs.
The corresponding notion in terms of hypergraphs is the following:

DEFINITION 5.10. A hypergraph is chain-finite iff it does not contain
an infinite set V of vertices such that each finite subset of V is
contained in an edge.

EXAMPLE 5.11. A hypergraph with finite edges which is not chain-
finite: We take V = {an,bn,cn :m € N}, € = {{a1,...,an,bn,cn} :
n € N}. Each finite subset of the set V = {a,, : n € N} is contained
in an edge.

The Greechie diagrams of chain-finite PFs are chain-finite hyper-
graphs.

PROBLEM 5.12: Which chain-finite hypergraphs are Greechie dia-
grams of pasted families of Boolean algebras?

EXAMPLE 5.13. The hypergraph in Fig. 4a is not a Greechie diagram
of a PF because of condition (PF1). In a pasting of Boolean algebras
A, B, we would have a = (¢ V4 d)"* = (¢ Vg d)'® = b, but a,b are
denoted as distinct atoms. Fig. 4b shows a hypergraph which is a
Greechie diagram of a PF.

ExXAMPLE 5.14. For the same argument as in Ex. 5.13, the hyper-
graph in Fig. 5a is not a Greechie diagram of a PF. However, also
the hypergraph in Fig. 5b is not a Greechie diagram of a PF. Indeed,
we obtain a V4 b= (¢Vad)'* = (cVpd)B =eVp f, hence a V4 b,
e Vp f are the same elements in A, but a V4 b = (e Vp f)'C, so they
are complementary in C' — a contradiction with (PF2).
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Figure 4: Hypergraphs from Ex. 5.13

Figure 5: Hypergraphs from Ex. 5.14

EXAMPLE 5.15. The hypergraph in Fig. 6a is not a Greechie diagram
of a PF — it violates (PF3). The element

i:a\/Ab:(c\/Ad)IA:(c\/Bd)IB:e\/Bf:(g\/Ch)ICEAﬂC,

but there is no D € F containing [0,i]4 U [0,i'“]c. The edge cor-
responding to D is added in the hypergraph in Fig. 6b which is a
Greechie diagram of a PF.

6. Orthoalgebras

In this section we introduce orthoalgebras, algebraical structures
used in the description of quantum mechanical systems. Their re-
lation to pasted families of Boolean algebras will be clarified in the
next section. Here we summarize basic notions and facts about or-
thoalgebras.
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b b
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c\ /B O\ /B
e e
f f
a b

Figure 6: Hypergraphs from Ex. 5.15

DEFINITION 6.1. [8]: An orthoalgebra (OA) is a quadruple (L, ®p,
07,1;), where L is a set, 07,17, € L and @y, is a partial binary
operation on L satisfying the following properties:

OAl) Va,be L:a®rLb=b6y a,

)
OA2) Va,b,ce L:a® (b®drc) = (adLb) &L c,
OA3)
)

(
(
( VaoeL3I'deL:a®r,d=1y,
(

OA4) YVa € L :a®y, ais defined iff a = 0y,.

The operation @, is called the orthosum. As it is a partial operation,
(OA1) and (OA2) should be read: If one side of the equality exists,
then the other exists, too, and both sides are equal.

REMARK 6.2. Let (L,®7,07,1;) be an orthoalgebra. For a,b € L,
we define a <y, b iff there is an element ¢ € L such that b = a §p, c.
Then <y, is a partial order inducing partial lattice operations Ar, Vp,
on L. When we use them in expressions, we automatically assume
their existence. We use the same convention for the orthosum. We
define a unary operation '*: I — L assigning to each a € L the unique
element d satisfying (OA3). This is an involutive antiisomorphism
of L such that a A;, @’ = 0, for all @ € L. Tt is called an ortho-
complementation. These operations equip L with the structure of an
orthoposet (see [2, 16]), but not all orthoposets are orthoalgebras.
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DEFINITION 6.3. Two orthoalgebras (K, ®k,0x, 1), (L,®1,07,11)
are called isomorphic iff there is a surjective mapping i: K — L such
that, for all a,b € K, i(a) &y, i(b) exists iff a ® b exists, and if this
is the case, i(a) @1 i(b) = i(a Dx b).

Sometimes we speak of an orthoalgebra L instead of (L, ®r,07,1y)
and we omit the indices of @, <, A,V,’,0,1 when there is no risk of
confusion. Two elements a, b of an orthoalgebra L are called orthog-
onal iff a ® b is defined (in symbols a L b). This occurs iff a < V.

EXAMPLE 6.4. Every Boolean algebra with the orthosum defined by
a ®b=aVbwhenever a Ab =0 is an orthoalgebra. This fact may
be interpreted as follows: Each classical system (logic) is a special
case of a quantum system (logic). Conversely, an orthoalgebra is a
Boolean algebra iff it is a distributive lattice. Whenever we speak of
a Boolean algebra as an orthoalgebra, we consider it this way.

The crucial example for applications in quantum physics is the
following.

EXAMPLE 6.5. Let H be a (real or complex) Hilbert space. In the
lattice L of closed subspaces of H we define the orthosum of two
closed subspaces a,b as a + b whenever a,b are orthogonal (with
respect to the inner product). We obtain an orthoalgebra called a
Hilbert lattice. Hilbert lattices are non-distributive in general. They
play an essential role in the description of quantum mechanical sys-
tems [7, 18, 46]. However, an algebraic characterization of Hilbert
lattices is a problem which still is not satisfactorily solved. In fact,
the study of orthomodular structures was initiated in [7] and inspired
by this problem — the original aim was to find an algebraic coun-
terpart to structures successfully applied in quantum mechanics.

EXAMPLE 6.6. Let X be a nonempty set and let L be a class of
subsets of X, i.e., L C 2% such that

(CL1) 0elL,
(CL2) ac€lL= X\aclL,

(CL3) (a,be L, anb=0)=aUbe L.
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(The common definition of a field of subsets is generalized here in
the sense that we require L to be closed only with respect to disjoint
unions.) For each pair of disjoint sets a,b € L we define a® b = aUb.
We take 0 = (), 1, = X. Then (L,®,0r,17) is an orthoalgebra
(see [12, 40]).

EXAMPLE 6.7. Let us make the latter example even more specific:
We take X = {1,2,3,4}, L = {0,a,d’,b,b', X}, where a = {1,2},
b=1{1,3} and o', b’ are their set-theoretical complements in X. Then
L is a class of subsets of X. It is a nondistributive modular lattice
called MO2. We have already encountered it in Ex. 4.6; its Hasse
diagram is in Fig. 7a.

DEFINITION 6.8. [40] A concrete logic is an orthoalgebra which is
isomorphic to some class of subsets of a set (cf. Ex. 6.6).

The latter definition makes the term “concrete logic” independent
of isomorphisms and of a particular set representation.

DEFINITION 6.9. A subset B of an orthoalgebra L is called a Boolean
subalgebra iff

(BSAI) 0,17 € B,
(BSA2) a€B=dleB,

(BSA3) (B,®p,01,11), where @p is the restriction of &, to
Bi.is a Boolean algebra.

Two elements a,b in L are called compatible, in symbols a <+ b,
iff they are contained in a Boolean subalgebra of L.

In the quantum logical interpretation, compatible events belong
to some classical subsystem; as such, they are simultaneously ob-
servable and all Boolean expressions on them are well defined in the
orthoalgebra.

REMARK 6.10. Suppose that a,b are orthogonal elements of an or-
thoalgebra L. According to Def. 8.1, they are contained in at least
one Boolean subalgebra of L. Suppose that a,b are contained in two
Boolean subalgebras, A, B, of L. As the operations on A, B are in-
duced by the ordering of L, they coincide on their intersection, and
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aVab=aVpb Any Boolean expression in a,b gives the same re-
sult in any Boolean subalgebra containing a,b. The collection of all
Boolean subalgebras of L containing a, b has a minimal element —
the Boolean subalgebra generated by a, b.

DEFINITION 6.11. A block in an orthoalgebra is a maximal Boolean
subalgebra.

REMARK 6.12. A standard use of Zorn’s Lemma implies that each
Boolean subalgebra belongs to a maximal Boolean subalgebra.

This ensures the existence of blocks in any orthoalgebra. We
shall prove more in the next section.

A characteristic feature of Boolean algebras is that they are
uniquely complemented (see [2, 16]): For each element a, there is
a unique element b, namely b = a’, such that a Ab=0,aVb=1
(i.e., b is the lattice-theoretical complement of a). In general orthoal-
gebras, an element ¢ may have more than one complement (a’ being
always one of them). We call @’ an orthocomplement to distinguish
it from other lattice-theoretical complements. In Boolean algebras,
the notions of complement and orthocomplement coincide.

Due to the preceding facts, the ordering of a Boolean algebra
induces the orthosum uniquely and it is itself sufficient to determine
the whole structure of a Boolean algebra.

PROPOSITION 6.13. For an element a of an orthoalgebra L, a'l is
the only lattice-theoretical complement of a which is orthogonal to
a.

Proof. If b L1, a and b is a complement of a, then there is a Boolean
subalgebra A containing a,b, and a b =a®ab=aVab=1, so
b=al. O

EXAMPLE 6.14. In the orthoalgebra from Ex. 6.7, a has comple-
ments a’,b,b', but a Y b,a V.

