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SUMMARY. - We consider the fibering method, proposed in [1] for
investigating some variational problems, and its applications to
nonlinear elliptic equations. Let X andY be Banach spaces, and
let A be an operator (nonlinear in general) acting from X to Y.
We consider the equation

A(u) =h. (1)

The fibering method is based on representation of solutions of
equation (1) in the form

u=tv. (2)

Here t is a real parameter (t # 0 in some open J C R), and v is
a nonzero element of X satisfying the condition

H(t,v) =c. (3)

Generally speaking, any functional satisfying a sufficiently gen-
eral condition can be taken as the functional H(t,v). In par-
ticular, the norm H(t,v) = ||v|| can be taken as such a fibering
functional H(t,v). Then condition (3) takes the form |jv|| = 1:
in this case we get a so-called spherical fibering;, here a solu-
tion u # 0 of (1) is sought in the form (2), where t € R\ {0}
andv € S = {w € X : ||lw|| = 1}. Thus, the essence of the
fibering method consists in imbedding the space X of the original
problem (1) in the larger space R x X and investigating the new



problem of conditional solvability in the space Rx X under condi-
tion (3). This method makes it possible to get both new existence
and nonexistence theorems for solutions of nonlinear boundary
value problems. Moreover, in the investigation of solvability of
boundary value problems this method makes it possible to sepa-
rate algebraic and topological factors of the problem, which affect
the number of solutions. The origin of this approach is in the cal-
culus of variations, where this fibration arises in a natural way in
investigating variational problems on relative extrema involving a
given normalizing parameter t # 0. A description of the method
of spherical fibering and some of its applications are given in [18],
[19], [20], [21], [22], [12]. We remark that the elements of this
method were used as far back as in [18] in establishing the “Fred-
holm alternative” for nonlinear odd and homogeneous (mainly)
strongly closed operators.
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Lecture 1

General theory of the
one-parametric fibering
method

1.1. Introduction

We begin this lecture with an example. Consider the following BVP

Apu+ MuP~2u = h(z) inQ C RN (1.1)
u=20 on 02 '

Here A, is the p-Laplacian:
Apu = div (|VulP?Vu)

° *
with p > 1, A € R and h € W,;}(Q) = (W;,(Q)) !
where Q is a bounded domain in RY . Introduce the definition of the
spectrum

op 1= {)\ € ]R: Ju EW},(Q) \ {0} Apu+ ANulP?u=0in Q} .
For p = 2 we have the classical linear BVP and the classical definition
of the spectrum of the Laplace operator. Note that, for A greater
than the first eigenvalue A\ > 0, the appropriate nonlinear operator

Ap(u) = Agu+ MulP u
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is not coercive. Thus the classical theory of nonlinear monotone
coercive operators, developed by M. Vishik, F. Browder, G. Minty
and other mathematicians (see for instance [15]) is not applicable to
BVP (1.1) with A > Ay. In order to overcome this lack in 1967 there
was developed in [18] the “Nonlinear Fredholm Alternative”.

Let X be a reflexive Banach space with basis, and denote by X*
the conjugate space. Let A and T be operators acting from X into
X*. Consider the abstract nonlinear equation

A(u) + A\T'(u) = h
with a scalar parameter A. The following assumptions are made:

(al) A and T are odd positive homogeneous (in principal part) con-
tinuous operators;

(a2) A is a strictly closed operator;
(a3) T is a compact operator.

Define the spectrum of the pair (A, T) as

o(A,T):= {)\ G]R:EIU#O:A(U)—F)\T(v) :0};

then we have the following statement.

THEOREM 1.1.1 (NONLINEAR FREDHOLM ALTERNATIVE). Let A and]
T satisfy assumptions (al)—(a3). Then the equation

A(u) + XT'(u) = h
for any h € X* admits a solution u € X if
A ¢ o(AT).

EXAMPLE 1.1.2: If we apply this general abstract result to BVP (1.1)}}
we obtain that for any A ¢ o(A,) there exists u €W }(Q2) which is a
solution of (1.1).

REMARK 1.1.3: If p = 2 then A, reduces to the Laplacian; in this
case the Nonlinear Fredholm Alternative gives the same result as the
classical (linear) Fredholm Alternative.
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ExAMPLE 1.1.4: Consider the problem

{ A(u) = h(z) inQCRN

u=~0 on 0f)
where
N 3 N 3 N 2
15} Jdu ou ou
Aw) ==Y o (8) +cz<ax,) +u3+az<ax,> ‘.
i=1 " ! i=1 ! i=1 !

Then the Nonlinear Fredholm Alternative implies that for any a,c €
R there exists a solution u €W 1(Q).

REMARK 1.1.5: Note that the operator A is not coercive for a suit-
able choice of a and ¢. We can take for instance ¢ = 0, and a < 0

sufficiently large such that for a fixed ¢ GT/f/}l(Q):

_a/ﬂ|v¢|2¢2 >/Q|V¢I4+/Q¢4;

in this case we have (A(t¢),t¢) — —oo as t — +oo; thus A is
not coercive, and then the classical theory of nonlinear monotone
coercive operators cannot be applied.

In order to develope this approach to noncoercive nonlinear e-
quations we used the elements of the fibering method. Now we give
a short description of the main underlying ideas.

1. The first idea is the extension of the nonlinear operator: that
is, instead of equation

A(u) =h (1.2)

where A is acting between Banach spaces X and Y, we consider
wider spaces X and Y and
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2. The second idea is the equipment of X with nonlinear structure
associated with the nonlinear operator A.

A further development of this approach is to construct, for a given
triple (X, A,Y), a corresponding triple (§, @, 7n), where ¢ and 7 are
fibrations of the spaces X and Y respectively, and « is a morphism
of ¢ into 7; the correspondence

(X7 A7 Y) H (6’ a’ 17)
is determined by the initial triple and, for given spaces X and Y, by
the operator A from X into Y. If we take
X =R xX
we obtain the k-parametric fibering method. We begin with the sim-
plest case, namely when k£ = 1: in this case we get the so-called “one-
parametric fibering method”. The one-parametric fibering method
is based on representation of solutions for equation (1.2) in the form

u=tv (1.3)

where ¢ is a real parameter (¢ # 0 in some open set J C R),
and v is a nonzero element of the Banach space X satisfying the
fibering constraint

H(t,v) =c. (1.4)

Roughly speaking, any functional satisfying a sufficiently general
condition (see Section 1.2) can be taken as the “fibering functional”
H(t,v). In particular we can take the norm H(¢,v) = |lv||; then
condition (1.4) reduces to ||v|]| = 1, realizing a so-called “spherical
fibering”. Here a solution u # 0 of (1.2) is sought in the form (1.3),
wheret e Randv € S ={w € X : |Jw|| = 1}.

Thus, the essence of the one-parametric fibering method consists
in imbedding space X of the original problem (1.2) in the larger
space X = R x X and investigating the new problem of conditional
solvability under condition (1.4). This method makes it possible to
get both new solvability theorems and new theorems on the absence
of solutions for nonlinear BVPs. Further, in the investigation of
solvability of BVPs this method makes it possible to separate the
algebraic and the topological factors of the problem, which affect
the number of its solutions.
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1.2. The one-parametric fibering method

Let X be a real Banach space with a norm ||w||x which is differen-
tiable for w # 0, and let f be a functional on X of class C' (X \ {0}).
We associate with f a functional f defined on R x X by

f(t,v) = f(tv) (1.5)

where (t,v) € J x S; here J is an arbitrary nonempty set in R, and
S is the unit sphere in X.

THEOREM 1.2.1. Let X be a real Banach space with norm differen-
tiable on X \ {0}, and let (t,v) € (J \ {0}) x S be a conditionally

stationary point of the functional f, regarded on J x S. Then the
vector u = tv is a stationary (critical) point of the functional f, that

is, f'(u) = 0.
Proof. At the conditionally stationary point (¢,v) we have
Afy(t,v) = pllvlf
fit,v) =0
with A2 + 2 # 0. Here the prime and subscript mean the derivative
with respect to the corresponding variable (the derivative with re-

spect to v is understood as the values of the derivative with respect
to v in the space X for v € S). By (1.6) we have

Mot v),0) = pdloll', v)

where (w*, u) is the value of a functional w* in the dual space X* on
an element v in X. Then from this and the equalities

<f1l)(t7v)7v> = <fl(tv),v> = tﬂ(t,v)
(Jv],v)=1 forvesS

we get Mtfl(t,v) = p; it follows from this equality and (1.7) that
i =0. Then A # 0 and by (1.6)

tf'(u) = fi(t,v) = 0

for u = tv, t # 0. Consequently, f'(u) = 0 and the theorem is
proved. O
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Now we consider a more general fibering: for this we introduce
a fibering functional H(¢,v) defined on R x X and we consider the
functional f(¢,v) under condition (1.4). As H(t,v) we can in general
take an arbitrary functional, differentiable under condition (1.4) and
satisfying

(H],v) # tHj for H(t,v) = c; (1.8)

we will call (1.8) the nondegeneracy condition.

THEOREM 1.2.2. Let H be a functional of the indicated class. Let
(t,v) € J x X with tv # 0 be a conditionally critical point of the
functional f(t,v) under condition (1.4). Then the point u = tv is a
nonzero critical point of the original functional f, i.e. f'(u) =0 and

u # 0.
Proof. At the conditionally critical point (¢,v) we have
pfilt,0) = NH(Lo) , pfi(to) = AHI(Lv)  (19)
with p2 + A2 # 0; on the other hand,
Fito) = tft0) . Filt,0) = (f(t0),0).
Then from (1.9) we get
ptf!'(tv) = AH, (t,v) , wp(f'(tv),v) = AH,(t,v). (1.10)
From this we get

/‘t<fl(tv)7v> = )‘<H1I)(t7v)7v>
/‘t<fl(tv)7v> = )‘tHé(tav)

and consequently
AH,(t,v),v) = AtH(t,v)
for t # 0 and H(t,v) = c¢. Then, by condition (1.8), we get A\ = 0

and hence p # 0. As a result, the first equation in (1.10) takes the
form f'(u) = 0 with u = tv # 0. O
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1.3. Comparison with the Ljapunov-Schmidt approach

Now, we compare the fibering method with the classical Ljapunov-
Schmidt method. We restrict our comparison with the spherical
fibering method: in this case

H(t,v) = [l
and condition (1.8) with ¢ = 1 takes the form
(Hy,v) = vl =1#tH; =0.

