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Willmore Canal Surfaces
in Euclidean Space

EMILIO MUSSO AND LORENZO NicoLopr )

SUMMARY. - We study envelopes of 1-parameter families of spheres
(including planes) in Euclidean space which are critical points
of the Willmore functional (Willmore canal surfaces). We prove
that Willmore canal surfaces are isothermic surfaces and hence
conformally equivalent to surfaces of revolution, cones or cylin-
ders. We provide explicit formulae for all solution surfaces. In
the generic case the formulae involve Weierstrass’s elliptic func-
tions. There are two exceptional cases which can be integrated
by using elementary functions only, namely the catenoid and the
stereographic projection of the minimal Clifford torus in S3. To
obtain the solution surfaces we explicitly integrate the linear dif-
ferential system defining the Willmore canal surfaces.

1. Introduction

An immersed surface f : S — E? is a Willmore surface if it is a
critical point of the functional [ (H? — K)dA on immersed surfaces,
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where H and K are the mean and Gaussian curvatures of the immer-
sion, and dA is the induced area element. This is the case precisely
when f satisfies the corresponding Euler-Lagrange equation given by
the fourth-order, nonlinear, elliptic PDE

AH +2(H? - K)H = 0. (E-L)

It is well-known that the the Mobius group G of conformal transfor-
mations is a symmetry group for (E-L) [2, 4, 13].

In this paper we provide explicit formulae in terms of elliptic
functions for all Willmore surfaces with no umbilical points which
are obtained as envelopes of a 1-parameter family of spheres, the
Willmore canal surfaces. Examples include rotational Willmore sur-
faces.

This work has its origins in the observation of Bryant-Griffiths
[5] that the profiles of rotational Willmore surfaces can be considered
as solutions of a completely integrable Hamiltonian system. Their
observation is based on the remarkable fact, first discovered in [5],
that rotational Willmore surfaces can be obtained by revolving free
elastic curves in the hyperbolic half plane H? C R? around its ideal
boundary. Free elastic curves in H? are critical points of the total
square curvature functional o — [k2dt on smooth curves o for
compactly supported variations. See also the work of Langer and
Singer [9], and Pinkall [12].

The key fact to carry out the integration process is that Willmore
canal surfaces are isothermic (Theorem 4.1). This in turn implies
that they are MGbius equivalent to surfaces of revolution, cones or
cylinders by a classical result of Darboux [7, 14] ! Accordingly, the
result of Bryant—Griffiths on Willmore surfaces of revolution has a
natural generalization to Willmore canal surfaces, which can be de-
scribed in terms of elastic curves in two-dimensional space forms.
To our knowledge, this was essentially known to Pinkall (see also
Section 4).

The approach to the integration problem presented in the paper is
direct and makes use of the method of moving frames as developed by

!We have been informed that this result was also indicated by K. Voss in a
conference at Oberwolfach [15].
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R. Bryant in [4]. Using the conformal invariance and the additional
geometric constraint, we are reduced to solving a system of ODE’s.

The paper is organized as follows. In Section 2 we recall some ba-
sic facts about Mobius geometry ([2, 4]). In Section 2 we develop the
method of moving frames for a canal surface in Euclidean space: we
construct adapted frames along the surface, introduce a set of differ-
ential invariants g¢i, g2, p1,p2,p3 (the invariant functions) and write
the structure equations of the surface. In Section 4 we characterize
Willmore canal surfaces in terms of the invariant functions and show
that the function py must necessarily vanish (Theorem 4.1), that
is they are isothermic surfaces ([11]). Willmore canal surfaces are
then interpreted as solutions of a completely integrable Pfaffian dif-
ferential system on G x R? and are divided into four types: positive,
negative, null and special type. In Section 5 Willmore canal surfaces
of positive type are parameterized (up to G-equivalence) by a con-
stant £ € R: when k > 0 we find surfaces of revolution, when k£ = 0
we obtain a cylinder with plane directrix curve and generating lines
orthogonal to the plane of the curve, when k < 0 we get a cone with
vertex in the origin and directrix curve on the sphere of radius v/2
centered at the origin. Explicit formulae for the profiles and the di-
rectrix curves are found in terms of elliptic functions (Theorem 5.1).
Willmore canal surfaces of negative type are dealt with in Section
6. Also in this case we find surfaces of revolution whose profiles are
explicitly described by elliptic functions (Theorem 6.1). In Section
7 Willmore canal surfaces of null type are proved to be equivalent
to a catenoid (Theorem 7.1), while Willmore canal surface of special
type are equivalent to the stereographic projection of the minimal
Clifford torus in $* (Theorem 7.2).