PROPOSITION 6.15. Let a, b, c be elements of an orthoalgebra L such

that a < b < c. Then they are all contained in a Boolean subalgebra
of L.
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Proof. Take the subsets D = {01, a, (a ®1 b'")'L, b}, E = {0,c'",

(d* @p b)F b}, Foralld € D, e € E, we have d < b, e < b'F,
hence b <; e'L and d <;, e’L. This means that d, e are orthogonal in
L and d @, e is defined. The set {d @ e:d € D,e € E} is closed
with respect to orthocomplements in L; with the ordering inherited
from L, it is a Boolean subalgebra of L containing a, b, c. U

PROPOSITION 6.16. Let (L,®r,0r,11) be an orthoalgebra and let
e€ L\ {0.}. We take the interval K = [0, €], and we define O =
0., 1x =e, and

a®gb=a®; b whenever a L, b and a,b,a ®1 b€ K.
Then (K,®k,0x,1x) is an orthoalgebra.

Proof. (OA1), (OA4): Trivial.
(OA2): If (a ® 1, b) &, ¢ exists and belongs to K, then a® b € K
and

(a®rb)@rxc=(a®Lb) @rc=a®r (bBrc) =a®Pk (bBk ¢)

(OA3): For each a € K, the element a'K = (a @1, 'F)'" is the
unique element satisfying a @ a'® = e = 1x because a &1, o'X @y,
e’L = lL. |

REMARK 6.17. Orthogonality in an interval need not coincide with
orthogonality in the whole OA as we shall see in Rem. 8.6.

REMARK 6.18. Prop. 6.16 can be generalized to intervals with non-
zero lower bounds, but we do not need this here.

7. Pastings

In this section we shall associate with a pasted family of Boolean al-
gebras a single algebraic structure — its pasting — which appears to
be an orthoalgebra. We show that all orthoalgebras can be obtained
this way.

DEFINITION 7.1. Let F be a pasted family of Boolean algebras. On
L = JF, we define the partial operation &z, as the union of all @ 4,
A€ F,ie, a®r b= ciff there is an A € F such that a ®4 b = c.
The quadruple (L, ®1,0,1) is called the pasting of F.
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The consistency of the latter definition follows from (PF2).

EXAMPLE 7.2. The pastings of PFs from Ex. 4.6 have the Hasse
diagrams in Fig. 7 (in Fig. 7c, the elements a, a’ are marked twice in
order to reduce the number of crossings).

Figure 7: Hasse diagrams of the pastings of the pasted families of
Boolean algebras from Exs. 3.1, 3.2, 3.3 (cf. Exs. 4.6, 7.2)

The following proposition states that orthoalgebras are exactly
pastings of PFs. Although this fact is not very difficult to prove,
it seems to be new. It is not mentioned in [16] because the study
of orthoalgebras is relatively new. For partial results, see [16, §4,
Prop. 13], [22], [41].

PROPOSITION 7.3. The pasting of a pasted family of Boolean algebras
is an orthoalgebra. Conversely, every orthoalgebra is a pasting of a
pasted family of Boolean algebras, namely of the family of its blocks.

Proof. Let L be the pasting of a pasted family of Boolean algebras F.
Conditions (OA1), (OA3), (OA4) are easily verified for L. Condition
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(OA2) follows from (PF3): If (a @1 b) &1 c is defined, then there are
A,B € Fsuch that a®b=a®pband (a®pb)Dpc = (aDpb) By c.
Applying (PF3) tod=a®; b€ AN B, we find a C € F containing
[0,d]4 U[0,d']g. Thus a,b,c € C and all calculations can be made in
C:

(a@rLb)@®rc=(a®cb)®cc=a®c (b®cc)=ad (bPLc).

Conversely, let L be an orthoalgebra and F the family of its
blocks. First we prove that F is a pasted family of Boolean algebras.

(PF1): Trivial.

(PF2): The orthosums on blocks A, B are only restrictions of
the orthosum of L, so they coincide on A N B, which is therefore a
Boolean subalgebra of A and of B.

(PF3): Let A, B be blocks of L and let a € AN B. The intervals
[0,a]4, [0,d']p are Boolean algebras. For all b € [0,a]4, ¢ € [0,d/] 5,
we have b L1 ¢, so b@c exists. All elements b®y ¢, where b € [0,a]
and ¢ € [0,d'] 5, form a Boolean subalgebra of L (isomorphic to the
product of Boolean algebras [0,a]4 and [0,a']p). It is contained in
a block. In particular, this block contains [0, a]4 U [0, d'] .

We proved that F is a pasted family of Boolean algebras, so it
has a pasting. It remains to prove that this pasting coincides with L.
Each element a of L belongs to the Boolean subalgebra {0,a,d’,1}
of L. Thus L = |JF. For a,b € L, the orthosum a @y, b exists iff
there is a block A such that a® 4 b exists. In this case a® b = a® 4 b,
so the orthosum of L is the orthosum of the pasting of F. O

As far as we know, the latter proposition for OAs is new. It
implies that the pasting technique for Boolean algebras is sufficiently
general to give all OAs. Props. 7.3 and 7.3 show that orthoalgebras
are exactly pastings of PFs. The notion of block is quite natural in
OAs. The attempts to define blocks in more general structures were
not very successful.

8. Orthomodular posets and lattices

In this section, we introduce special types of orthoalgebras — ortho-
modular posets and orthomodular lattices. We formulate conditions
under which a pasting of a pasted family of Boolean algebras gives
rise to an orthomodular poset, resp. an orthomodular lattice.
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DEFINITION 8.1. An orthoalgebra L is

e an orthomodular poset (OMP) iff each orthogonal pair has a
join in L,

e an orthomodular lattice (OML) iff L is a lattice.

REMARK 8.2. We use here nonstandard definitions of OMPs and
OMLs based on orthoalgebras. According to the standard definition,
an orthomodular poset L is a poset with bounds 0, 1, equipped with
a unary operation ': L. — L (orthocomplementation) such that, for
all a,b € L,

(OMP1) a" = a,

(OMP2) a<b=1b<d,
(OMP3) b<a, b<d)=b=0,
(OMP4) a <V = aVb exists,
(OMP5) a<d=d=aV(d Nd).

Using the convention of Rem. 6.2, the condition (OMP3) may be
written as a A a’ = 0. (OMP5) is called the orthomodular law (see
[2, 16] for the discussion of its numerous equivalent formulations).
An orthomodular lattice is an OMP which is a lattice. Our definition
is based on different basic operations, but it describes categorically
the same structures. We have already shown how the ordering and
orthocomplementation are derived from the orthosum. Conversely,
in an OMP L, the corresponding orthosum can be defined as a® b =
a V1 b whenever a <j b'L.

The inclusions between the classes of orthoalgebras studied here
are displayed in Fig. 8. All these inclusions are proper (see the
following examples). Boolean algebras and Hilbert lattices (Ex. 6.5),
as well as MO2 (Exs. 3.1, 6.7) and the pasting from Ex. 3.2, are
OMLs.

ExamMpLE 8.3. Exs. 3.3, 4.6, 7.2 show an orthoalgebra which is not
an OMP because orthogonal atoms a,b do not have a join — they
have incomparable upper bounds ¢/, f’.
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Figure 8: Inclusions between classes of orthoalgebras (BA=Boolean
algebras, HL=Hilbert lattices)
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Figure 9: Hasse and Greechie diagrams of an OMP which is not an
OML (Ex. 8.4)

ExAMPLE 8.4. The Hasse diagram in Fig. 9a (where a, a’ are doubled
to reduce the number of crossings) represents (the smallest) OMP
which is not an OML, because (nonorthogonal) atoms b,d have in-
comparable upper bounds a’, ¢’. Its Greechie diagram is in Fig. 9b.

Usually these structures, not PFs, are defined as primary objects.

ProposITION 8.5. If L is an OMP, resp. an OML, then so is any
nontrivial interval in L.

REMARK 8.6. In an orthoalgebra which is not an orthomodular poset,
orthogonality in an interval need not coincide with orthogonality
in the whole OA. In the OA L from Exs. 3.3, 4.6, a L; b and
a,b € [0,c*]L, but a,b are not orthogonal in [0, c"]z.

ExXAMPLE 8.7. In OMPs and OMLs, if a @ b exists, then a V b exists,
too, and a ® b = a VvV b. In OAs, the existence of a ® b does not imply
the existence of a V b, see Exs. 3.3, 4.6, 7.2.
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The results in the sequel will be formulated as strong as possible,
i.e., positive results for the most general class of orthoalgebras, neg-
ative results (counterexamples) for OMLs. When we want to talk
about any of the three classes (OAs, OMPs, OMLs), we speak of
orthomodular structures.