Due to the Ljapunov-Schmidt approach we seek for a solution of (1.2)
in the form u = wu; + ug, where u; is an element of a (usually finite
dimensional) subspace of X, and us is an element of a suitable “good”
complement. Then from (1.2) we get the system of equations

{Al(ul,uz) = M

1.11
As(ui,ug) = ho (1.11)

where the second equation for fixed v; € X7 is a correct, well-posed
equation which has a unique solution

Uy = T(ul, hg) .

By substituting this expression in the first equation of the system,
we derive the so-called Ljapunov-Schmidt bifurcation equation

A(ul, hg) = hl (1.12)
where
A(uq, he) = Ai(ur, T(u1, ho)) .

Following the spherical fibering method we seek for a solution of the
variational problem

f'(u)=0
in the form u = tv # 0 with (¢,v) € R x S. Then the original
variational problem is equivalent to the system

(f'(tv),v) =0
{ fH(tv) =0 forves. (1.13)
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(here f! is the tangential derivative of f on the unit sphere S). The
first equation of (1.13), namely,

(f'(tv),v) = 0 (1.14)

plays the same role as the bifurcation equation in the Ljapunov-
Schmidt approach; therefore we will refer to it as to the bifurcation equationf
in the fibering method. Indeed, if we have a solution ¢ = ¢(v) of this
equation then we get the induced functional

A

f) = f(t(v)v).
The conditionally critical point v. € S of f with t, = t(ve) # 0
generates a critical point u. = t.v. of the original functional f.

From a geometrical point of view:

e in the Ljapunov-Schmidt approach, the representation u =
u1 + ug corresponds to introduction of Cartesian coordinates;

e in the spherical fibering method, the representation u = tv with
|lv|| = 1 corresponds to introduction of curvilinear (spherical)
coordinates.



Lecture 2

Simple examples

Simple examples of known problems. In these examples the bifurca-
tion equation (1.14) admits an explicit smooth solution ¢ = ¢(v) for
v € S: this makes it possible to use a parameter-free realization of
the spherical fibering method. In all examples below, 2 is a bounded
domain in RY with locally Lipschitz boundary 9. The solutions of

the problems are considered in the Sobolev space I/f/’ 1(9), the dual
space of which is denoted by W, ().

ExaMPLE 2.0.1: Consider the eigenfunction problem

Au+|uP2u=0 in
u=0 on 092.

Here 2 < p < 2*, where

2N
2* = m fOI'N > 2,
2% := 00 for N =2.

The Euler functional f has the form

I
fw =5 [19uf = [

according to the fibering method, we set u = tv; then the functional
f takes the form

t2/ 9 |t|p/
tv) = — Vol — — v|P.

13
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In the spherical fibering

1/2
ol = ( / |w|2) 1
Q

the functional f reduces to

- t2 |t
ft,v:———/ vP.
o) =5 - [ 1o

From the bifurcation equation f!(¢,v) = 0, i.e.

t— |t|P—2t/ [v|P = 0,
Q

we find explicitly the real nonzero solutions

== ([1r)7
Q

then the functional f(v) = f(t(v),v) takes the form

fo=222( [ ||)_

To this functional, regarded on the unit sphere S CI/?/' 1(Q), we
can apply the well-known Lyusternik-Shnirel’'man theory, in view
of which f has a countable set of geometrically different condition-
ally critical points vy, v9,v3,... on S, with f(vm) — oo (and then
Jo |vm[P — 0) as m — oo. Hence we obtain problem (2.1) has a

countable set of geometrically different solutions fuy, fus, ..., tumy, ...

with
U (T)

um(z) = P
(fo loml?) 7=
and ||up,|| — oo as m — co.

REMARK 2.0.2: If we start from the astrophysical meaning of the
Emden-Fowler equation (2.1), and consider a solution u,, as a “star”

in the Sobolev space W 1(9Q), then the set of all solutions of (2.1)
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looks like an “expanding Universe”: indeed, since |un,| — oo as
m — oo, for any R > 0 there exists a “star” u, such that |un,|| > R.
From the mathematical point of view it means that the BVP

Au+ |[ulP~2u=h in
u=20 on 0f).

for 2 < p < 2* doesn’t admit a priori estimates: consequently the
Leray-Schauder method cannot be applied to this problem.

ExAMPLE 2.0.3: Consider the linear Dirichlet problem for the Pois-
son equation

{ Au=h inQ (2.2)

u=20 ondf2

with h € W, 1(Q) \ {0}. The functional associated with (2.2) is

f(u):—%/Q|Vu|2—/Qhu.

Following the fibering method,we set u = tv; then the functional f

takes the form
2
f(tv) = ——/ |Vv|2—t/ hv .
2 Ja Q

In the spherical fibering

ol = / Vol =1
Q

the functional f equals to

~ 2
Ftv) = —% —t/ﬂhv (2.3)

and then from the bifurcation equation

ﬂ(t,v)z—t—/ﬂhsz
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we find t = — [, hv, and then

)= Faon0 = 2 ([ )’ (2.4)

(note that in this case the minimax realization of the fibering method
~ see Section 3.1 — would give rise to the same functional f ). We
now consider the critical points of this even functional f on the u-
nit sphere S. Obviously, there exists an infinite set of conditionally
critical points of f on the unit sphere. In this set there are only two
regular conditionally critical points v; and v2 = —wvq, i.e. condition-
ally critical points such that ¢; = t(v;) # 0 and t3 = t(v2) # 0: these
are the points at which f (v) attains the maximum on the closed u-
nit ball B (v; and vy cannot lie in the interior part of B because
f is homogeneous on v; see also the maximum principle expressed
by Corollary 3.4.4). Then uy = t;v; and us = tovy are solutions of
the Dirichlet problem (2.2); note in particular that, since t; = —to
and vy = —vg, we actually obtain u; = us, that is, the two nonzero
solutions coincide.

REMARK 2.0.4: Example 2 can be regarded as an application of
Theorems 3.3.1 and 3.4.3, which will be stated in the next lecture;
to clear up the essence of the fibering method we verify assumptions
of these theorems in this example. We know vy € S is a maximum
point of f on the unit sphere S; then, by Lagrange rule, at this point
it is

h/ hvi = —vAvy v1 GVCI)/'%(Q)
Q

From this we find for [, |Voy|? = 1 that v = (Jo hvl)z, and v # 0,
because max F(v) > 0 for h # 0. Then
v

2
h/hv1:—</hv1) A’Ul
Q Q

or, setting t; = — [ hvy # 0 and u; = tyvy,

Auy=h, u eWiQ),

i.e., uy is a solution of problem (2.2). We see similarly that us is a
solution of this problem, and u; = us.
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ExAMPLE 2.0.5: In the above we have considered some applications
to the global analysis of certain nonlinear BVPs. It is clear that the
fibering method can be applied to the local analysis of certain nonlin-
ear variational problems: we restrict ourselves to a simple example.
Let us consider the following BVP

{ Au+ud=h(z) inQCRY

u=20 on 0N (2.5)

with N < 4. To this BVP there corresponds the Euler functional

1 1
E(u):—E/Q|Vu|2+Z/Qu4—/Qhu.

Due to spherical fibering we have u(z) = tv(x) with
ol = / Vu? =1 for v eWh(Q).
Q
Then the Euler functional E generates

E(tv)———2+ﬁ vi—t [ hv
T2 4 g Q

and the bifurcation equation takes the form
— =—t+t v° — | hv=
An elementary calculation shows that if the inequality

ol L] (L)} < 22

is satisfied, then the bifurcation equation possesses three isolated
smooth branches of solutions: 1 = t1(v, h), t2 = t2(v,h) and t3 =
ts(v, h). By substituting them in E we get three induced functionals

Ei(v) = E(ti(v,h),v):

1 1
= ——tf(v,h)—l——t?(v,h)/v4—ti(v,h)/hv
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for i = 1,2, 3; these functionals are distinct and smooth on S. Every
functional E;(v) has a critical point v; on S; hence the original Euler
functional F under condition on h possesses three distinct critical
points, i.e. solutions of (2.5),

ui(z) = tyvi(z), wug(z) = tava(z), ug(x) = tzvs(x)

in I/ff%(ﬁ) such that

/hulso, /huzso, /hugzo,
Q Q Q

and [|us|| < [|uzl|.
REMARK 2.0.6: For sufficiently small h the existence of a first so-

lution u; for (2.5) can be proved via contraction mapping principle.
The existence of a second solution us can be obtained from

Aw+ (w+u)3 —uf =0
w=0 ond}

by means of the theory of eigenfunctions for nonlinear elliptic prob-
lems. However, I don’t know how is it possible to prove the existence
of a third distinct solution ug without using the fibering method.



Lecture 3

Some realizations of the
fibering method in
variational problems

The fibering method admits various manners of realization; here we
consider some of these ones.

3.1. Minimax realization

Let X be a real Banach space with norm differentiable on X \ {0},
let f be a functional on X belonging to the class C*(X \ {0}), denote
by S the unit sphere of X, and let J be a nonempty open subset of
R. Then the following result holds.

THEOREM 3.1.1. Suppose that for any v € S the quantity

f(v) = t 3.1

() = max f (1) (3.1
exists, and f(v) > f(0) if 0 € J. Assume that f is differentiable on
the unat sphereAS. Then to each conditionally stationary point ve of
the functional f, regarded on S, there corresponds a stationary point

A

Ue = teve of f with t, € J\ {0} such that f(u.) = f(ve).

Proof. Assume the theorem is false, and hence t.f'(u.) # 0. Then

19
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there exists wg € X such that

te(f'(ue), wo) > 0. (3.2)

Since v, € S is a conditionally stationary point of the functional f,
which is differentiable on S, it follows that

P e CW0 N By ce(C) = f(tove) + Ce
P ) = o+ e = ftn) +060) (33)

for sufficiently small ¢, with €(¢) — 0 as { — 0. On the other hand,
by (3.1),

vc+Cw0> A<vc+<w0>

t———— | < —_— vt e J. 3.4

(e cunn) < (e (&4

By a condition of the theorem, max f(tve) = f(teve) is attained on
€

the open set J \ {0}; hence t.||v. + (wo| € J \ {0} for sufficiently
small {, because ||v¢|| = 1. Then, by setting t = t. ||ve + (wo|| in (3.4)
for sufficiently small {, we get by (3.3) that

f(teve + (tewo) < f(teve) + Ce(Q). (3.5)
Since f is differentiable,
f(teve + Ctewo) = f(ue) + Cte(f'(ue), wo) + Cer(C),
€1(¢) > 0 as ( — 0.
Then it follows from (3.5) that

<tc<fl(uc)aw0> < (e2(¢) e2(¢) =+ 0as ¢ — 0.
From this last inequality, for sufficiently small { > 0, we get

tc<f'(uc), wo) < 0;

in view of (3.2) this contradicts the assumption. The theorem is
proved. ]

REMARK 3.1.2: Let J be a nonempty open set in R, symmetric with
respect to zero. If the functional f defined by (3.1) exists, then it is
even: this makes it possible to use the Lyusternik-Shnirel’'man theory
for certain functionals that are not even, and obtain theorems on the
existence of many geometrically different stationary points.
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EXAMPLE 3.1.3: Consider again the linear Dirichlet problem (2.2):

Au=h in(
u=2~0 on 0N

The Euler functional associated to this problem is

f(u):—%/Q|Vu|2—/Qhu.