The basic reference on elliptic functions has been [10] and our
notations are consistent with this reference.

2. Preliminaries

Let RS have coordinates X°,..., X*, and give R® the scalar product

of signature (4,1)

(X,Y) = —(XY*+ XY + X'y + X?Y? + X33 = g1y XY,
(1)
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The Mobius Group G is defined to be the identity component of the
semi-orthogonal group of (1). It consists of elements A = (A7) €
GL(5;R) such that detA = 1; (AX,AX) = (X,X); A+ 4% >
0, J=0,4.

Let L° denote R® endowed with the Lorentz metric (1). A Mébius
frame is a basis (Ay,...,As) of L’ such that

A Ay =gry, 0<I,J<4;, AS+A%>0 J=0,4 (2
J J

G acts simply transitively on the Mo6bius frames and, up to the
choice of a reference frame, the manifold of all such frames may be
identified with G. Let (eg,...,es4) be the standard basis of R®, and
for any A € G let Ay = Aey denote the J-th column vector of A.
Regarding the A;’s as R-valued functions on G, there exist unique
1-forms {w}}o<r,7<4, such that

dA; =wiA;, 0<I<4, (3)

where w§ are the components of the Maurer-Cartan form w = A~ 'dA
of G. Differentiating (2) and (3), we get the structure equations for
the frame manifold

wi gk +wigkr =0, (4)
do’ = —l AWK, 0<TI,T<4 (5)

The Mobius space is the 3-quadric in the 4-dimensional real
projective space RP* defined by the homogeneous equation

—2X0x* + (X1)? + (X2 4+ (X3 =0. (6)
It is diffeomorphic to the 3-sphere S3 C R* under the mapping

11—yt 1+y?
t, 1 4 3 t Yy 1,2 .3 Y 4

: Yt €5 — ) ) ) I~ € RP )
¢:"(y y) ( N A A )

where [X] denotes the point represented by the non-zero vector X €
L°. The south pole ?(0,0,0,—1) of S in R* is identified with the
origin Py = [eg] of S® in RP*, and the north pole £(0,0,0,1) is
identified with the point at infinity Py, = [e4). The Mdbius group
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acts transitively on $3 by B - [X] = [BX], for all B € G,[X] € S3.
The isotropy subgroup of G at the origin is

r~b tpA rt%p
Go=<B(r;4p)=1| 0 A ™™ :r>0,4A€80(3),peR
0 0 r
(7)

and the mapping 7gs : B € G — [By] € S% makes G into a Go-
principal fibration over $3.

In our study we will compare surface theory in Euclidean space E3
with the conformally invariant surface theory based on the Mobius
group. The transition from Euclidean geometry to Mobius geometry
is realized by the faithful representation

1 0 0

pi(Ap)—|p A 0|, p=tpp°p*) B, AecS0(@),
otha 1
-ty

(8)

of the group of Euclidean motions E(3) = SO(3) x R? into G.
The space of oriented 2-spheres (excluding point spheres) and
oriented planes in E? is naturally identified with the Lorentz 4-sphere

Q={Xel’: 2X°X"+ (X" + (X?)?+(X*)?=1} (9)

in Minkowski 5-space L%; coordinates in ? are essentially Darboux’s
pentaspherical coordinates for such spheres [7]. Let o(p,r) denote
the oriented sphere in E?* with center p = (p',p?, p3) and signed
radius r € R;r # 0, and 7(n,py) denote the oriented plane through
po orthogonal to n = (n',n? n3) € §? C E3. Then the space of
oriented spheres Y is identified with the open and dense subset
Qo ={Xe€Q:X"#0} by