Prop. 7.3 was proved for chain-finite OMLs in [22] and for OMPs
in [41]. Now we shall characterize the PFs which give OMPs as their
pastings. We need the following notion:

DEFINITION 8.8. Let F be a pasted family of Boolean algebras. A
sequence ((Ap,ao), (A1,a1),...,(An_1,an-1)), where A; € F, a; €
A;NA;+1\{0} (indices mod n), is called an n-cycle in F iff [0, a;]4, =
[0,ai]a,., and a; 1 La, a; for i = 0,...,n — 1. If, moreover,
Ag, ..., Ap_1 are mutually distinct and q; is an atom of both A; and
Ai+1 forallz = 0, ce ,n—l, then ((A(], ag), (Al, al), ey (Anfl, an,l))
is called an n-loop in F.

EXAMPLE 8.9. In Ex. 3.3, resp. Ex. 4.6, (see Fig. 3c), ((4,¢), (B, a),
(C,b)) is a 3-loop. In Ex. 8.4 (see Fig. 9b), ((4,b), (B, ¢),(C,d),
(D,a)) is a 4-loop. The hypergraph in Fig. 6b is a Greechie diagram
of an OML in which ((4,cV d),(B,eV f),(C,gV h),(D,a Vb)) is a
4-cycle, but not a 4-loop.

PrOPOSITION 8.10. The pasting L of a pasted family of Boolean al-
gebras F is an orthomodular poset iff for each 3-cycle ((Ag,ap),
(A1,a1), (A2, a2)) in F there is a D € F containing ag, a1, as.

Proof. For the first implication, let us assume that L is an OMP
and ((Ao,ap), (A1,a1),(A2,a2)) is a 3-cycle in F. Then ag,a1,as
are mutually orthogonal in L, there exists the join d = ag VL a1 =
ag Va, a1 and d <y, a,. Thus there is a D € F such that d,as € D
and d <p df. According to (PF3), D can be chosen such that
[0,d]p =[0,d]4,, so D contains ag, a1, as.

For the reverse implication, let b,c € L, b Ly c. There is a
Boolean algebra A € F such that b | 4 ¢. We shall prove that bV 4 c
is also the join b Vy ¢ computed in L. Suppose that d € L and
b <p d, ¢ <r d. There are Boolean algebras B,C € F satisfying
b <p d, ¢ <¢ d. Moreover, according to (PF3) we may choose B,C
such that [0,b]p = [0,b]4, [0,c]c = [0,c]4, and [0,d""]p = [0,d""]c.
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The triple ((4,b), (B,d'"),(C,c)) is a 3-cycle unless some of b, c,d'"
is zero (this case is trivial). According to our assumption, there is a
Boolean algebra D € F containing b, ¢, d'". As bV 4 ¢ belongs to the
Boolean subalgebra of L generated by b, ¢, it belongs also to D. We
obtain bVyc=bVpc<pd,sobVpc=0bVyec. |

EXAMPLE 8.11. A typical example of a PF containing a 3-loop and
giving an OML as its pasting is presented by the Greechie diagram
in Fig. 10.

Figure 10: Greechie diagram of an OML containing a 3-loop
(Ex. 8.11)

There are conditions (see [22, 16, 35]) ensuring that a pasting of
a PF is an OML, but they are not far from a reformulation of the
condition that it is a lattice.

PROPOSITION 8.12. [22] Let F be a chain-finite pasted family of
Boolean algebras. Its pasting L is an orthomodular lattice iff for
each 4-cycle ((Ao,ao0), (A1, a1), (A2, a2),(As,a3)) in F there is a 4-
cycle ((Bg,b), (B1,b'), (Ba,b), (Bs, b)) in F such that ag < b, ag < b,
al S b', as S b'.

Proof. (See also [22, 16] or [35].) Suppose that F satisfies the condi-
tion of the latter proposition. According to Prop. 7.3, L is a chain-
finite orthoalgebra. It remains to prove that L is a lattice. Let
ag,a9 € L. Let U be the set of all upper bounds of ag,as. As
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L is chain-finite, U has a minimal element. Suppose that cq,c3
are minimal elements of U. Then there are Ag, A1,A2, A3 € F
such that ag <4, c3, ag <a, c1, a2 <4, c1, a2 <4, c3. Then
((Ag,ap), (A1, cy), (Ag,a2), (As, %)) is a 4-cycle in F (except for the
trivial cases 0 € {ay, ¢}, a9,c4}). According to the assumption (with
a; = dj, a3 = ¢), we find an element b € U satisfying b < ¢, b < c3.
Because of minimality of ¢q, c3, we obtain ¢y = c3 = b=agVpas. 0O

ExaMPLE 8.13. A typical example of a PF containing a 4-loop and
giving an OML as its pasting is presented by the Greechie diagram
in Fig. 11.

Figure 11: Greechie diagram of an OML containing a 4-loop
(Ex. 8.13)

Sufficient conditions for a PF to give an OMP or an OML as its
pasting were given long before in Greechie’s Loop Lemma [9]:

PROPOSITION 8.14. Let F be a pasted family of Boolean algebras
such that the intersection of each pair A, B € F is of the form {0,1}
or {0, a,d’,1}, where a is an atom of both A and B. Then the pasting
of F is

e on orthomodular poset iff F has no 3-loops,
e on orthomodular lattice iff F has no 3-loops and 4-loops.

Proof. The first part follows easily from Prop. 8.10, the second part
from Prop. 8.12. See also [9] or [43] for a direct proof. O

ExAMPLE 8.15. Exs. 8.11, 8.13 show PFs to which Prop. 8.14 is not
applicable. Nevertheless, their pastings are OMLs.
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9. State spaces of orthoalgebras

Here we define states on orthoalgebras and we present basic facts
about state spaces.

DEFINITION 9.1. Let L be an orthoalgebra. A state on L is a map-
ping s : L — [0, 1] such that

(SOA1) s(1) =1,
(SOA2) a,be L, a Ll b= s(a®rb) =s(a)+ s(b).

REMARK 9.2. If L is an OMP, (SOA2) attains the standard form
a Ll b= s(aVyb) = s(a)+ s(b) (assumption a A;, b = 0 is too
weak here).

States on orthoalgebras (Def. 9.1) correspond to states on pasted
families of Boolean algebras (Def. 4.5):

PROPOSITION 9.3. Let F be a pasted family of Boolean algebras. A
function s : |JF — [0,1] is a state on F iff it is a state on the pasting
of F.

The proof is straightforward. For chain-finite orthoalgebras,
Prop. 5.8 extends the latter proposition to a correspondence between
states on an orthoalgebra and on its Greechie diagram:

PROPOSITION 9.4. Let L be a chain-finite orthoalgebra and H its
Greechie diagram. The restriction mapping h: S(L) — S(H) defined
by h(s) = s|A(L) is an affine homeomorphism.

Exs. 3.1, 3.2, 3.3 may serve as examples of state spaces of or-
thoalgebras. Further examples follow.

EXAMPLE 9.5. [14] The hypergraph in Fig. 12 is the Greechie dia-
gram of an orthoalgebra. The description of its states is obtained
from Ex. 3.3 with an additional condition s(d) + s(e) + s(f) = 1.
With the notation of Ex. 3.3, we obtain the restriction p+q+1r = 1.
Each state on any block has a unique extension to the whole orthoal-
gebra. The state space is a triangle. Its analogy to the state space
of the Boolean algebra 22 will be formulated in Section 13.
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Figure 12: Greechie diagram of the orthoalgebra from Ex. 9.5

EXAMPLE 9.6. [14] One can easily verify that the hypergraph in
Fig. 13 admits only one state (evaluating each vertex to 1/3). It
is the Greechie diagram of an orthoalgebra admitting exactly one
state. This state is faithful, i.e., it attains nonzero values on all
nonzero elements.

LN

Figure 13: Greechie diagram of an orthoalgebra admitting exactly
one (faithful) state (Ex. 9.6)

EXAMPLE 9.7. In the hypergraph H = (V,€) in Fig. 14, V allows
disjoint coverings by 9 or 10 edges. This implies, for each s € S(H),
the equalities 9 = ), s(v) = 10, a contradiction. The hypergraph
‘H does not admit any state. According to Prop. 8.14, H is the
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Greechie diagram of an OML without states (Prop. 9.4). (This is
an unpublished example by R. Mayet simplifying the example by
R. Greechie [9].)

Figure 14: Greechie diagram of an OML admitting no states (Ex. 9.7)

Preceding examples have very few states. Despite their pecu-
liarity, they became the base of many important results about state
spaces of orthomodular structures, e.g., [27, 33, 37, 43].

PROPOSITION 9.8. The state space of an orthoalgebra L is convex
and compact in the weak topology.

Proof. Convexity is straightforward. The state space of L is a subset
of [0, 1]% which is a compact set (Tikhonov Theorem). It is a closed
subset because it is determined by a collection of equalities of the
form (SOA2) and summation of states is a continuous operation in
RL. O

Props. 9.3, 9.4 allow to extend Prop. 9.8 also to pasted families
of Boolean algebras and hypergraphs. The reverse implication will
be proved in Section 15.
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10. Constructions with orthomodular structures

In this section, we introduce the basic construction techniques with
orthomodular structures — direct products, horizontal sums, and
identification of atoms. For more advanced techniques, we refer to
[14, 15, 16, 35]. The proofs missing in this section can be found, e.g.,
in [2, 16, 40].