In the spherical fibering

u=tv, ||v||2 :/ |Vv|2 =1
Q

the functional f reduces to

f(t,v) :—g—t/ﬂhv.

Then, the minimax realization gives rise to the functional

2
f(v)zr%%xf(t,v)=%</S2hv) : tmaxz—/ﬂhv.

which is the same as the f defined by (2.4). So: the original not
even Euler functional f generates by the minimax realization of the
fibering method the even functional f.

REMARK 3.1.4 (TO EXAMPLE 3.4.5): From Lyusternik-Shnirel’'manf]
theory we know the even weakly continuous functional f possesses at
least a countable set of critical points on S. Thanks to the fibering
method we have to expect a countable set of solutions for BVP (2.2),
but we know this problem has only one solution; what’s the matter?
Let us consider this “contradiction” in more detail. The even func-

tional
.1 2
=3 (fm)

has actually a continuous set of critical points on S; indeed, any
v € S, such that fQ hv = 0, is a critical point of f, because in this
case

f'(v) :v/thzo;
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thus the equator

50:ZSm{h}l:{ves:/th:o}

is the critical set for f . But for v € & we have

t:t(v):—/ﬂhvzo,

and consequently u = tv = 0: that is, these critical points are invis-
ible with respect to f. On the other hand, as we have already seen,
f admits also a pair of conditionally critical points

vy —t(v+):/ﬂhv+zrq?é)§c/ﬂhv>0

v s —t(v_):/hv_:min/hv<0
Q vES J

which give rise to a visible “double” solution u; = u_. Thus, we
can reasonably expect that a perturbed nonlinear BVP may admit
a countable set of visible solutions; indeed, the BVP

Au + e|ul’u = h(z)
u=0 on 2

for any sufficiently small €, § > 0 possesses a countable set of solutions
UL, Uy« oy U,y ... With |Jug]] = 400 as k — co.

Before the next example we point out an immediate corollary of
Theorem 3.1.1:

THEOREM 3.1.5. Let X be an infinite-dimensional reflexive Banach
space. Let the functional

f(v) = r&%xf(tv) >0

(or l/f) satisfy the Lyusternik-Shnirel’man conditions (in any ver-
sion of this theory). Then the functional f admits at least a countable
set of distinct critical points.
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EXAMPLE 3.1.6: Consider the BVP
2
—Au—ud+ (/ hv) h=0 mQcRN, N<3
Q (3.6)
u=0 on 9dN

Though the Euler functional

f(u):%/Q|Vu|2—%/Qu4+%</Qhu)3

is not even, by means of minimax realization we obtain the even
functional

A

f(’l)) = max f(ta ’U),

teR

B 2 4 A 3 3
ft,v) 2 4 Qv - 3 </Q v) ’

then by Theorem 3.1.5 we get problem (3.6) admits a countable set
of solutions in V?/%(Q) for each h € W, (), since:

where

o feCS);
o f(—v)=f(v);

0f>00nS;

A

e f is weakly continuous on S.

3.2. The choice of the fibering functional

Realization of the fibering method depends evidently on the choice
of the fibering functional H(t,v) satisfying condition (1.8). As the
simplest of such functionals we can take the norm of the Banach
space, under the condition that it shall be differentiable away from
zero; but this choice is not unique: here we propose, as a fibering
functional, the functional naturally generated by the problem itself
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(i.e. generated by the Euler functional f). We remark, however, that
in many cases this choice is not necessary. The scalar equation

(f'(tv),v) =0 (3.7)

in the scalar parameter ¢t = t(v) is the defining bifurcation equation
in the fibering method. To separate algebraically different solutions
of this equation, it seems natural to take the following as a fibering
functional H in the case of a functional f of class C3(X \ {0}):

H(t,v) = (f"(tv)v, v). (3.8)
In this case H satisfies the relation
(H{,,v) — th' =2H; (3.9)

in fact, by the equalities

d
<H11)7 ’l)> = %H(ta C’U)

(=1
tH; = %H(gt,v) -
H(t,¢v) = C(f"((to)o,v)
we get
(HLo) = LHE)| =
i -

— o(f" (), v) + d%(f”(tv)v,v) R

By (3.9) the nondegeneracy condition (1.8), for the functional H
defined by (3.8), turns out to hold always. When such a functional is
chosen, the solution ¢ = ¢(v) of (3.7) a priori inherits the smoothness
of the original functional, with loss of one derivative. Accordingly,
the problem of finding critical points for f € C3(X \ {0}) reduces to
the problem of finding conditionally critical points for f(¢v) under
the condition
(f"(tv)v,v) =c#0, teJ.
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Set k := \/|c| # 0; then by substituting ¢t/k and kv in place of ¢ and
v respectively, the last equality can be re-written as

(f"(tv)v,v) =¢co, tekJ, (3.10)
where ¢ is either +1 or —1, and kJ := {kt : t € J}.

THEOREM 3.2.1. Let f be a functional on X of the class C3(X\{0}),
and let (t,v) € kJ x X with tv # 0 be a conditionally critical point of
the functional f(tv) under condition (3.10). Then the point u = tv
s a nonzero critical point of f.

The proof follows immediately from Theorem 1.2.2.

REMARK 3.2.2: If we apply the general formula (3.8) to the linear
problem

{ Au=h inQ
u=20 on 0f)
we obtain
a2
H(t,v) = Ef(tv) =

2< t2 9
= —|—— Vo —t/hv):
g (-3 L=t [
= —/|Vv|2
Q

and then our general condition (3.10) takes the form

/ [Vol? = 1;
Q

that is, in this case the general constructive formula (3.8) leads to
spherical fibering.

REMARK 3.2.3: The fibering functional H defined by (3.8) enables
us to separate convex from concave nonlinearities, since formula (3.8)
involves the second derivative of f:

e convex nonlinearity corresponds to H(t,v) = +1;

e concave nonlinearity corresponds to H(t,v) = —1.



26 S. I. POHOZAEV

3.3. A parameter-free realization of the fibering
method

In the general case the fibering method reduces the original variation-
al problem to a parametric variational problem and to the investiga-
tion of its conditionally critical points. However, when the fibering
functional H is defined by (3.8) it is possible to eliminate the pa-
rameter ¢ in the new variational problem. Indeed, condition (3.10)
for a functional f of class C3(X \ {0}) means that

d

5 (@), 0) = (f"(tv)v,0) # 0

on the set defined by (3.10). Thus, condition (3.10) for a functional
f of class C3(X \ {0}) enables us to single out in the bifurcation
equation (3.7) the algebraically different smooth solutions ¢;(v) (for
i =1,...,m) when they exist, and to eliminate the scalar parameter
t. The problem of finding the nonzero critical points of f € C3(X \
{0}) reduces to the problem of finding conditionally critical points
of the functionals

Fi(v) == f (t:(v)v)
under condition (3'11)
Hi(v) := (f"(ti(v)v)v,v) = co

with ¢g = %£1; here t;(v) is the corresponding solution of (3.7) for
t=1,...,m.

THEOREM 3.3.1. Let f be a functional defined on X, f € C3(X \
{0}); let ti(v) be the solution of (3.7) under condition (3.10), and let
v; be a conditionally critical point of problem (3.11) with t;(v;) # 0.
Then the point u; = t;(v;)v; is a nonzero critical point of f.

The proof follows from Theorem 3.2.1, since the pair (t;,v;) €
kJ x X satisfies the conditions of that theorem.

3.4. Fibering functionals of norm type

In studying a variational problem it is sometimes convenient, when
the principal part of the original Euler functional f is of norm type, to
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take this principal part as the fibering functional H. Then, if there is
a complementary weakly continuous functional, the original problem
reduces to the problem of investigating conditionally critical points
of a continuous functional on a sphere-type surface (it is simpler
to investigate a variational problem in a closed ball, because it is
a convex set). We present a class of variational problems in which
this approach can be implemented. Suppose that on a Banach space
X, with norm differentiable away from zero, the given functional
f € C1(X) has the form f(u) = fo(u)+ f1(u), where fo(u) generates
the norm of X; for definiteness we assume fo(u) = ||u||? for some
p > 1, and f; € C*(X). Then we choose the fibering functional
H(v) = fo(v) = ||v]|P, so that condition (1.4) takes the form |jv]| =1
(i.e., we use the method of spherical fibering). The functional f(tv)
takes the form

f(t,v) =t + fi(tv) forveS
and the problem

foluw) + fi(u) =0 (3.12)
is then equivalent to the system

It + (fi(tv),v) =0, t#0 (3.13)
tfi(tv) =v|v|", ves. (3.14)
Since the functional (f{(tv),v) is defined for all v € X, the first scalar

equation (3.13) in ¢ can be considered forv € B = {w € X : ||w| < 1}}
Suppose that this equation has solutions t;(w) for i = 1,... | N; let

Fi(w) = [P + f1 (ti(w)w)
and consider these functionals on the closed unit ball B.

DEFINITION 3.4.1. A point w € B s a critical point of the differen-
tiable functional Fi(w) in the closed unit ball B if one of the following
conditions holds:

1. w lies in the interior part of B and it is an ordinary critical
point of F;;



28 S. I. POHOZAEV

2. w lies on the boundary 0B = S and it is a conditionally critical
point of F; on the sphere S.

DEFINITION 3.4.2. A critical point w; € B of the differentiable func-
tional F;(w) is a reqular critical point of F; if w; # 0, t;(w;) # 0,
and the functional t; is differentiable at w;. Here t;(w) is a solution
of (3.13) for v=w € B.