1 pp —1?
O'(p,T') = K (_ap_,p_ap_a 5. |

and the space of oriented planes 11 with the 3-dimensional hypersur-
face Q1 = {XE Q:X0:0} by

Tr(n’po) H t(()’ n17n27n3’h)'
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Conversely, the polar hyperplane to any X € Q intersects S° in
a surface §(X), whose stereographic projection yields an oriented
sphere associated with X or, if Py, € §(X), a plane associated with
X. The relative positions of S1,53 in ¥ = ¥y UII are read from the
corresponding vectors X1, Xy € Q as follows:

1. If 0 < [{X4,X2)| < 1, S7 and S5 intersect along a circle (pos-
sibly a line), and (X7, Xs) = 0 if and only if S; and So are
orthogonal each other.

2. |(X1,X3)| = 1 if and only if S; and S are tangent. When
(X1, X9) = 1, the orientations agree and Si,S> are said to be
in oriented contact. When (X1, X9) = —1, the orientations are
opposite.

3. [(X1,X2)| > 1if and only if S; and S, are disjoint.

REMARK 2.1. B = (By,...,B4) € G. Then, the unit space-like vec-
tors B, By, By represent oriented spheres/planes Sj, j =1,2,3. S;
and Sj, i # j, do intersect orthogonally. The points [By] € S® and
[By] € S? are the intersection points of S;.

The Mobius group acts transitively on Q by B - X = BX. If we
take eg as an origin for Q, the isotropy subgroup of G at e3 is

G={BeG:B{=0, J#3, Bi=1},

and the mapping 7o : B € G — B3 € Q makes G — G’/GY into a
G-principal fibration. Note that, with the due identifications, Q is
the symmetric space O(4,1)/0(3,1) (de Sitter space-time).

3. Conformal Geometry of Canal Surfaces

Let S be a connected surface and let f : S — E* C S3 be a smooth
immersion (not necessarily one-to-one). A local Mébius frame along
(S, f) is defined to be a smooth map B : U4 C S — G defined on an
open subset U of S such that f(z) = [Bo(z)], for each z € U. That
is, a Mobius frame is a local cross section of the induced principal
Go-bundle f*(G) — S.
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For any Mobius frame field B : Y C S — G along f we let
B = B~'dB = B*(w). Any other Mébius frame field B on U is given
by B = BX(r; A;p), where X = X(r; A;p) : U — Gy is a smooth
map, and B = X~ 18X + X ~1dX.

DEFINITION 3.1. In the classical surface theory, a sphere congru-
ence is a smooth mapping I' : S — Q, where S is a 2-dimensional
manifold. Let f : S — E? be an immersed surface of B3 and let
I': S — Q be a sphere congruence on S. (S, f) is said to be an
envelope of I if the sphere/plane represented by I'(x) and the affine
tangent plane w(z, f) = f(z)+df (T,,S) to the surface are in oriented
contact at f(x), for each x € S. A connected, orientable, immersed
surface f : S — E> is said to be a canal surface if it is enveloped by
a rank 1 mapping T' : S —

mathcall, i.e., if it is enveloped by a 1-parameter family of oriented
spheres/planes in E2. T is said Euclidean if ['(z) represents a proper
sphere in E3, for each x € S.

REMARK 3.2. The rank 1 assumption is equivalent to the surface
being umbilic free (cf. Proposition 3.4).

From now on, (S, f) will denote a canal surface enveloped by T
Let us assume the existence of a global Darbouz orthonormal framing
along f: S — B3, ie., a lift of f to E(3)

e=(f;e1,eze3): S — E(3),

where (e1(z),e2(x)) is a basis for df;(7;S), and e3(z) is the unit
normal vector at f(z), for each z € S. Let (6',0%) be the dual
coframe relative to (e1,ez). We have

df = 0'e; + 0%ey, dey = B2ey + Oles,

10
d62 = —0%61 + 9363, d63 = —9:1)’61 — 9%62, ( )

where 0% = ab! + b92, 0? = h1191 + h1292, 0% = h1291 + h2202, and
a, b, h11, h1a, hoy are smooth functions. Note that it is not restrictive
to work with Darboux frames e which are adapted to I, i.e., such
that e; lies in the vertical distribution Vr C T'(S) determined by T'.