DEFINITION 10.1. Let F be a family of orthoalgebras. We take the
Cartesian product L = [] . K and we endow it with the orthosum
@1, and orthocomplementation ' defined pointwise, i.e., for all a, b €
L, a = (aK)Kej:, b= (bK)Kejf, c= (CK)Kefa we define

a®rb=c < VK e F :ax ®r bx = ck.

We define Or, resp. 1z, as the element of [[, . K which has all
coordinates equal to Ok, resp. 1. Then (L,®1,0r,17) is an or-
thoalgebra called the product of the family F. The product of or-
thomodular posets (resp. orthomodular lattices) is an orthomodular
poset (resp. an orthomodular lattice).

EXAMPLE 10.2. The pasting in Ex. 3.2 (see also Ex. 4.6) is the prod-
uct of MO2 and 2! (the elements (0,1),(1,0) correspond to d,d’,
resp.). Fig. 4b (resp. Fig. 6b) is the Greechie diagram of the product
MO2 x 22 (resp. MO2 x MO2).

ExamMpLE 10.3. Take the OML L from Ex. 9.7, and form the product
of L and the Boolean algebra 2!. Each state on the product vanishes
on the elements (a,0) and attains 1 at all (a,1), a € L. The product
admits exactly one state; this state is two-valued. (This example is
based on the idea of P. Pték [39].)

DEFINITION 10.4. Let F be a family of orthoalgebras. We make a
family G of copies of orthoalgebras from F which are disjoint except
that they have the same least element, 0, and the same greatest ele-
ment, 1. Thus, for each K, M € G, K # M, we have KNM = {0,1}.
We take the union L = [JG and we endow it with the orthosum @&,
defined by

a®rb=c <= IK€G:(a,b,ce K, a®g b= c).
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Then (L,®y,0,1) is an orthoalgebra called the horizontal sum of the
family F. The horizontal sum of orthomodular posets (resp. ortho-
modular lattices) is an orthomodular poset (resp. an orthomodular
lattice).

The analogy between Defs. 10.4 and 7.1 allows us to consider the
horizontal sum as a pasting of orthoalgebras. (It is called 0-1-pasting
in [40].) The common generalization is given in [35] for OMPs and
OMLs and in [14] for OAs.

EXAMPLE 10.5. MO2 (Ex. 3.1) is the horizontal sum of two Boolean
algebras 22.

Some modifications of the following technique were used several
times, but it was explicitly formulated only in [21]. We present it
here for orthomodular lattices, using the definition from Rem. 8.2.

DEFINITION 10.6. Let a,b be elements of an orthoalgebra L. We
define their distance dp(a,b) in L as the minimal n for which there
exists a sequence (B, ..., By) of blocks in L such that a € By, b € By,
and B; N Biy1 2 {0,1} fori =1,...,n— 1. We define dr(a,b) = oo
if no such sequence exists, and we put dz(a,a) =0 for all a € L.

According to Prop. 7.3, the latter definition is meaningful and the
distance in a pasted family of Boolean algebras (Def. 4.4) coincides
with the distance in its pasting.

THEOREM 10.7. Let L be an orthomodular lattice. Let M be a set
of atoms of L with mutual distance (in L) at least 5. We define an
equivalence relation ~ on L such that a = b iff

e a=>or
e a,be M or
o al b c M.

For each a € L, we denote [a] = {b € L : b=~ a}. We take the set
K ={[a] : a € L}, and we endow it with the unary operation '
a relation <g defined by

and

= [a'"],
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[a] <K [b] <= daj € [a] db € [b] ra; <g, by

Then (K, <g, ') is an orthomodular lattice. Moreover, the atoms
(resp. blocks) of K are images of the atoms (resp. isomorphic blocks)
of L under the quotient mapping. In this case, we say that K orig-
inated by identification of atoms of M in L and we denote this fact
by K =L/M.

Proof. Apparently the relation = is an equivalence. The classes of
equivalence (=elements of K) are M, M'K and {a}, a € L'\ (M U
M'K).

Notice that [01] <k [a] for all [a] € K, and [a] <g [0r] iff
a=0p. Also [a] <k [17] = {11} for all [a] € K, and [11] <k [a] iff
a = 17. No class of equivalence ~ contains two different orthogonal
elements. Thus a; L1, ag for a1,as € [a] € K implies a; = a2 = 0,
[a] = [0z] = {0}

Consistency of 'K, (OMP1), (OMP2): The equivalence ~ pre-
serves the orthocomplementation in the sense that o'’ ~ ' —
a ~ b. Thus the operation ' is well-defined, involutive and antitone.
In particular, M'K = {a'F : a € M}.

We have to prove that <y is an ordering. Reflexivity is trivial.

Antisymmetry of <g: Suppose that [a] <g [b] and [b] <k [a].
There are ay,ay € [a], by,be € [b] such that a3 <p by, by <p as.
If ay = ag and by = by, then a; = by and [a] = [b]. Assume,
without any loss of generality, that a; # a9, so [a] is not a singleton,
[a] € {M, M'K}. Our assumption ensures that [b] is different from
[OL], [lL]. If [a] = M, then by € [OL,CLQ]L = {OL,GQ} and by = ay. If
[a] = MK, then by € [a1,17], = {a1,11} and b; = a;. In all cases,
we obtain [a] = [b].

Transitivity of <g: Assume that [a] <g [b] and [b] <k [d], i.e.,
there are a; € [a], ca € [¢] and b1,be € [b] such that a; <z, b; and
by <p cg. If by = by, then a1 <p cy. If [)] = M, then [a] = [b] or
[a] = [02]. If [)] = M'E, then [c] = [b] or [¢] = [11]. In all three
cases, [a] <k [c].

We proved that <k is a partial ordering. The minimal, resp.
maximal, element of K is O = [0z], resp. 1x = [11]. Atoms of K
are exactly the images of atoms of L. In particular, M is an atom
of K.
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(OMP3): Suppose that there are [a] € K, [b] € K such that
[b] <k [a] and [b] <k [a]'K. Then [b] <f [a] <k [b]'K, so [b] contains
orthogonal elements which means that [b] = Ok

Existence of joins: Let [a],[b] € K. We avoid the trivial cases
assuming that [a] # Ox # [b], [a] # [b], and [a],[b] have an upper
bound different from 1x. As M Vi M = 1k, at least one of the
classes [a], [b] is a singleton. Notice that two elements of L having a
join less than 17, have distance at most 2. As the mutual distance of
elements of M is greater than 4, there are unique a; € [a], b1 € [b]
such that a; Vg by < 1. We have [ay V[ bi] = [a] VK [b].

Preservation of blocks: As the quotient mapping preserves the
ordering and orthocomplementation, each Boolean subalgebra of L
is mapped onto an isomorphic Boolean subalgebra of K. We need
to prove that also each Boolean subalgebra of K is an image of
an isomorphic Boolean subalgebra of L. Let B be a Boolean sub-
algebra of K. If M ¢ B, then each element of B has a unique
preimage and A = {a € L : [a] € K} is a Boolean subalgebra
of L isomorphic to B. If M € B, we have to distinguish two
cases. If B = {Og,1x, M,M'5}, then we take any a € M and
B is the image of the Boolean subalgebra A = {07,11,a,a'"} of
L. In the remaining case, there is a [b] € B\ {0, 1x, M, M'K}.
It has a unique preimage b € L\ (M U MK U {0;,,1.}). As M
is an atom in K, the compatibility of M and [b] implies that one
of the relations M <p [b], M <g [b]'S holds. Thus there exists
an atom a € M such that one of the relations a <y, b, a <p "
is satisfied. The distance of the elements of M ensures that a € L
with these properties is unique and independent of the choice of
[b] € K\{0f,1x, M, M'5}. Thus a is compatible (in L) to allb € L
such that [b] € B\ {M, M'5}. We see that B is the image of the
Boolean subalgebra A = {a,a’*} U{b: [b] € B\ {M,M'¥}} of L.
Looking at maximal Boolean subalgebras, we see that blocks of K
are exactly images of blocks of L.

(OMP5): Follows easily from preservation of blocks. O

REMARK 10.8. The technique of Th. 10.7 is applicable also to or-
thomodular posets and orthoalgebras. In order to obtain an OMP,
resp. OA, it is sufficient to assume the mutual distance of atoms in
M at least 4, resp. 3.
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REMARK 10.9. Th. 10.7 can be applied subsequently to more sets of
atoms Mj, My, ..., resulting in an OML L/M;/Ms/ ... . The only
problem is that the distance of the atoms of My in L/M; may be
smaller than in L, etc. Therefore it is necessary to choose these
sets in such a way that the assumption on minimal distance is not
violated during the procedure.

11. Evaluation functionals

Until now, we worked with event structures (PFs, OAs, OMPs,
OMLs, SFs) and state spaces. For a structure L, states can be
considered as elements of its dual, L* = R", more exactly, [0,1]".
There is a natural embedding e of L into its second dual, L** = RE",
more exactly, [0,1]5(F), defined by

e(a)(s) = s(a) for alla € L, s € S(L).

The functional e(a): S(L) — [0, 1] is called the evaluation functional
associated with a. We also extend the mapping e : L — e(L) to

subsets of L; in particular, we use the notation e(L) = {e(a) : a €
L}.