THEOREM 3.4.3. Let w; € B be a regular critical point of Fj(w).
Then w; € 0B, and u; = t;(w;)w; is a nonzero solution of (3.12).

Proof. Suppose by contradiction that the regular critical point w; €
B of Fj; is in the interior part of the unit ball B. We study the
behaviour of F; along the ray (w; as ( — 1. By differentiability of f
and differentiability of ¢; at w;, it is

dhCw)| [p[tiP~t; + (f1 (tiws), wi)] dt + (fi(tiws), wi)t;
& oy dC ey
where t; = t;(w;). Hence, in view of (3.13) with v = w;,
dF;(Cw;
R | gt wi) = —pltl? # 0,
& |

which contradicts the fact that w; is a (regular) critical point: there-
fore w; € OB. Moreover, by Theorem 1.2.1 the point u; = t;w; is a
nonzero solution of (3.12). O

Following Definitions 3.4.1 and 3.4.2, we introduce the concept of a
regular extremal point w € B for the functional F; by replacing in
those definitions the word “critical” by the word “extremal”. Then
from Theorem 3.4.3 we get

COROLLARY 3.4.4 (THE MAXIMUM PRINCIPLE). Let w; € B be a
reqular extremal point of F;(w). Then w; € 0B, and u; = t;(w;)w;
is a nonzero solution of (3.12).

EXAMPLE 3.4.5: Here we demonstrate the above “maximum prin-
ciple” in the simplest situation. Consider the linear problem (2.2)

Au=h, wu=0on 9
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and the correspondent Euler functional

f(u):—%/Q|Vu|2—/Qhu.

Then the reduced functional is

Ff) = % (/th>2, v eWHQ), o] = 1.

Now we consider B instead of S, i.e. ||v|| <1 instead of ||v|| = 1; in
this case we know from classical results that the functional f admits
a maximum point vy in the convex bounded domain B. Actually, vg
is on the boundary S = 9B: in fact, if we suppose ||vg|| < 1 then for
sufficiently small e > 0 it is still (1+ €)vg € B and

F((1+ e)uo) = (1+€)*f(vo) > f(vo),

which contradicts the fact that vy is a maximum point. Therefore
v € S.

3.5. On the connection between critical points and
conditionally critical points

In the preceding sections we used the fibering method to establish a
connection between critical points and conditionally critical points
of functionals; we now consider this connection from a somewhat
different point of view. Let [ be a differentiable mapping (which can
also be a nonzero constant) from a real Banach space X into X itself.
With any functional f twice differentiable (in the Gateaux sense) on
X we associate the functional f; defined by

Clearly, every critical point u of f satisfies f;(u) = 0 and hence it
is a conditionally critical point of f, considered under the condition
fi(u) = 0; the following simple theorem gives a condition for the
validity of the converse.
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THEOREM 3.5.1. Let f be a twice differentiable (in the Gdteaux sense )l
functional on a real Banach space X. Suppose that there exists a d-
ifferentiable mapping I from X to X such that at a conditionally
critical point ug of f(u), considered under the constraint fj(u) = 0,
it 1s

(fi(uo),1(uo)) # O. (3.15)

Then the conditionally critical point ugy ts actually an unconditionally
critical point of f.

Proof. Indeed, at ug it is
M'(uo) = pfi(uo) , AN +p® #0;
by this equality and (3.15) we get u = 0, and then A # 0, since
p{fi(uo), U (o)) = M f'(u0), (uo)) = Mfi(uo) = 0;

therefore, f'(ug) = 0. The theorem is proved. O



Lecture 4

Applications of the
bifurcation equations

In this lecture we’ll demonstrate the application of the bifurcation
equations to various nonlinear BVPs in the simplest cases.

4.1. The algebraic factor

The bifurcation equation enables us to extract the algebraic factor
of nonlinearities. Consider the bifurcation-fibering equation

(f'(tv),v) =0. (4.1)

Let t;(v) (fori = 1,2,... , k) be the algebraic solutions of (4.1) under
condition
ol = 1;

then we obtain k functionals fi,... , fi defined by

filv) = f(ti(v)v)
fa(v) = f(t2(v)v)

fi(v) = ftr(v)v),

for which the following result holds (cf. Theorem 3.11).

31
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THEOREM 4.1.1. Let f1,...,fr € CY(S). Let v; be a conditionally
critical point of fi(v) with t;(v;) # 0. Then the point

u; = ti(v)v;

is a nonzero critical point of f(u).

4.2. The problem of nontrivial solutions

Let © be a bounded domain in RY with locally Lipschitz continuous
boundary 9€2. We consider the question of existence of nontrivial
solutions for the boundary value problem

{ Au+ gi(z,u)u =0 in Q

u=0 on Of. (4.2)

The conditions on the function g; are as follows.

(C1) ¢1(z,0) = 0, and ¢; is a Carathéodory function on Q x R,
i.e. it is measurable with respect to = for all v € R and it is
continuous with respect to u for almost all z € Q.

(C2) For N > 2 there exist positive constants A and B such that,
for all z € Q and all u € R:

o for N > 2, [g1(z,u)| < A+ Blu|™ where 0 < m < 5;
o for N =2, |g1(z,u)] < A+ BelUl” where 0 < a < 2.

(C3) For any function v GI/f/%(Q) with [, [Vo]? =1, i.e. for any v
in the unit sphere .S, the equation

/ g1 (z,tv(z)) v?(x)de = 1 (4.3)
Q

in ¢ € R has a solution ¢t = t(v), and t(v) € C*(S).

Let t = t(v) be a solution of class C*(S); we consider the func-
tional

2(v
F(v) = —# + /Q G (z,t(v)v)de, (4.4)

where G(z,s) = fos g1(z,y)ydy.
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THEOREM 4.2.1. Assume conditions (C1), (C2) and (C3). Sup-
pose that the weakly continuous functional F defined in (4.4) admits
a conditionally critical point v on the sphere S. Then u = t(v)v is a
nontrivial solution of problem (4.2).

Proof. The proof follows directly from Theorem 3.4.3, since the reg-
ularity of a conditionally critical point of F' on S follows from con-
ditions (C1) and (C3).

ExXAMPLE 4.2.2: Consider for N < 3 the BVP
Au+a(z)u> +u3=0 inQ
u=20 on 0f)

with a € LI(Q2), where g =1for N =1,9g > 1for N =2, ¢ > 2 for

N = 3. Then by Theorem 4.2.1 this BVP has a nontrivial solution

(4.5)

O

Notice that the Euler functional associated to (4.5)

1 1 1
E(u):—§/Q|Vu|2+§/9a-u3+1/9u4

is not even. On the other hand, from (4.3) it follows that F' is even
anyhow: in fact, if to any v; € S there corresponds the solution
t1 = t(v1), then to vy = —vy there corresponds to = t(—v1) = —ty; if
this even functional F' is smooth, then the Lyusternik-Shnirel’'man
theory can be applied to it, under appropriate conditions.

THEOREM 4.2.3. Assume conditions (C1), (C2) and (C3). Sup-
pose that the even functional F defined by (4.4) satisfies on S the
Lyusternik-Shnirel’man conditions, in any version of this theory.
Then the boundary value problem (4.2) has a countable set of ge-
ometrically different solutions.

Proof. The existence of a countable set of geometrically different con-
ditionally critical points for the even weakly continuous functional
F on the unit sphere S follows from the Lyusternik-Shnirel’'man the-
ory. The regularity of each conditionally critical point of F' on S
follows from conditions (C1) and (C3), since a solution of (4.3) at
a conditionally critical point of F' on S is nonzero and differentiable
at this point. Then we get Theorem 4.2.3 from Theorem 3.4.3. [
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EXAMPLE 4.2.4: Consider the BVP

Au+ M2)u + p(z)u™ u=0 inQ
u=20 on 02

where 1 < m < % for N > 2 and m > 1 for N = 1,2. Denote
by A1 the first eigenvalue of the Laplace operator in the domain {2
with Dirichlet boundary condition. We get by Theorem 4.2.3 that
for any functions A\, u € C(Q), with A(z) < A; and p(z) > 0 in Q,
this problem has a countable set of geometrically different solutions
in the Sobolev space V?/%(Q)

EXAMPLE 4.2.5: We consider for N < 3 the BVP

Au+a(z)|u/*tu+u =0 inQ
u=20 on 0N

with 1 < a < 3 and a € L1(Q2) (without any assumption on the sign
of a(z)), where ¢ = 1for N =1,¢ > 1for N =2, ¢q > %for
N = 3. Then by Theorem 4.2.3 this problem admits a countable set

of geometrically different solutions in I/?/%(Q)

REMARK 4.2.6 (TO EXAMPLE 4.2.5): We note that the above prob-}j
lem with 0 < a < 1 was already considered, by using another method
called “linking method”, by [7].

4.3. A problem with even nonlinearity

We consider an application of Theorem 3.4.3 to the following bound-
ary value problem in a bounded domain Q C RY with N < 5 and
with smooth boundary 0€2:

{ Ad + 3% = ¢(z) inQ

® = ho(x) on 99 (4.6)

o * 1
where ¢ € W, }(Q) = (W;(Q)) and hg € W72(9Q). Let h be a
harmonic function in W4 (f2) such that Ah = 0 in Q and h = hyg
on 0L; then the original BVP is equivalent to the following one, by
simply letting ® = u + h:

Au+ (u+h)>=¢ inQ
{ u=20 on 0N (4.7)
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The Euler functional associated with (4.7) on the Sobolev space W
1(Q) is E=1H + G, where

A = [ [V = ful?
G(u) = /Q<—%(u+h)3+¢u+%h3>

(we choose H as the fibering functional); the bifurcation equation
for t(v) in this case takes the form

a(v)t? — b(v)t — c¢(v) =0

where

c(v) = /Q(qﬁ —h)w.