According to the faithful representation p of E(3) = SO(3) x R3
into G defined in §1, the adapted Darboux framing e gives rise to
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a Mobius frame field A(f;e1,e2,e3) = (Ao, A1, Az, A3, As) along f,

where

e Ao(z) = Y1, f(z), 3]l (z)||?) is the positive null-vector repre-
senting f(z) in S3,

e A;j(z),i = 1,2,3, represent the oriented planes through f(z)
orthogonal to e;,

e A,(z) is the constant vector ey,

for each z € S. In particular, A3(z) represents the affine tangent
plane at f(z) oriented by the unit normal e3.

LEMMA 3.3. Let (S, f) be a canal surface in B*. Then any adapted
Darbouz frame e along (S, f) is principal, i.e., hio vanishes identi-
cally on S.

Proof. Since the property is local, we may assume that ' is Eu-
clidean. Let e be an adapted Darboux frame and let C(z;e) and
r(x; e) denote the center and the signed radius of the oriented sphere
corresponding to I'(z;e), respectively. We then have

dUAG2 =0, dCAO*>=0, drA6*>=0. (11)

The condition that I'(z;e) is in oriented contact with As(z;e) at
f(z) yields

C=f+res. (12)

Differentiating (12) and using (11), we find (df + rde3) A 62 = 0.
Then, by (10),

(1 — Thn)el — ‘rh1262 = 0, (13)
which implies hio = 0. O

According to Lemma 3.3, hi; and hgo are the principal curva-
tures, H = %(hn + hg2) is the mean curvature and K = hyihoy is
the Gaussian curvature.

We are now in a position to prove
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PROPOSITION 3.4. Let (S, f) be a canal surface in E>. Then (S, f)
has no umbilics.

Proof. As above, I' may be assumed to be Euclidean. Let e be an
adapted Darboux frame along (S, f). By (13), » = (h11) ™! and then,
for each ¢ € S,

[(z;e) = h11(z)Ao(z) + As(x). (14)
Codazzi’s equations imply

dhll = (hll — h22)[(u - b)01 + (1,92],

dhaa = (h11 — h22)[b01 + (v — Cl)@z]_ (15)

where u, v are functions on S defined by dH = 1 (h11—ha) (uf' +v6?).
Moreover,

dAg = 0'A; + 024y, dA; = 0?Ay + h110 A3 + 01 Ay
dAy = —G%Al + h2292A3 + 92A4, (16)
dAs = —h110'A; — hoe6? As.

Thus, exterior differentiation of (14) yields
dT = (h11 — hgo) (bAg + A2)6%. (17)
Since T is rank-one, h1; — hoo Z 0 on S. O

On S, we shall consider the orientation compatible with the
choice hi1 — hoo > 0.

Following the construction in [4], since (S, f) is umbilic-free, we
may adapt A = A(f;e1,ea,e3) further to a Mdbius frame B =
(Bo,- .., By4), where

1
By = §(h11 — ha2)Ag, Bi = A1 — 2ud,
By = Ay + 2vAy, B3 = A3+ HAy,

2 1
Bj=—">"— {e4 + [—H2 +u? —I—'02:| Ay — uAi + vAs +HA3}.
hi1 — hoo 2
(18)
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The associated Maurer-Cartan form 8 = B~'dB will be

—2q25 + 20185 p1By + P25 —p2B5 +p3f; O 0
B85 0 —qB§ — @B —B5  p1B§+ p2f
i @18 + @20 0 B8 —p2Bs+ 3y
0 B —% 0 0
0 Bs 67 0 2965 — 2915
(19)
where
11 1 2 1 2
By = 5(7111 — ho2)0", By = §(h11 — hg2)0 (20)

and p1, p2, P3, q1, g2 are real-valued smooth functions®. We call
D1, P2, P3, q1, g2 the invariant functions and (8}, 32) the normal
coframing of the immersion (with respect to the given normal frame
field B). From the structure equations (5) we compute

dBs = —q105 A Be,  dBs = —aq28 A B3, (21)

dgy A By +dga A5 = (1+p1 +ps+a1” + ¢2°) By A B,
dga A By — dq1 A B3 = —pafg A Bs s

dp1 A Bj + dpa A B3 = [Agop2 + a1 (3p1 + p3)1B5 A B3
dpa A By — dps A B§ = [4q1p2 — q2(p1 + 3ps)]B5 A -

(21, 22) will be referred to as the structure equations of the immer-
sion.