REMARK 11.1. The elements of (L) are continuous affine function-
als on S(L). The set e(L) is partially ordered by the usual order of
real-valued functionals. There is a greatest and a least evaluation
functional, namely e(1) and e€(0). (These are the constant functions
1 and 0 on S(L).) For each evaluation functional e(a), its comple-
mentary functional 1 — e(a) is the evaluation functional associated
with a’. This allows to define an “orthocomplementation” on e(L)
by e(a) = e(d').

The structure of e(L) reflects in some sense the structure of L.
They coincide in the following — very important — case:

DEFINITION 11.2. We say that an orthoalgebra L admits an order-
determining set of states iff

(OD) Va,be L:(a<pb < VseS(L):s(a) <s(b)).

ExaMPLE 11.3. The orthoalgebras with Greechie diagrams in Fig. 3
admit order-determining sets of states.
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ExaMpPLE 11.4. In the OML of Ex. 9.6, there are only four evalua-
tion functionals: the constants 0, 1/3, 2/3, 1. It does not admit an
order-determining set of states.

ExAMPLE 11.5. In the OML of Ex. 10.3, the constants 0 = e(0),
1 = e(1) are the only evaluation functionals. It does not admit an
order-determining set of states.

Prop. 9.3 states that a pasted family of Boolean algebras and its
pasting have the same states. Now we add another analogy:

PROPOSITION 11.6. A chain-finite pasted family of Boolean algebras
and its pasting have the same sets of evaluation functionals.

PROPOSITION 11.7. An orthoalgebra L admits an order-determining
set of states iff

Va,be L: (a <p b < e(a) <e(b)).

If this is the case, e(L) with the ordering and orthocomplementa-
tion from Rem. 11.1 is an orthoalgebra isomorphic to L under the
isomorphism e.

The proof is elementary.
If we do not assume that L admits an order-determining set of
states, not much is known about the poset of evaluation functionals.

PrROBLEM 11.8: What is the structure of e(L) (=the collection of
evaluation functionals) for an orthomodular structure L?

12. Semipasted families of Boolean algebras

Pasted families of Boolean algebras are the basic combinatorial tool
for constructions of orthomodular structures. Although they sim-
plify the work substantially, they are still very complex in some cases.
Here we introduce a new tool — semipasted families of Boolean al-
gebras. They give us much more freedom in constructions of ortho-
modular structures with given state spaces properties.

DEFINITION 12.1. A semipasted family of Boolean algebras (SF') is
a family F of Boolean algebras such that, for each A, Be€ F, AnB
is an ideal in A and in B on which the orderings of A and B coincide.
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As an alternative, semipasted families of Boolean algebras may
be viewed as simplicial complezes [19].

REMARK 12.2. Different Boolean algebras in a SF have the same
lower bound, 0, but — in contrast to PFs — different upper bounds.

We define atoms of a SF F just as for PFs, and we use the
notation A(F) = Ugcr A(B). The isomorphisms of SFs and states
on SFs are defined just as in PFs — see Def. 4.3, 4.5. Also the
definitions of a chain-finite SF and of a distance in SFs are direct
analogies of Def. 4.7 and Def. 4.4.

DEFINITION 12.3. The Greechie diagram of a chain-finite semipasted
family of Boolean algebras F is the hypergraph (V,€), where V =
A(F), E={A(B): B € F}.

The notions introduced in this section correspond to the same
notions for hypergraphs. In particular, a SF is chain-finite iff its
Greechie diagram is chain-finite. Two chain-finite SF's are isomorphic
iff their Greechie diagrams are isomorphic.

ProrosiTION 12.4. Let F be a chain-finite semipasted family of
Boolean algebras and H its Greechie diagram. Then the restriction
mapping h:S(F) — S(H) defined by h(s) = s|A(F) is an affine
homeomorphism.

Proof. We proceed analogously to the proof of Prop. 5.8. We do
not need (PF3): If A,B € F and a € AN B, then the intervals
[0,a]4, [0,a]p contain the same atoms. This simplifies the proof
substantially. O

A chain-finite hypergraph may be viewed as a Greechie diagram
in two ways:

1. as a Greechie diagram of a pasted family of Boolean algebras
and also of the corresponding orthoalgebra,

2. as a Greechie diagram of a semipasted family of Boolean alge-
bras.

In both cases the state space remains the same. This can be easily
demonstrated on a hypergraph ‘H with two edges:
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1. If H is considered as the Greechie diagram of a pasted family
of Boolean algebras, {A, B}, then AN B = 1UI', where I is
an ideal and I’ = {a’ : @ € I'} is its dual filter.

2. If H is considered as the Greechie diagram of a semipasted
family of Boolean algebras, {A, B}, then AN B = I, where I
is an ideal (see Exs. 12.5, 12.6).

The restrictions for the state space are the same, because the value
of a state s on @’ € I' is uniquely determined by the value on a € I;
s(a') =1— s(a).

It is possible to form pastings of SFs analogously to PFs. The
resulting structure is a poset with a least element, but in general
with many maximal elements.

ExXAMPLE 12.5. The hypergraph in Fig. 3b can be understood as the

Greechie diagram of a semipasted family of Boolean algebras. The

Hasse diagram of its pasting (as a SF) is in Fig. 15 (cf. Fig. 7b).
14 1p

Figure 15: Hasse diagram of a pasting of a semipasted family of
Boolean algebras corresponding to the Greechie diagram in Fig. 3b
(Ex. 12.5)

What we gain by the use of SFs is more freedom in their con-
struction — some hypergraphs are not Greechie diagrams of PFs,
but they are still Greechie diagrams of SFs:

EXAMPLE 12.6. The hypergraph in Fig. 4a is the Greechie diagram
of a SF. The Hasse diagram of its pasting is in Fig. 16b.

EXAMPLE 12.7. The hypergraph H in Fig. 5a is the Greechie di-
agram of a semipasted family of Boolean algebras F = {A, B,C'},
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Figure 16: Hasse diagram of a pasting of a semipasted family of
Boolean algebras corresponding to the Greechie diagram in Fig. 4a
(Ex. 12.6)

where A, B, C are isomorphic to 22 and each two of them intersect in
0 and in an atom. The pasting of F is drawn in Fig. 17. There is only
one state on H; it evaluates all vertices to 1/2. The corresponding
state on F is faithful.

1, 15 1¢

PO
e

Figure 17: Hasse diagram of the pasting of a semipasted family of
Boolean algebras corresponding to the Greechie diagram in Fig. 5a
(Ex. 12.7)

The following proposition will play an important role in the se-
quel.

PROPOSITION 12.8. Every chain-finite hypergraph is a Greechie di-
agram of some semipasted family of Boolean algebras.

Proof. The chain-finite hypergraph (V, £) is the Greechie diagram of
the SF {2F : E € £}. O

Pastings of SFs allow us to define the relative inverse (an exten-
sion of the orthocomplementation, having the relative upper bound
as a second argument). Each pair of elements of a pasting of a SF
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has a meet. Every two elements having an upper bound are compat-
ible. Thus the pastings of SFs form a special class of relative inverse
posets (see [17]), but not much is known about characterizations of
this class.

PROBLEM 12.9: Characterize (algebraically) the class of posets which
can be obtained as pastings of semipasted families of Boolean alge-
bras.

13. Functional embedding and functional isomorphism

Now we shall formulate the crucial notion of this paper — the cor-
respondence between state spaces and sets of evaluation functionals
called the functional embedding, resp. functional isomorphism. It
can be formulated in a more general context:

DEFINITION 13.1. Let F; (resp. Fy) be a set of functionals on a
subset S; (resp. S2) of a topological linear space V; (resp. V). We
call a mapping g : F1 — Fy a functional embedding iff it is injective
and there is an affine homeomorphism A : S — S5 such that

[fo = 9g(f1), s2 = h(s1)] = fa(s2) = fi(s1)

for all fi € Fy, s1 € S;. If, moreover, g is surjective, it is called
a functional isomorphism and Fy, Fy are called functionally isomor-
phic.

Functional embedding is a correspondence of sets of functionals
which assumes that their domains are affinely homeomorphic. We
shall apply this notion to the sets of all evaluation functionals of
different structures — OMLs, OMPs, OAs, PFs and SFs. When-
ever K, L are two of these structures and e(K), e(L) are functionally
isomorphic, we say also that K, L are functionally isomorphic. We
sometimes extend a functional embedding g: e(K) — e(L) to subsets
of e(K).

The importance of the functional isomorphism follows from the
fact that it preserves many properties of state spaces, but it allows
to represent some complex structures by much simpler ones which
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are functionally isomorphic. In the following sections, we shall de-
velop an efficient tool for applications of this idea. The affine home-
omorphism between state spaces will be often a simple restriction

mapping.

EXAMPLE 13.2. The orthoalgebra L from Ex. 9.5 is functionally iso-
morphic to the Boolean algebra 23. Its evaluation functionals are

e(L) ={0,e(b),e(c),e(d),e(t),e(d),e(d),1}.