From this we get, for a(v) = [, v® #0,

b(v) £ 1/b(v)? + 4a(v)c(v)

2a(v)
— {1_2/th2¢ <1—2/th2)2+

() o]

ti(v) =

and, accordingly,

Fi(v) = E(ty(v)v)
_ @ti(v)ﬂc?()”)ti(v)
1
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We assume b(v) > 0; then the functional F_ is defined for all v

in the closed unit ball B of the sapce Vc[)/'%(Q) (we obtain F_(v) =
—c?(v)/2b(v) as a(v) = 0), while F, is defined for all v € B such
that a(v) # 0. Let us consider the behaviour of these functionals in
the unit ball B as ||v|| — 0 for a(v) # 0. We have

a(v) -0, b(v) =1, c(v) = 0;
by Taylor’s formula, up to the second order in { := %, it is
b3 be 2 act
Fo=(—+— 101+ |=-——=(1
+ <12a2 + Qa) (1£1) [26 355 (LT o)

for a(v),b(v) # 0, with o({) — 0 as { = 0. Concerning the boundary
1

function hg € W (92) we assume also that there exists a constant
Cp > 0 such that the corresponding harmonic function h satisfies for
any v € B

b(v):1—2/hv2200;
Q

this holds, in particular, if h(z) < 0. Concerning the function ¢ €
W5 1(Q) we assume that there exists a constant C; > 0 such that for
any v € B

b(v)? + da(v)e(v) = <1 _ 2/9hv2)2+4 </Q v3> /Q(qﬁ—hz)v > ¢y

this holds, in particular, if ¢ — h? is sufficiently small in the norm of
the dual space W5 (). Under our assumptions,

sup Fy (v) = sup Fy (v) = o0,
vEB veS

inf F - inf F_ —00.
BEFA) > moos BEF(0) > o0

We mention that in the case when ¢ = h? a.e. in Q the trivial
solution u = 0 is one of the solutions of problem (4.7); therefore, it
is assumed below that

6~ 2y, #0
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and then we get

inf F_(v) < 0.
vEB

Further, the corresponding minimum points v_ and v exist for the

functionals F_ and F in the unit ball B cw 3(Q). For the func-
tional F_ at the point v_ € B we have

F (v.)= 1}2}2 F_(v) <0
then from representation (4.9) we get v_ # 0 and ¢_(v_) # 0. The
functional F_ is differentiable at the point v_; thus, the conditions
of Theorem 3.4.3 are satisfied for F, and hence u_ =¢_(v_)v_ is a
solution of the BVP (4.7) under the conditions on ¢ and h indicated
above. Now, let us consider the functional Fy. For this functional
at the point v, € B we have

Fy(vy) = inf Fi (v) > —o0;

then we get from representation (4.8), (4.9) for F that t vy # 0.
The functional F is differentiable at the point vy, and a(vy) =
fﬂ vi # 0; thus, the conditions of Theorem 3.4.3 hold for F, and
hence uy =ty (v4)vy is a solution of (4.7) under the indicated con-
ditions on ¢ and h. We notice that the solutions v_ and u, are
different. Indeed, if u_ = wug then t_v_ = t vy; for v_,vy € S
it would follow that v_ = fwv, and [t_| = [t;|. The last equalities
contradict (4.8) under our assumptions on ¢ and h.

4.4. A test for the absence of solutions

We continue to demonstrate applications of the fibering method to
nonlinear BVPs. Now we outline an application to the nonexistence
problem: we first present a scheme for getting sufficient conditions
for the absence of solutions. Let us consider the variational problem
in the situation of Section 3.4, that is, we consider a Banach space
X with norm differentiable away from zero and a functional f(u) =
fo(u) + f1(u) with fo(u) = ||u||P and f; € C*(X). Then the problem

foluw) + fi(u) =0 (4.10)
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is equivalent to the system
plt|P~2t + (f](tv),v) =0, t#0
[tlP2t - (|[vl|P) + fi(tv) =0, weS.

From this system we obtain, for any w € X, the following system of
two scalar equations:

pItP=2t + (fi(tv),v) =0
{Itlp‘2t<(|\v|\1’1) w) + (fl(tv), w) = 0. (4.11)

This gives us the following test for the absence in X of nonzero

solutions for equation (4.10).

THEOREM 4.4.1. Let fo and f1 be the functionals defined above, and
suppose that there ezists an element © € X such that system (4.11) is
inconsistent for any value of t # 0 and v € S. Then equation (4.10)
doesn’t admit nontrivial solutions in X.

Obviously, the zero solution of (4.10) doesn’t exist if
fo(0) + £1(0) # 0.

REMARK 4.4.2: Consider again the BVP with quadratic nonlinear-
ity (4.7). In this case system (4.11) takes the form

tv+h v—i—/qﬁv—o

—t/QvAz/) /tv—i—h ¢+/¢¢_0

where v is an arbitrary function in W 1(Q). Notice that the first
equation in this system can be obtained from the second one by
setting ¥ = v; therefore, we now consider the second scalar equation
with respect to t, namely:

2 2 2 _
t /Q@bv +t/ﬂ(A¢+2h¢)v+/ﬂ(h o) =0.

This equation clearly doesn’t admit any real solution if there exists
a function ¥ €W () such that, for all v € S:

</Q(A1/J+2hz/))v)2 < 4/ ¢/ Y. (4.12)



THE FIBERING METHOD etc. 39

On the other hand, if ¥(z) > 0 in Q, then

</Q(A¢+2h¢)v>2 _ </QA¢#\/£W\/%>2S

. /Q(MTW)Q [t

hence (4.12) holds if there exists a function ¢ > 0 in V?/'%(Q) such

that (A¢ 2h¢)2
(AY + 2h9)” 2 _
/Q < /Q (>~ $)p,

or, equivalently,

/Q <% + 4hAy + 4¢¢> <0. (4.13)

Accordingly, we get the following result:

PROPOSITION 4.4.3. Suppose that there exists a function ¢ > 0
in W 3(Q) such that (4.13) holds. Then the boundary value prob-
lem (4.6) doesn’t admit solutions in I/?/'%(Q)

EXAMPLE 4.4.4: Consider problem (4.6) with hy = 0, namely, the
Ovsjannikov problem

Ad + 3% = ¢(z) inQ
®=0 on 0N

Then from Proposition 4.4.3 we obtain absence of solutions if we
are able to find a 1 €W () such that:

1. ¥ >01in Q and ¥ > 0 on 0€;

2 /52¢¢<—%/Q(A$)2.

For instance, if we take 1 such that

AYp+ XMy =0, ¥ >0inQ
¥ =0 on 0N
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then we obtain that the Ovsjannikov problem doesn’t admit any

solution if
M
[wo <=2 [ s
Q Q

in particular, we obtain absence of solutions if ¢(z) < —)\2/4.

We remark that the general nonexistence test (4.13), in contrast
with traditional tests for quasilinear elliptic equations of second or-
der, is not a pointwise test but an integral test: we explain this
feature by the following special example.

EXAMPLE 4.4.5: Consider the BVP (4.6) where 2 is the open unit
disk D C R?, ¢ = 0 and the boundary function hg is equal to A cos
in polar coordinates:

® = Acosb on 0D (4.14)

{ A®+®?=0 inD
where A is an arbitrary real parameter. The choice of this particular
example is due to two circumstances. First, this problem is given
without analysis in a number of books. Second (and this is the main
thing) the traditional tests for the absence of real solutions are not
applicable to problem (4.14), since the mean of the boundary values
is equal to zero:

27
/ Acos6df = 0.
0

For problem (4.14) inequality (4.13) takes the form

2w 1
/ d0/ dr <(A¢)2 + 4 arccos 8 - A1/J> r < 0. (4.15)
0 0 Y

We now choose 3 to be a solution of the following problem with
parameter 7 > O:

Ay = —(1+rcosd)(1—7r?) inD
Yv=0 on 9D.

This solution can be written explicitly, and ) > 0 for 7 > 1/3. We
substitute this function ¢ (which depends on 7 > 1/3) into (4.15);
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then we get a parametric inequality for A with 7 > 1/3, and it yields
the following estimate for |A| when 7 = (1 4+ 4/5/2)/3:

|A| > 20.65.

If A satisfies this last inequality, then the BVP (4.14) doesn’t admit

any solution in W i(D).
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Lecture 5

Application of the fibering
method to the p-Laplacian

In this lecture we apply the fibering method to the problem of exis-
tence of positive solutions for equations involving the p-Laplacian

Apu = div (|VulP 2Vu)

in a bounded domain Q C RY. The particular equation we’ll consider
in this lecture was also studied in [10], [11] for Q = RY. Essentially
the same result as here was proved in [11] by using the so-called
“bifurcation argument” [8] combined with the critical point theory;
however, it appears that our approach based on the fibering method
yields the existence and multiplicity of positive solutions in a more
explicit and constructive way. We first discuss an example with p = 2
(hence A, = A).

5.1. An interesting example
Consider the boundary value problem

{ —Au—du = f(z)lu]2u inQ C RV (5.1)

u=20 on 0f)

where 2 < v < 2* := 2N/(N — 2), and f € L*() satisfies the
following assumptions:

43
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(f.1) f* (the positive part of f) is not identically zero;

(f.2) / f-€] <0, where e; is “the” eigenfunction associated to the
Q
first eigenvalue A\; of —A (1).

THEOREM 5.1.1 (ALAMA & TARANTELLO, 1993). The following re-}
sults hold.

1. Let 0 < XA < A1, and assume (f.1). Then (5.1) has a positive
solution in W2 ().

2. Let A = A1, and assume (f.1) and (f.2). Then (5.1) has a
positive solution in W2 (Q).

3. Let A > A1, and assume (f.1) and (f.2). Then there exists
d > 0 such that for A < Ay + & problem (5.1) has two positive
solutions in W2 ().

This result is of considerable interest: let us point out some features.

1. Solutions of (5.1) are not small. Indeed, let A\ = 0; then we
have

—Au = f(x)|u]""2u in Q
u=20 on 0€);

By multiplying by u and integrating by parts we get

[va = [ flar <

< 1flleo / ful <
< | flloe (Csllulle)”

where C, is (since v < 2*) the Sobolev constant

[ully < Cyllullie-

'Namely, e; = e1(z) is such that:

Aer +Xe1 =0 in Q
e1 >0 in
e; =0 on 0N

See also Lemma 5.2.3 in the next section.
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Since u = 0 on 9N we obtain

lulla < Cllflloollull? 2 ;

from this last inequality we obtain, since u is not identically
zero and vy > 2:

I

>( ! ) oo as ]l = 0
122\ 57— — +00 as — 0.
Tl S

Therefore, Theorem 5.1.1 does not follow from the classical
bifurcation theory.

2. Solutions of (5.1) are positive if A is near to A\ (including
A > )\1')

3. If A > A1, Theorem 5.1.1 states the existence of two positive
solutions (an even number of solutions) for (5.1).

These interesting features stimulated further investigations by S. Ala-Jj
ma, G. Tarantello, L. Nirenberg, H. Brézis, H. Berestycki, I. C. Dol-
cetto, and other mathematicians.

5.2. A problem involving the p-Laplacian

In this section and in the next ones we consider an application of the
fibering method to the p-Laplacian. Here we follow the paper [12]
by P. Drédbek and S. Pohozaev, where additionally existence and
nonexistence problems are examined in the whole RY. Let Q be a
bounded domain in RV ; assume p, A,y € RN, 1 < p < v < p*, where
p* := Np/(N —p) for p < N and p* := oo for p > N. We consider
the equation

Ay = Ag(@) U2 + f (@)l (5.2)
for x € Q, under Dirichlet boundary condition

u=0 on 0Q. (5.3)
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This problem is studied in connection with the corresponding eigen-
value problem

—Apu = Ag(z)|ulf2u. (5.4)

We concentrate ourselves on the existence and multiplicity of positive
solutions for (5.2) when 0 < X\ < A\ 4+ ¢, where € is a “small” positive
number and A; is the first eigenvalue of (5.4). In particular for
A > A1 we'll prove the existence of (at least) two solutions, similarly
to the case A, = A that we discussed in the previous section.

Let us premise some definitions and notations. We work in the

Sobolev space W ::I/f/ },(Q) equipped with the usual norm

1/p
ull = ( / |W|p> -
Q

We assume f,g € L*®(Q), with ¢ > 0 and ¢ not identically zero.

DEFINITION 5.2.1. A function u € W is a weak solution for prob-
lem (5.2) under condition (5.3) iff it satisfies the integral identity

/ |VulP~2VuVo = )\/ g - |ulP?u +/ £ lu]"2uw (5.5)
Q Q Q
for every v e W.

DEFINITION 5.2.2. A real number X is an eigenvalue for problem (5.4)}
under condition (5.3), and u € W\{0} is a corresponding eigenfunction ]
if
/ |VulP2VuVo = )\/ g |uP2uv (5.6)
Q Q
for every v € W.

The following result is now well-known (see e.g. [3], [6], [14]).

LEMMA 5.2.3. There exists the first positive eigenvalue Ay for prob-
lem (5.4) under condition (5.3); A1 is characterized as the minimum
of the Rayleigh quotient:

v p
Alzmin{M|u€W, /g|u|p>0}. (5.7)
ng|u|p | Q



THE FIBERING METHOD etc. 47

Moreover, A1 is simple (i.e. each associated eigenfunction can be ob-
tained from any other by multiplying by a nonzero constant), isolated
(i.e. there are no eigenvalues in a suitable neighborhood of A1), and
it admits an eigenfunction ey € W which is positive in 2.

We denote by (, )w the duality between W* and W, so that the
left-hand side of (5.5) and (5.6) can be written as

/ |VulP2VuVo = (—Ayu, v)w
Q

Since g € L*®(Q2) and 1 < v < p*, it follows from the continuity of
the Nemytskii operator [13] and the Sobolev Imbedding Theorem [1]
that:

(9.0) the functional
Gw)= [ g+ luP
Q
is weakly continuous on W
(£.0) the functional
F(wi= [ f-ap
Q
is weakly continuous on W.

Notice that G(u) is p-homogeneous and F'(u) is y-homogeneous.

5.3. The application of the fibering method
Let us consider the Euler functional

1 A 1

By(u) = * / Vupp — 2 / glup — X / flul?
P Ja P Ja Y Ja
1

P20 - LR
= Sl = Gw) = ZF(u) (5.8)

associated with (5.2), (5.3); according to (5.5), critical points of E)
are the same as weak solutions of BVP (5.2), (5.3). Following the
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fibering method, we substitute u = tv (with ¢ € R\ {0} and v € W)
into (5.8); we get

Bsw) = Lol - o) - Lrey 69

As the fibering functional Hy we’ll choose the principal part of E),

Hy(v) = /Q Tl - A /Q glof?
= |ollf - AG(v) (5.10)

(notice that H) is independent from ¢). Then the bifurcation equation]]
%E)\(tv) = 0 takes the form

[tP=2tH)\(v) — [t "*tF (v) = 0,

i.e., since t # 0:
Hy(v) - [t/ F(v) = 0.

From this we obtain

1

H(v) \7=»
t| = 0 5.11
= () > (.11)
under the necessary conditions
Hy (v
F(v) #£0 F*((v)) >0 (5.12)

By substituting (5.11) into (5.9) we define:

- (D EY T e

LEMMA 5.3.1. The functional E\ is 0-homogeneous, i.e. for every
7 € R\ {0} and every v € W such that F(v) # 0 we have

A A

Ex(tv) = Ex(v).
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In particular, Ey is even and its Gateaur derivative at v in the di-
rection v 1§ zero:

(Ex(v),v)w = 0.
Moreover, if v € W is a critical point ofE)\ then also |v¢| is a critical
point of E.

The proof of Lemma 5.3.1 is obvious. It follows from here that
whenever we find some critical point v, of E), we can automatically
assume that v, is nonnegative in Q.

The following sections are devoted to studying problem (5.2) in
the three distinct cases:

e 0 <A< Ay
o A=)
e M <A< A He

Here and in the following sections, A; is the first positive eigenvalue
of (5.4) under condition (5.3); by e; we denote the corresponding
positive eigenfunction (see Lemma 5.2.3).

5.4. The case 0 < \ < )\

Let 0 < X\ < Aq; as the fibering functional we can take H), as defined
by (5.10). In fact, it follows from Lemma 5.2.3 that H)(v) > 0 for
any v € W, hence the fibering constraint becomes

H)\(’l)) =1

since H) is p-homogeneous. We still have to verify the nondegeneracy
condition (cf. inequality (1.8)); indeed, it follows directly from (5.10)
that
(Hx\(v),v)w =p- Hx(v) #0

(we recall that in the present case the derivative of the fibering
functional with respect to t is zero). Since H)(v) > 0, it follows
from (5.12) that we have to consider the conditionally critical points
of E,(v) satisfying

F(v)z/ﬂf-lvl”>0;
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so the following hypothesis is a natural one (cf. hypothesis (f.1) in
Section 5.1):

(f.1) fT is not identically zero.

By (5.13), the functional Ej(v) under constraint Hy(v) = 1 as-
sumes the form

therefore we consider the conditional variational problem:

(Py) “Find a maximizer v, € W of the problem

0 < M) = sup {F(v)|H)\(v) = 1} 7.
veW |

PROPOSITION 5.4.1. Assume (g.0), (f.0), (f.1). Then problem (Py)
admits a nonnegative solution.

Proof. Let us consider the set
Wy :={v e W : Hy(v) =1};

W) is nonempty since Hy(e;) > 0 and H) is homogeneous. Due
to (5.10) and to the variational characterization (5.7) of A1, we get
for any v € W),

A
/|Vv|P=1+A/g|v|ps1+—/|Vv|f’
Q Q A1 Jo

A1
o|P :/va< :

hence, W) is bounded in W. Therefore, any maximizing sequence
(vn)pey for problem (Py) is bounded in W; consequently we can
assume

and then

v, — Ve in W.
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By (f.0) and (f.1) it is
F(vn) < F(ve) = My > 0; (5.14)

then v, is not identically zero, and we can assume v, > 0 (cf. Lem-
ma 5.3.1). We have only to prove that v, € Wy. Due to (¢.0) and to
the weak lower semicontinuity of the norm ||.||w, we get

Hy(v.) < liminf Hy(vy,) = 1;

n—oo

assume now by contradiction that v, ¢ Wy, i.e.
Hy(v.) < 1.
Since H) is homogeneous, we can find k. > 1 such that
Hy(kove) = 1;
but then k.v. € W) and by (5.14)
F(keve) = k) F(ve) = kI My > M)

which contradicts the definition of M). Hence v. € W), is the desired
solution of (Py). O

Thanks to the fibering method we can state the following result.

THEOREM 5.4.2. Let 1 <p <y <p*,0< A< Ay, f,9 € L®(Q) and
hypothesis (f.1) be satisfied. Then the boundary value problem (5.2)
under condition (5.3) has at least one positive weak solution u €
W N L>®(Q). Moreover u € C%(9).

loc

Proof. Recall that (g.0), (f.0) hold under assumptions of the theo-
rem; then by Proposition 5.4.1 there is a nonnegative solution v, of
problem (Py). Clearly, v. is a conditionally critical point of E‘A(v)
under the fibering constraint H)(v) = 1; then, by means of the fiber-
ing method, we can take

Ue 1= teve > 0

as a critical point for F)(v) (here t. > 0 is defined by (5.11)): that
is, u. is a weak solution of (5.2). Following the bootstrap argument
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(used e.g. in [9]) we can prove that u € L*°(Q2); then by applying
the Harnack inequality due to Trudinger [25] we get u > 0 in 2
(cf. [7]). It follows from the result of Tolksdorf [24] that u € C’llo’?(Q)
(cf. [9)). O

REMARK 5.4.3: If f(z) > 0and A < Ay, then by Lyusternik-Shnirel’'man]j
theory it follows immediately the existence of a countable set of non-
trivial (sign-changing) solutions of (5.2), (5.3).

5.5. The case A = )\

Let A = A1; keeping the notation of the previous section we consider
the conditional variational problem

(Py,) “Find a maximizer v, € W of the problem

0 < M)y, = sup {/ f|v|7IH)\1(v) = 1} 7.
Q

veEW

We have M), > 0 by (f.1), as in the previous section. In this case,
however, the set

Wy, ={veW:H(v)=1}

is unbounded in W; so we are forced to require the following addi-
tional condition on f (cf. hypothesis (f.2) in Section 5.1):

(£.2) /Qf-e}<0.

PRrROPOSITION 5.5.1. Assume (g.0), (f.0), (f.1) and (f.2). Then
problem (Py,) admits a nonnegative solution.