Following the conditions of Prop. 8.14, it is much more difficult to
find an example analogous to Ex. 13.2 among OMPs of even OMLs.
The simplest known non-Boolean OML with this property is the
following;:

EXAMPLE 13.3. [24] Define a hypergraph H = (V, ), where
V={a;:i=0,...,65},

& = {{a2;, a2i41,a2i42} i =0,...,32}
U{{azi_7,a2i,a2i113} : i =0,...,32}

(indices mod 66). Each state s on H is uniquely determined by the
66 values s(a;) € [0,1], and these values have to satisfy 66 equations,
one for each edge in £. (These equations are not independent.) It
was verified by a computer that the solutions s : V — [0,1] are
exactly those functions which satisfy:

s(aigsg) = s(a;), 1=0,1,2, k=0,...,21,

s(ag) + s(a1) + s(ag) = 1.

The hypergraph H satisfies the conditions of Prop. 8.14, hence it is
the Greechie diagram of an OML which is functionally isomorphic
to 23.

EXAMPLE 13.4. Let V be a 4-element set and £ the collection of
all 3-element subsets of V. Each state on the hypergraph (V, ) (see
Fig. 18) attains 1/3 at each vertex. Analogously to Ex. 5.13, (V,€) is
not a Greechie diagram of a PF and of an OA. Nevertheless, it is the
Greechie diagram of a SF (Prop. 12.8), say F, which is functionally
isomorphic to the OA from Ex. 9.6. The Greechie diagram of F
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Figure 18: Greechie diagram of a semipasted family of Boolean al-
gebras admitting exactly one (faithful) state (Ex. 13.4)

is simpler than that from Fig. 13. It is desirable to find an OML
functionally isomorphic to F, too. We shall do it in the sequel using
a much more general tool. (In this particular case, an OML with
these properties was constructed directly in [28] using Prop. 8.14
and the idea of Ex. 13.3; it has 44 atoms. Alternative solution may
be found in [47].)

Functional embeddings of different structures will play a crucial
role. Props. 9.3 and 11.6 have the following easy consequence:

PROPOSITION 13.5. Every chain-finite pasted family of Boolean al-
gebras is functionally isomorphic to its pasting.

There are functional isomorphisms between structures with non-
identical state spaces:

PROPOSITION 13.6. Every chain-finite pasted family of Boolean al-
gebras is functionally isomorphic to a semipasted family of Boolean
algebras.

Proof. 1t suffices to take the SF with the same Greechie diagram
(which exists according to Prop. 12.8) and apply Props. 5.8 and
12.4. O

Conversely, starting from a SF, we would like to find a function-
ally isomorphic PF. This makes difficulties, because not all Greechie
diagrams of SFs are Greechie diagrams of PFs. We shall solve this
problem in the next section (Th. 14.1).

REMARK 13.7. In [34], functional isomorphism g: e(A(K)) — e(A(L))
(only evaluation functionals corresponding to atoms are considered)
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was introduced under the notion of state isomorphism. It is a stronger
condition — for chain-finite orthoalgebras K, L, the functional iso-
morphism g: e(A(K)) — e(A(L)) allows an extension to a functional
isomorphism ¢g*: e(K) — e(L), but the reverse correspondence need
not exist. The advantage of the approach of [34] is that it preserves
more state space properties (e.g., faithfulness of states). It is ap-
plicable to a rather general class of chain-finite hypergraphs (as the
representing Greechie diagrams), but not to all. A more serious dis-
advantage is that it does not allow an extension to structures with
infinite chains. Functional isomorphism of semipasted families of
Boolean algebras overcomes this difficulty.

14. Orthomodular lattices functionally isomorphic to
semipasted families of Boolean algebras

As a principal tool, we shall construct OMLs functionally isomorphic
to chain-finite SFs. This extremely simplifies the construction of
OMLs with those properties of the state space which are preserved
by a functional isomorphism. Instead of constructing the Greechie
diagram of an OML according to Prop. 8.12 or 8.14, it suffices to
find a Greechie diagram of a SF (which is an arbitrary chain-finite
hypergraph) and use the following theorem:

THEOREM 14.1. Let F be a chain-finite semipasted family of Boolean
algebras. Then there is an orthomodular lattice L which is function-
ally isomorphic to F.

The proof will be divided into several lemmas.

LEMMA 14.2. Let F contain only one Boolean algebra, F = {2},
where n > 3. Then there is a finite orthomodular lattice K, and a
functional isomorphism gn:e(F) — e(K,). Moreover, K,, contains
a set of atoms Gy, C A(K,,) with mutual distance at least 3 and such
that gn(e(A(F))) = e(Gn).

Proof. The proof will be made by induction in n. For the inductive

step, we need an additional condition:

(IND) There are atoms by, ..., by, c1,...,c, € A(K,) with mutual
distance at least 2 and such that e(b;) = e(¢;), i = 1,...,n,
and e({by,...,b,}) = gn(e(A(F))).
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For n = 3, we may take for K3 the OML from Ex. 13.3 and
choose G3 = {ao,alﬁ,a32}, (bl,bQ,b:;) = (ag,a4,a8), (61,02,03) =
(a12, aiq, a2o)-

Assume now that we have an OML K,, with G,, C A(K,,) satisfy-
ing the conditions of Lemma 14.2 and b1,...,by,,c1, ..., ¢, satisfying
(IND). Let (Vn, &) be the Greechie diagram of K.

We take the product K, x 2. Its Greechie diagram, (U,,, Dy,), is
obtained by adding a new vertex, d € V,,, and putting U, = V,,U{d},
D, = {EU{d} : E € &,}. There is a functional isomorphism
fn:e(2"t) — e(K,, x 2') such that

Fa(e(A2"))) = e(Gn) U {e(d)} = e({d,b1, ..., bn})
= e({d, Cly... ,Cn}).

The mutual distance of by,...,by,c1,...,¢, in (Uy,, Dy) becomes 2.

We choose a number p € N which is a common multiple of
2,...,n satisfying p > 2(n 4+ 1)?2 — 1. We take p + 1 disjoint copies
Uk, DE), k =0,...,p, of the hypergraph (U, D,,). The atoms cor-
responding to b;,c;,d in the k th copy are denoted by bz, Z,dk
1 = 1,...,n. We identify c with bk“ for all 4 = 1,...,n and
kE = 0,....p (upper indices mod p+ 1). We construct a new hy-
pergraph, (Vp41,&n+1), where

n+1 U

n+1 U Dk

For each j,k = 0,...,p, j # k, the intersection Ui n L{ff consists of
at most one vertex. This ensures that the hypergraph (Vy11,En41)
satisfies the conditions of Prop. 8.12 and it is the Greechie diagram
of an OML, K, 1. We shall prove that it satisfies the conditions of
Lemma 14.2.

For each 7+ = 1,...,n, we obtain

eby) =e(c)) =e(d ™) =e(c;,™) =e(b; ") =...
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=e(c; 77" = e(b)).

Due to the cyclic symmetry of our construction, we have e(bg ) =
e(bf) for all i = 1,...,n and j,k = 0,...,p. This implies e(d’) =
e(d*) for all j,k = 0,...,p. Thus K, is functionally isomorphic
to a single copy K, x 2! and also to 2"*!. For the atoms satisfying
(IND) in K, 11, we may choose, e.g.,

dU; bl(‘n—l—l)i

Ci=1,....m d(n+1)2; bz(_n+1)(n+1+i)’

=1,...,n.

As they have mutual distance at least 3, the subset G, 1 required
in Lemma 14.2 can be easily chosen from these atoms (the first half
suffices). O

LEMMA 14.3. Suppose that each Boolean algebra in F has at least
3 atoms. Then F 1is functionally isomorphic to an orthomodular
lattice.

Proof. For each A € F, we apply Lemma 14.2 to A, obtaining an
OML, L4. We take a copy (V4,€4) of the Greechie diagram of
L4 such that the set of vertices G4 C V4 (corresponding to G in
Lemma 14.2) is identified with the atoms of A. (This induces also
the identification with some vertices of the Greechie diagrams corre-
sponding to other Boolean algebras from F having common atoms
with A.) After this identification, we form a new hypergraph (V, &),

where
v=J v
A€F

£ = USA.

AeF

(Thus we replaced each edge A(A) in the Greechie diagram of F
with (V4,€4).) As the vertices of G4, A € F, have mutual distance
at least 3, no nontrivial 4-cycles were created by this construction.
Thus (V, £) satisfies the condition of Prop. 8.12 and it is the Greechie
diagram of a chain-finite OML, L. As L 4 is functionally isomorphic
to A and (V4,E4) restricts the values of states on G 4 in the same
way as A, L is functionally isomorphic to F. O
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LEMMA 14.4. There is a finite hypergraph Ho having at least 3 ver-
tices in each edge, admitting exactly one state and such that this state
15 two-valued.

Proof. We may take the Greechie diagram of the OML from Ex. 10.3
or the hypergraph Vg, &), where Vy = {a,b,¢,d, e}, & = {Vo, {a, b, c},
{a,d,e}}. O

Proof of Th. 14.1. We take a hypergraph (Vy, &) satisfying the con-
ditions of Lemma 14.4. There is a vertex a € V), evaluated to 1 by
the only state on (Vy,&y). Let (V1,&1) be the Greechie diagram of
F. (We assume Vo NV; = .) We form a hypergraph (V, &), where
Vo = Vo UVy, & = & U &1 Tt is the Greechie diagram of a SF
functionally isomorphic to F.