Proof. Let (vy),~, be a maximizing sequence of (Py,), i.e.
Hy (vn) =1, F(v) — My, > 0. (5.15)

Suppose by contradiction that (v,) is unbounded; then we can as-
sume ||vg,|lw — oo. Set

Un = Tpwn With |rp| = [loallw ,  [Jwnllw =1
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so that, by (5.10),
Hy (o) = [ral? i, (1) = 1;
due to (5.7) we have
0 < lunllly — MG(wn) = Hy,(wa) = |ra| P 50 (5.16)

and then, since ||wy,|w =1,

lim G(wn) = —. (5.17)

n—o0 M
We can assume that w, — @ in W for some @ € W; then (5.17)
and (g.0) imply
. . 1
g-laP = G@) = 5
Q 1

and consequently @w # 0. Moreover,

15][% < liminf [|wy |3, = 1
and then by (5.16)

0 < ||}y — MG(w) <0,

that is, Hy,(w) = 0. By Lemma 5.2.3, @ is a multiple of the first
eigenfunction e;, i.e. W = kej for a suitable & # 0. On the other
hand, thanks to (5.15) we get

F(wy) = |rp| 7" F(vn) > 0;
then, by (f.0), F(w) > 0 and consequently
F(el) Z 0

which contradicts (f.2). Hence the mazimizing sequence is bounded,
and we can assume
Vp — Ve in W

for some v, € W. By (f.0) we have

F(vp) = F(ve) = My, >0,
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hence v, # 0; it follows from (5.15), (5.7) and (g.0) that
0 < Hy,(ve) < 1.

We still have to prove that actually Hy, (v.) = 1. First, Hy,(v.) > 0
because if Hy, (v.) = 0 then Lemma 5.2.3 would yield the existence
of k # 0 such that v, = kep, and then

|[k[7F(e1) = F(ve) = My, >0,

in contradiction with (f.2). Second, Hy,(v.) = 1. Indeed, suppose
Hj, (vc) < 1; then there would exist k. > 1 such that H), (kcv.) = 1.
As in the proof of Proposition 5.4.1 we obtain the contradiction

F(keve) = k) - My, > M,y,.

Thus, v, is a maximizer of problem (P),); we can assume v, > 0 in
Q due to Lemma 5.3.1. O

THEOREM 5.5.2. Let 1 < p < v < p*; let f,g € L*®(Q) and (f.1),
(f.2) be satisfied. Then problem (5.2), with A\ = A1, under Dirichlet
condition (5.3), admits at least one positive weak solution v € W N

L>(Q). Moreover u € C*(Q).

loc

Proof. The proof is based on Proposition 5.5.1 and follows the same
ideas as the proof of Theorem 5.4.2. O

5.6. The case )\ > )\

We consider again problem (5.2) under condition (5.3), with A > A\;
but close enough to A;. The main result of this section is formulated
in the next theorem.

THEOREM 5.6.1. Let 1 < p < v < p*; let f,g € L*=(Q) and (f.1),
(f.2) be satisfied. Then there exists € > 0 such that for \y < A <
A1 + € problem (5.2) under condition (5.3) admits two positive weak
solutions uy,us € W N L*®(Q); both solutions belong to Cllo’f(ﬂ)

To prove this multiplicity result, we will consider two variational
problems:
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(Pl) “Find a maximizer v; € W of the problem

M = sup {F(v) :HA(U) = +1}

(P?) “Find a maximizer vo € W of the problem

my = inf {HA(v)|F(v) = —1}

veW |
Notice that in problem (P?) we consider F(v), no longer H), as the
fibering functional.

In the next two subsections we consider separately problem (Py)
and problem (P3).

5.6.1. Problem (P})
First, we state an equivalence. Consider the problem

(P}) “Find a maximizer #; € W of the problem

M)y = sup {F(v)|

Hy(v) < 1} ",
veW

Note that My > 0 if we assume (f.1); then the following statement
holds:

LEMMA 5.6.2. Assume (f.1); then problem (P}) is equivalent to (15)})'

Proof. Let v1 € W be a maximizer of (15){) and suppose by contra-
diction that
H)\(f)l) < 1.

Then for a sufficiently small & > 1 it is
Hy(kt7) <1,

and
F(kf)l) = k’yM)\ > My

since M > 0, by (f.1). But this is in contradiction with the fact
that 97 is a maximizer. O
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PROPOSITION 5.6.3. Assume (g.0), (£.0), (f.1) and (f.2). Then
there exists €1 > 0 such that for Ay < A < A1 + €1 the problem (P)%)
admits a nonnegative solution.

Proof. Due to Lemma 5.6.2 it suffices to show that there exists e; > 0
such that problem (]3)}) admits a nonnegative solution for any A,
A1 < A < A1 + €. Assume by contradiction that there is a sequence
e — 07 such that for any A* := A\; + ¢ the problem (]3;,6) has no
(nonnegative) solution. For any k € N, let (vfl)zozl be a maximizing
sequence of (P){k), ie.

Hy(vF) <1 and F(vF) = My > 0as n — oo.

k
n

Suppose that the sequence (v

7% in W as n — oo. By using (g.0), (£.0), (f.1) and repeating

arguments from the proof of Proposition 5.5.1, we obtain

o0 .
)n_l is bounded; we can assume v% —

Hy (%) <1 and F(@%) = My > 0;

hence, as a contradiction we get o* is a solution of (P}).

Thus, for any k the sequence (v,’i)zo:l must be unbounded. We

assume
HvﬁHW — 00 asn — oo;

moreover, by setting vF = rfw! with |rk| = ||vF|w and ||wk||w = 1,
we can assume

wfléu_)k inW asn— oo.

Since | wk||w = 1, we have ||@*|w < 1, and then we can assume
o ~w inW ask— oo;

we get obviously ||o|lw < 1.

By definitions of v* and w! it is
1 - XG(wp) = |ri| P Hye(vy) < |ri| ™"
and then, by twice applying (g.0),
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From this we immediately obtain w # 0 and
Hy, (w) = [[@|lw — M G(w) < 0;
since in general Hy > 0 for A < A\, we have
H)y, (w) =0.
Then, by Lemma 5.2.3, for a suitable &y # 0 it is
W=k e. (5.18)

From F(vF) — M,r > 0 we obtain, by twice applying (f.0) asn — oo
and k — oo,
F(w) >0

and then by (5.18) we get
|k1|7F(€1) > 0

which contradicts (f.2). Hence for some ¢; > 0 the problem (P})
admits at least one (nonnegative) solution for Ay < A < A1 +€. O

5.6.2. Problem (P})

Now we choose F(v) as the fibering functional, and
F(v)=-1
as the fibering constraint; the nondegeneracy condition
(F'(v),v) #0 as F(v) = —1

can be proved the same way as for H) in the previous cases. By (5.13),]]
the functional E) takes the form

B = (5= 1) (-me)

we have to search for a conditionally critical point of E,\ satisfy-
ing (5.12), i.e. satisfying

H)\(v) < 0.
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Thus, solving problem (Pf) is a natural way to find such a critical
point.

First, we prove that problem (Pf) makes sense under hypothe-

sis (f.2).
LEMMA 5.6.4. Assume (f.2); then the set

W= {v € W:F(v) = —1}

1s nonempty, and my < 0 for any A > Aq.

Proof. By (f.2) it is Fi(e1) < 0; since F' is homogeneous, we can find
t1 such that
F(tlel) =-1

and then W~ is nonempty. We have also (see Lemma 5.2.3)
H)\(tlel) = |t1|p()\1 — )\)G(el) <0
for any A > Aq: then the infimum of Hy in W™ is negative. O

PROPOSITION 5.6.5. Assume (g.0), (f.0), (f.1) and (f.2). Then
there exists ea > 0 such that for A1 < A < A1 + €2 the problem (Pf)
admits a nonnegative solution.

Proof. Assume by contradiction that there is a sequence € — 0T
such that for any A*¥ := A\; + ¢ the problem (P3,) has no (nonnega-
tive) solution. For any k € N, let (vfl)zo:l be a minimizing sequence
of (Pfk), ie.

F(vF)=—-1 and Hy(v}) = myu <0asn— oco.

If (Uﬁ)zo:l is bounded we obtain a solution #* of problem (Pl\zk),
similarly as in the proof of Proposition 5.6.3; thus, for any k the
sequence (v,’i)zo:l must be unbounded. We set v¢ = rfwk with
|rk| — oo and ||wk|w = 1; as in the proof of Proposition 5.6.3
we can assume

wﬁéwk inW asn— oo
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and

@w* ~ @ inW ask— oo;

we get obviously ||w|lw < 1.

By definitions of v* and w! it is
Ik P (1 - AkG(wg)) = Hyu(vF) = my <0
and then, by twice applying (g.0),
1—MG(w) <0;

as in the proof of Proposition 5.6.3, by Lemma 5.2.3 we get, for a
suitable k1 # 0:

w=ky €. (5.19)

Since
F(wp) = [rh| 77 F(vg) = —|rk| 77,

as n — oo and k — oo we obtain, by twice applying (£.0),
F(w)=0
and then by (5.19) we get
k1|7 F(e1) = 0,

which contradicts (f.2). Hence for some €2 > 0 the problem (P})
admits at least one (nonnegative) solution for Ay < A < A1 + €. O

5.6.3. Proof of Theorem 5.6.1

Set € = min{ey, €2} and consider A\; < A < A; + €. By applying
the fibering method we obtain weak solutions of (5.2) under con-
dition (5.3), as in the previous sections. Namely, let ¢1,¢2 > 0 be
determined by (5.11) for v = vy, v9; then

Ul 2:t1-’l)1 y u9 ::tz-’vz
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are nonnegative weak solutions for the problem under consideration.
Clearly, we have

H)\(ul) = tll)H)\(vl) = trlj >0

and
H/\(’U,Q) = t‘gH)\(’vz) = tgm)\ S 0;

therefore, u; and wuy are distinct solutions. Other properties of u,

us (such as positivity, L*°-boundedness and Cllo’f—regularity) can be

derived the same way as in the proofs of the previous theorems.[]



Lecture 6

Positive solutions for
Neumann problems

In this lecture we consider the application of the fibering method
to a problem with Neumann boundary conditions. Here we follow
the paper by A. Tesei and S. Pohozaev [23], where this problem is
considered in a more general setting. Nevertheless, results stated in
this lecture generalize some results from [5]. We begin with the case
of a linear differential operator.

6.1. The semilinear case

Let © be a bounded domain in RY; we consider the BVP

1
8_u =0 ondf (6.1)

{ Au+ (V,Vu) + a(z)|ufP 2u=0, u>0, inf
Ov

with 2 < p < 2* and ¢ € C'(Q), under the following assumptions:
(A1)  a € L*®(Q);

(A2)  a'(x) := max{a(z),0} is not identically zero;

(A3) /Qa(x)p(m)dx < 0, with p(z) := e¥(@).
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THEOREM 6.1.1. Assume (A1)-(A3) and 2 < p < 2*. Then there
exists a nonnegative (nontrivial) solution of (6.1).

The proof is divided into some steps.

6.1.1. Step 1
We consider the functional E defined by

P(w) = 5 [ [Vu(@)Pota)da + - [ a@)lu(e)p(o) do.

Thanks to (A1) and 2 < p < 2*, this functional is well-posed on the
Sobolev space W := W} (Q), defined by

1/2
w=wh@), Julw = ([ Vo)
Moreover, we have
E'(u) = 0 & u satisfies (6.1).

Indeed,
(E'(u),v) = —/Vqup+/a|u|p2uvp:
Q Q
= —/ v%p+/vdiv(pVU)+/a|u|p2uvp:
aa Ov Q Q
= / (Auvp + v(Vu, Vp) + alulP~2uvp) =
Q
= / (Au + (Vu, V) + aluP~2u) po.
Q
Following the fibering method we set

u(z) =tv(z), teR\{0}, veW

and take the norm-type fibering functional

mw:M%ZAWWm
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accordingly, under the fibering constraint
H(v)=1

the Euler functional E(u) reduces to
- 1, 1
E(t,v) = —=t* 4+ =|t|PE1(v) (6.2)
2 p
with
Ei(v) := / a(z)|v(z)P p(z) de. (6.3)
Q

From the bifurcation equation E! = 0, i.e.
—t + [t 2%t By (v) = 0,

we obtain for t # 0:

1

t)l = [B1(0)] 77 (6.4)

thus, we define the functional E as

Bv) = B(t(v),v) = (% _ %) EX0) G (6.5)

6.1.2. Step 2

Now we search for an extremal point of Fq, i.e. of E, under the
fibering constraint H(v) = 1.

LEMMA 6.1.2. Let

My := sup {El(v)|v eW, Hv) = 1} . (6.6)
veW |

Then 0 < My < oo, and any mazimizing sequence of (6.6) is bounded
m W.
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Proof. From (A2) and (6.3) it follows immediately that My > 0.
Thus, we have only to prove the boundedness of an arbitrary max-
imizing sequence (v, ), because from this we obtain also My < oo.
Let

H(vy) =1, Ei(vy) — My

and put
on(@) =: Co + Tn(x)  with / Bnp = 0 (6.7)
Q

where C, are constants. Then Vv, = Vu,, and by virtue of the
Sobolev imbedding theorem (the Poincaré inequality) we have

|E1(vp)| < M < o0 (6.8)

thanks to (6.7); here M doesn’t depend on v,. Suppose by contra-
diction that ||vy,|lw — oco. By (6.7) and (6.8) this implies

Cp — 0 (6.9)

further, we have

p

On(2) p(z) dz.

Cn

Ei(vp) = E1(Cr + 9p) = |C’n|p/ a(z) |1+

Q

Then by (6.8), (6.9), (6.4) and (A3) we get

Un ()

1
+Cn

p
Col PEr(un) = [ ala) pla)dz = [ al)p(e)dz <.

which contradicts the fact that My > 0. Hence, (v,) is bounded in
w. O

LEMMA 6.1.3. There exists in W a mazimizer © > 0 of (6.6).

Proof. By 2 < p < 2* and (A1) we can use the Kondrashev imbed-

ding theorem
W= W;(Q) cc ,LP(Q)

mez/M%-

where
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Thus, by Lemma 6.1.2 we can take a maximizing sequence that weak-
ly converges to a v in W, so that

Ei(v) =My, H(v)=|ollfy <1;

we need to prove that, actually, H (%) = 1. First, notice that H(7) =
|5]|%, # 0, because otherwise it would be #(z) = C, and then by (A3)

0 < My = Ey(3) = |C_’|p/9a(x)p(x) dz < 0.

Second, suppose 0 < H(9) < 1; hence, for a suitable k£ > 1:
H(kv) = |k]*H(9) =1

and
E1(kv) = |k|PE1(0) = |k[PMy > My,

which is in contradiction with (6.6). Finally, from the general prop-
erties of the Sobolev space W, we have |t| € W; we have also

H(o))=H®@) =1 and B (|5]) = E1(5) = Mo,

therefore it is not restrictive to consider v > 0. O

6.1.3. Step 3
Let © > 0 be the maximizer of (6.6) found in Lemma 6.1.3, and set
i(z) :=t-9v(x)

with ¢ = ¢(7) > 0 defined by (6.4), i.e.

1

£=+[E1(5)]_ﬁ.

By applying the fibering method it follows that @ is a nonnegative
solution of the BVP (6.1). Clearly, 4 # 0 because ¥ # 0 and E1(7) =
My > 0. The proof of Theorem 6.1.1 is complete. U
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6.1.4. The case 1 <p < 2

Here we consider again the BVP (6.1), but with 1 < p < 2. In this
case we have the same representation (6.2) for the Euler functional
E(u). Let us consider for a fixed v the behaviour of E with respect
tot > 0. If By(v) < 0, then E is decreasing in ¢, anyhow. If
E;(v) <0, then E is eventually increasing or eventually decreasing
intfor2<p<2*orl<p<2, respectively.

We get the following result.

THEOREM 6.1.4. Assume (A1)-(A3) and 1 < p < 2. Then there
exists a nonnegative (nontrivial) solution of (6.1).

Proof. The proof is completely coincident with that of Theorem 6.1.1.]
O

6.2. The case of the p-Laplacian

In this section we generalize the previous results to the existence of
positive solutions for the BVP

ou (6.10)

Apu + (Vi V)| VulP~2 + a(z)|[u/T?u =0 in Q
0 ondfl.

% =
Here Ayu := div (|Vu[P™2Vu) with p > 1, and ¢ € C'(Q). As
before, we consider this problem under assumptions (A1)—(A3):

(A1)  a € L®(Q);

(A2) a™(z) is not identically zero;
(A3) / a(z)p(z) dz < 0, where p(z) := ¥,
Q

Concerning ¢ we suppose

Np

fo <N
1<q<p*, q#p, p*Z{N‘p np

6.11
400 forp> N ( )

(notice that the role of ¢ was played by p in the previous section).
We have then the following result.
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THEOREM 6.2.1. Let the assumptions (A1)—(A3) and (6.11) be sat-
isfied. Then the BVP (6.10) admits a nonnegative (nontrivial) solu-
tion

u € WHQ) N LO(Q) N Cpd(9).

The proof is divided into some steps.

6.2.1. Step 1

Similarly as in the previous section,

1 1
E(u) := —E/Q|Vu|pp+a/g;a|u|qp

is the Euler functional associated with (6.10). From our assumptions
it follows that E(u) is well-defined on the Sobolev space

) 1/p
W:Jnmm|mm=(éwwa -

Following the fibering method we set u(z) =t - v(x) with ¢ # 0 and
v € W. Under the (spherical) fibering constraint

/ |VulPp=1 (6.12)
the functional E reduces to
= tP e
E(t,’l)) = —7 + TEl(’U) (613)

where
Bi0) = [ a@)o(a)itp(z) de.
From the bifurcation equation
—[t|P2%t + |t|9 %t E1(v) = 0
we find for ¢t #£ 0

1

t)| = B ()] (6.14)

with the necessary condition E1(v) > 0. Now, by substituting (6.14)
n (6.13) we obtain

Blv) = (1 _ 1) [El(v)rﬁ. (6.15)

q p
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6.2.2. Step 2

Now we search for an extremal point of Fy, i.e. of E, under the
fibering constraint H(v) = 1.

LEMMA 6.2.2. The variational problem

M = SSVII)/ {El(v)IH(v) < 1} (6.16)

admits a nonnegative mazimizer v € W with H(v) = 1 and E1(?) =
M, > 0.

Proof. The proof follows exactly the same lines as that of Lem-
ma 6.1.2 together with the proof of Lemma 6.1.3. U

6.2.3. Step 3

By virtue of the fibering method we derive that u(z) = - 9(x), with

1

=t(0) = +[Ev(@)]

(see equality (6.14)), is a nonnegative solution of (6.10). Clearly, @ is
nontrivial since o # 0. By the bootstrap argument (used e.g. in [9])
we can prove that u € L*°(); then from the result of Tolksdorf [24]
it follows that u € Cllo’f(ﬂ) Theorem 6.2.1 is proved. O



Conclusion

So, we showed applications of the fibering method to:
1. the existence problem;
2. the existence of multiple solutions;
3. the existence of infinitely many solutions;
4. the problem of non-existence of solutions.

The above mentioned results have been obtained by using the one-
parametric fibering method. If we consider the imbedding of the
original space X into X := RF x X we get the k-parametric fibering
method. As an application of the 2-parametric fibering method, we
consider the following nonlinear problem.

The authors of [7] considered a quasilinear elliptic problem
with a resonance, that is, a linear problem with spectral value of
the parameter and with a nonlinear perturbation “small” at infinity.
We consider the problem when the perturbation is superlinear and
anticoercive. It is natural to base the investigation of such problems
no longer on a one-parametric fibration, but on a multiparametric
one; the simplest variant of a two-parametric fibration is used in the
following problem. Let € be a bounded region in RV, N < 3, with

locally Lipschitz boundary 9Q. We consider in Vc[)/'%(ﬂ) the boundary
value problem

3_ .
{Au+)\1u+u =0 inQ (6.17)

u=20 on 0f)
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where Aj is the first eigenvalue of —A under Dirichlet boundary

conditions, with eigenfunction e; €W 1(€2) such that

/ |V€1|2 = )\1 .
Q

We represent u = te; +sv, where (e;,v) =0and t,s € R s > 0; then
from the Euler functional f associated to problem (6.17) we obtain
the functional f defined by

2
f(t,s,0) := f(ter+sv) = % </Q |Vo|? — )\1/521)2) —% /Q(tel+sv)4.

By the minimax realization of the fibering method, the corresponding
functional f takes the form

YR . ‘
f(w) siﬁli’éu@f( ;8,0);

for v # 0 and (e1,v) = 0, we have that f belongs to the class C2.

The fibering constraint is

H(v)=—1 with H(v):= fi(t(v), s(v),v), (6.18)
where ¢t(v) and s(v) > 0 are uniquely determined by the relation

f(t(v), s(v),v) = f(v)
with respect to v # 0. We apply the Lyusternik-Shnirel’'man theory
to the even functional f, considered on the manifold (6.18). Then
we get that the boundary value problem (6.17) has a countable set
of nontrivial solutions.

REMARK 6.2.3: The application of the fibering method to systems
of nonlinear ordinary differential equations can be find in [20]. Some
other applications can be found in [4] and [17].
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