We shall modify (V,, &) so that we shall preserve the functional
isomorphism with F and fulfil the assumptions of Lemma 14.3. To
each edge £ € & with less than 3 atoms, we shall add two more
vertices on which all states vanish. Let D = {E € & : card E < 3}.
We take a set Uy = {bg,cr : E € D} disjoint from V, (the elements
bg,cp, E € D, are supposed to be mutually distinct). We form a
hypergraph H = (V, ), where

V =V, Ulhs,

5:(SQ\D)U{EU{()E,CE}:EED}U{{a,bE,CE}:EED}.

Each state on ‘H vanishes on Us. The hypergraph H is the Greechie
diagram of a SF which is functionally isomorphic to F and satisfies
the assumption of Lemma 14.3. This finishes the proof. U

According to Prop. 12.8, every chain-finite hypergraph is the
Greechie diagram of a SF. Due to Th. 14.1, this SF is functionally iso-
morphic to an OML. This means that every chain-finite hypergraph
represents the state space of an OML in the sense of functional iso-
morphism of the corresponding SF. This tool simplifies many tasks.

EXAMPLE 14.5. The hypergraph H in Fig. 19a (vertex a is contained
in a singleton edge) is the Greechie diagram of a semipasted family
of Boolean algebras F = {A, B}, where A = {04,a,a'"*,14}, B =
{0B,15}, 0 = 04, 15 = a. The Hasse diagram of the pasting of
F is in Fig. 19b. Again, #H is not a Greechie diagram of a pasted
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family of Boolean algebras — it violates (PF1), (PF2). There is
only one state, s, on H, because s(a) = 1. This state (and also the
corresponding state on F) is two-valued. Together with Th. 14.1,
this example guarantees the existence of an OML with exactly one
(two-valued) state (cf. Ex. 10.3).

14

l—o a'A a=1pg

a

a b

Figure 19: Greechie diagram of a semipasted family of Boolean al-
gebras admitting exactly one (two-valued) state and Hasse diagram
of its pasting (Ex. 14.5)

EXAMPLE 14.6. The hypergraph H in Fig. 20a is the Greechie dia-
gram of a SF which does not admit any state. The Hasse diagram
of its pasting is in Fig. 20b. Together with Th. 14.1, this example
guarantees the existence of an OML without any state (cf. Ex. 9.7).

—

a b

Figure 20: Greechie diagram of a semipasted family of Boolean alge-
bras admitting no state and Hasse diagram of its pasting (Ex. 14.6)

EXAMPLE 14.7. The hypergraph in Fig. 21a is the Greechie diagram
of a SF. The Hasse diagram of its pasting is in Fig. 21b.
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..

a b

Figure 21: Greechie diagram of a semipasted family of Boolean al-
gebras and Hasse diagram of its pasting (Ex. 14.7)

ExaMPLE 14.8. The SF from Ex. 12.7 has exactly one state and
three (constant) evaluation functionals, 0, 1/2 and 1. According to
Th. 14.1, there is an OML with these evaluation functionals. No
direct construction of an OML with these properties seems to be
described in literature. It is not easy to find it without the use of
Th. 14.1 or at least some techniques from its proof.

It is important that the proof of Th. 14.1 is constructive — it
allows to describe in detail the resulting OML, although it is very
large and the construction is not optimal. (We tried to minimize
the complexity of the proof rather than the complexity of the re-
sulting OML.) It is somewhat surprising that we obtained the same
characterization for all three classes of orthomodular structures in
question. Up to functional isomorphism, there is no distinction be-
tween OMLs, OMPs and OAs. An explicit formulation follows (a
weaker version for OMPs can be derived from [34]):

COROLLARY 14.9. (Ptdk’s Principle) Every orthoalgebra (in partic-
ular, every orthomodular poset) is functionally isomorphic to an or-
thomodular lattice.

Exs. 9.5, 13.3 show that the OML functionally isomorphic to an
OA may become much more complex. Our technique guarantees its
existence. We have even a more efficient tool based on semipasted
families of Boolean algebras, because their Greechie diagrams are
arbitrary chain-finite hypergraphs. In combination with Props. 13.5
and 13.6, we have a correspondence with other structures studied in
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this paper (with an exception of hypergraphs): Every SF, PF, OA,
OMP or OML is functionally isomorphic to some SF, PF, OA, OMP
and OML.

15. Characterization of state spaces — finitely additive
case

In this section, we use Prop. 12.8 and Th. 14.1 to give a strengthening
(and a simplified proof) of the Shultz’s Theorem characterizing state
spaces of OMLs (the main result of [43]):

THEOREM 15.1. Let C be a compact convex subset of a locally convex
topological linear space. Let f : C — [0,1] be a continuous affine
functional. Then there is a chain-finite orthomodular lattice L, an
affine homeomorphism h : C — S(L) and an atom a € L such that
f =e(a)oh.

We divide the proof into several lemmas. We start with addi-
tional tools.

LEMMA 15.2. Let 5,k € N, 57 < k. There is a finite semipasted
family of Boolean algebras Fj ) with atoms x,y such that

1. each state s on Fj is uniquely determined by its values on

z,Y,

2. a state s on Fjj with values s(x) = p, s(y) = q exists iff
p,q €[0,1], . .
J—1

Proof. (See Fig. 22 for the state space of F;.) We take for F;; the

SF with the Greechie diagram in Fig. 23. Each state s € S(Fj)

satisfies
s(u)) =1—s(®), i=1,...,n,

hence
e(u;) = e(uy,) for alli,m =1,...,n,

s(z) =k s(uy),

s(y) < js(ur),
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0 1 s(z)

Figure 22: The state space from Lemma 15.2

Figure 23: Greechie diagram of the SF F; ; from Lemma 15.2

s(y) = (7 — 1) s(wa).
O

LEMMA 15.3. Let r be a positive real. There is a chain-finite semi-
pasted family of Boolean algebras G, with atoms x,y such that

1. each state s on G, is uniquely determined by its values on x,y,

2. a state s on G, with values s(z) = p, s(y) = q ezists iff p,q €
[0,1], ¢ =rp.
Proof. (See Fig. 24 for the state space of G,.) Without any loss
of generality, we assume that 7 < 1 (otherwise, we interchange the
roles of x and y). We take sequences of nonnegative integers (j, )nen,
(kn)nen such that

N [etil-o

neN
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0 1 s(z)

Figure 24: The state space from Lemma 15.3

We apply Lemma 15.2 to find a sequence (Fj, i, )nen of SFs, where
we identify the atoms z,y (with the meaning from Lemma 15.2), i.e.,
A(}-jn,kn) N A(}-jm,km) = {z,y} for m # n. The union UnEN Finkn
is a SF G, with the required properties. O

LEMMA 15.4. Let G be a chain-finite semipasted family of Boolean
algebras. Let C be the set of all states s on G satisfying the inequality

Q) > pis(ui) <q.

i<n

where q,p; € R and u; € A(G), i = 1,...,n. Then there is a chain-
finite semipasted family of Boolean algebras F with an atom e such
that

1. GCF,

2. each state s € C' has a unique extension to a state on F,

3. each state s on F satisfies (I),

4. each state s on F satisfies the equality in (1) iff s(e) = 0.
In particular, S(F) is affinely homeomorphic to C.

Proof. We assume, without any loss of generality, that pq,...,p, are
nonzero. If some p; is negative, we find a Boolean algebra A € G
containing u;. Let a1,...,a;, be the atoms of [0,u}]4. Then

pys(uy) =p; (1= 3 s(aw))

k<m
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and we may rewrite (I) into an equivalent form

> pistui) +lpsl - Y slar) < g+ |pjl-

i<n,i#£j k<m

The latter inequality is again of the general form of (I) (with more
atoms: z;, 1 € {1,...,n}\ {j}, and ai, k € {1,...,m}), so we may
suppose, without any loss of generality, that all coefficients p; in (I)
are positive.

If ¢ < 0 then C = (). In this case it suffices to take the union of
G with the SF from Ex. 9.7; the choice of e is irrelevant.

If ¢ = 0 then (I) reduces to the equations s(u;) =0,7=1,...,n.
We take n copies F;, i = 1,...,n, of the SF from Ex. 14.5 (or
the SF with the Greechie diagram from Lemma 14.4) with atoms
a; € A(F;) corresponding to a from Ex. 14.5. We choose F; such
that A(G) N A(F;) = {u;} and u; Lz a;, i = 1,...,n. The union
F = GUU,, Fi satisfies the conditions of Lemma 15.4; we may
choose any u; for e.

Suppose finally that ¢ > 0. We take n copies F;, i = 1,...,n, of
the SF G, from Lemma 15.3 applied to r = p;/q, with atoms z;, y;
corresponding to z,y from Lemma 15.3. We choose F; such that
z; = ui, A(G) NA(F;) = {u;}. We take one new atom, e, and form a
Boolean algebra B with A(B) = {e,y1,...,yn}. We take for F the
union G U {B} UJ,.,, Fi. For each state s on F, we obtain

D pis(ui) =q-> s(yi) =q—gs(e) <q

i<n i<n
so F with e € A(F) have the desired properties. O

Proof of Th. 15.1. Without any loss of generality, we may suppose
that C is a subset of [0, 1]V for some set V (see [43] for details). The
set C' can be described as the set of all s € [0,1]" satisfying certain
family of inequalities of the form (I).

For each v € V, we take a Boolean algebra A, isomorphic to 22
and having v as one of its atoms. We assume that for each vy,vy €
V' the intersection A,, N A,, contains only the zero element. The
semipasted family of Boolean algebras {4, : v € V} has a state
space affinely homeomorphic to [0,1]". For each inequality of the
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type (I), determining the set C', we apply Lemma 15.4 and obtain a
SF (containing {A, : v € V'}) which admits only the states satisfying
this inequality. The union of all these SFs forms a SF, F, allowing
an affine homeomorphism ho: C — S(Fp).

In order to get an evaluation functional corresponding to f, ob-
serve that f o hy' is a continuous affine functional on S(F), hence
it is of the form

(fohg")(s) = > pis(oi) — g

i<n

for some ¢,p; € R, v; € V (i =1,...,n). We add to Fy a Boolean
algebra B isomorphic to 2% and we take for a one of its atoms. Then
we apply twice Lemma 15.4 to Fy U {B} and the equality

s(a) = ZPiS(Uz‘) —q

i<n

which corresponds to two inequalities of the form (I). We obtain a
semipasted family of Boolean algebras F. The mapping g: S(Fp) —
S(F) which maps a state on Fy onto its extension to F is one-to-one
and it is an affine homeomorphism. Thus A = g o hg: C — S(F) is
an affine homeomorphism. For all s € S(F), we have

(f o h™1)(s) = s(a) = e(a)(s),

so f = e(a) o h. Th. 14.1 finishes the proof. O

16. Countably additive states

Until now, we worked with structures closed with respect to finite
operations, and with finitely additive states on them. The analogy
with the classical measure and probability theory sometimes requires
countable additivity of states. In this section we collect the necessary
definitions.

DEFINITION 16.1. An OMP L is called o-orthocomplete (also a o-
OMP) iff each sequence of mutually orthogonal elements of L has a
join.
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REMARK 16.2. Def. 16.1 uses joins instead of orthosums, so it is
not applicable to orthoalgebras. There is not a unique way how to
generalize this notion to an orthoalgebra. Greechie (personal com-
munication) studied 5 different definitions of a o-orthoalgebra and
none of them became commonly accepted. Therefore in the study
of o-orthocomplete orthomodular structures we shall restrict our at-
tention to OMPs (or OMLs).

DEFINITION 16.3. A state s on a 0-OMP L is called o-additive if
for each sequence (ay)nen of mutually orthogonal elements of L it
satisfies the equality

s( \/ an) = Z s(an).

neN neN

The set of all o-additive states on an OMP L is denoted by S, (L).
For each a € L, we denote by e,(a):S,(L) — [0,1] the evaluation
functional associated with a restricted to Sy (L):

es(a) = e(a)|S, (L).

We extend e, to subsets of L; in particular, e,(L) = {e,(a) : a € L}.

17. Functional embeddings of concrete logics

In OMSs, the study of properties which are preserved by a functional
isomorphism may be simplified by choosing a simpler functionally
isomorphic structure. Due to Prop. 11.7, this approach is not appli-
cable when we require an OD set of states. Nevertheless, the notions
introduced here can still be successfully applied to formulate some
facts, and they bring a new point of view. In this section, we shall
apply them to concrete logics (see Def. 6.8). The following proposi-
tion gives a characterization of concrete logics. Recall that a state s
on a class L of subsets of X is concentrated in a point x € X iff

1 ifzx€a,
‘v’aEL:s(a):{O ifrda,

PROPOSITION 17.1. [12] An OMP is a concrete logic iff it admits an
order-determining set of two-valued states.
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Proof. 1. Let L be an OMP. Suppose that L admits an order-
determining set of two-valued states and denote this set by X C
S(L). We define a mapping i: L — 2% by i(a) = {s € X : s(a) =
1} =e(a)~'(1) N X. A routine verification shows that i(L) = {i(a) :
a € L} is a class of subsets of X and i is an isomorphism between L
and i(L).

2. In every class of subsets, the set of all states concentrated in
points is an order-determining set of states. The isomorphism of the
OMPs preserves this property. ]

REMARK 17.2. We formulated Prop. 17.1 for OMPs. It is valid also
for OAs, but this does not bring anything new — an OA admitting
an order-determining set of two-valued states is an OMP (see [14]).

Surprisingly, there exist nontrivial functional embeddings be-
tween Boolean o-algebras and non-Boolean o-orthocomplete con-
crete logics. This construction is based on the following measure-
theoretic result due to Solovay:

THEOREM 17.3. [45] Let U be the set of the first uncountable cardi-
nality. Each o-additive state on 2V is a countable convex combina-
tion of states concentrated in points of U.

Now we are prepared to present our examples of “almost Boolean”
concrete logics which are not only non-Boolean, but they allow to
embed a given concrete logic (except for a cardinality limitation). It
is a modification of [3, Th. 4] using our new terms.

THEOREM 17.4. Let K be a o-orthocomplete class of subsets of a
countable set X. Then there is a o-orthocomplete concrete logic L
with the following properties:

1. L contains a sub-o-OMP isomorphic to K (i.e., a subset of L
which, with the operations inherited from L, forms a o-OMP
isomorphic to K ).

2. L is not a Boolean algebra.

3. There are Boolean o-algebras A, B and functional embeddings
f:ea(A) - ea(L)7 g:ea(L) - ea(B)'
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Proof. We take a set U of the first uncountable cardinality. We shall
construct L as a class of subsets of the set Y = U x X. We define
mappings T:2Y — 2V, 7*:2Y — 2U by

veT(M) <= {re€X:(u,z) e M} ¢ K,
weT*(M) < {z€ X :(u,z) e M} ¢ {0, X}.

We define L = {a CY : T(a) is countable}. Obviously, ) € L and L
is closed under complements in Y. For a mutually disjoint sequence
(an)nen in L, we have

(U @) < U T(an).

neN neN

hence |, cy an € L. We verified that L is a o-orthocomplete class
of subsets of Y.

We define Boolean o-algebras A, B of subsets of Y by A = {a C
Y : T*(a) is countable}, B = 2¥. We have inclusions A C L C B.
The existence of the required functional embeddings will be proved
by showing that each o-additive state s on A has a unique extension
to a o-additive state on B. (Obviously, each o-additive state on B
is an extension of a o-additive state on A.)

Let s be a o-additive state on A. As {V xX : V C U} is a Boolean
sub-o-algebra of A isomorphic to 2V, there is a countable set Vo C U
such that s(Vo x X) =1 (Th. 17.3). As A contains all subsets of the
countable set Vy X X, s is a countable convex combination of states
concentrated in points of V) x X. These concentrated states allow
extensions to (o-additive) concentrated states on B and the required
extension of s is obtained as their countable convex combination.
This is the only extension of s to B. The extension mapping is an
affine homeomorphism of the state spaces.

We obtain canonical functional embeddings: Each evaluation
functional associated with an element of the smaller OMP is mapped
to the evaluation functional associated with the same element in the
larger OMP. O

The functional embeddings imply that the OML L from Th. 17.4
has many properties of Boolean o-algebras, e.g., the Jauch-Piron
property [4, 42], the Radon-Nikodym property [31], and the space of
measures on L is a lattice [3].
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18. Overview of applications

Once the construction of OMLs functionally isomorphic to any semi-
pasted family of Boolean algebras is established, it simplifies many
proofs and new investigations in orthomodular structures.

The technique of Th. 14.1 allowed to prove the existence of em-
beddings of orthomodular structures into orthomodular structures
with given state spaces, centers and automorphism groups [14, 27,
30, 33]. The use of a functional isomorphism and Th. 14.1 al-
lowed also to find examples of non-Boolean OMLs which possess the
Radon-Nikodym property [13, 31] and which are fully embeddable
(see [14, 38] for the exact definition and examples). Based on the
ideas similar to Th. 15.1 and Lemmas 15.3, 15.4, a characterization
of spaces of o-additive states was found in [36]. Its strengthening
to o-orthocomplete OMPs still remains an open problem. Recently,
the problem of existence of o-additive signed measures not allow-
ing Jordan-Hahn decomposition to o-additive positive measures was
solved by the use of Th. 14.1 and Lemma 15.3 in [44].

There are numerous other problems in which the use of functional
isomorphism appeared to be useful. There is a limitation of this
technique — due to Prop. 11.7, it does not bring new constructions of
orthomodular structures admitting order-determining sets of states.
In this field, only the new pasting technique using regulators [21]
brought a progress. It lead to solutions of such old problems as
the existence of a continuum of varieties of OMLs related to states
(formulated in [20], solved in [21]) or the uniqueness problem for
bounded observables (formulated in [11], solved in [29]).
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