(22)

REMARK 3.5. B3 : S — Q is the central congruence, also known as
the Gauss conformal map, while f : z € S — [By(z)] € S is the
conformal transform of f : S — S2 ([2],[4]). In terms of the normal
frame (18), the sphere congruence I' : S — Q, T' = h11 Ay + Az of
(S, f) is given by T' = By + Bs.

2 A Mbbius frame whose Maurer-Cartan form is normalized as in (19) is called
a normal frame field [4]. Actually, the totality of normal frame fields forms
a Zo-principal bundle F(f,S) over S; if B = (Bo,...,Bs) is a normal frame,
any other normal frame takes the form (Bo, —Bi,—B2, B3, Bs). Two surfaces
(S, f) and (S', f') are said to be G-equivalent if there exists B € G such that
B f'(S') = f(S). Observe that, up to G-equivalence, any umbilic-free surface
admits a globally defined normal frame.
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PROPOSITION 3.6. Let (S, f) be a canal surface. Then the invariant
function gs vanishes identically.

Proof. By construction, dT" A 2 = 0. By (19) and (20), we then get
dl A B = (5 A 5) Bo = 0,
hence ¢ = 0. U

DEFINITION 3.7. (cf. [3]) Let (S, f) be a canal surface enveloped by
. We say that (S, f) is regular if I'(S) is the image of a curve
X:5— 0.

REMARK 3.8. Let I be an oriented 1-dimensional manifold and X :
I — Q a smooth immersion. Then X 1is a space-like curve if and
only if the tangent line Ty(X) of X at t € I is space-like as a line in
5. In this case, there exists a unique X : I — 12 such that X (t) is
a positive vector of Ty(X), (X (t),X(t)) =1, and (X(t), X (¢)) = 0.
Let Nx(t) = {X(t),X(t)}* C L and define the circle bundle px -
M(X) =1 by

MX)={t[Y)eIxS*: Y eNx®)}, px([Y]) =t
M(X) is canonically immersed in S* by
(t,[Y]) € M(X) = [Y] € S3.
It is easy to show the following.

LEMMA 3.9. Let (S, f) be a regular canal surface and let X : I — Q
be any smooth 1-dimensional parameterization of T'(S). Then, (I, X)
is a space-like curve and f(S) is contained in M(X) C S3.

4. Willmore Canal Surfaces

Let S < E? be a regular canal surface. According to the preceding
discussion, we may assume the existence of a smooth immersion (not
necessarily one-to-one) f : R2 — E3 such that S = f(R?) and of a
globally defined normal framing B : R? — G along (R?, f) such that
q2(z,y) = 0, for all (z,y) € R%. If, in addition, S is Willmore, then
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pi(z,y) — p3(z,y) = 0 ([4, 11]). The latter is the Euler-Lagrange
equation AH +2(H? — K)H = 0 expressed in terms of the invariant
functions.

The following is a key result in our discussion.

THEOREM 4.1. On a Willmore canal surface the invariant function
po vanishes identically. This amounts to saying that Willmore canal
surfaces are isothermic surfaces.

Proof. By (21)

dfy = —q1B5 A By,  dBs = 0. (23)
By (22),
dg1 = pafy — (1 +2p1 + ¢1°) 55 - (24)
By exterior differentiation of (24), we get
dpz A By — 2dp1 A B3 = qup2s A g (25)

From the 3rd and 4th of the equations (22) and (25) we obtain
dp1 = q1(p2By + p153) + X,
dpz = 5q1(p18 — p2i3) + X B,

where X : R? — R is a smooth function. Differentiation of (26)
yields

dX = —pa(3p1 + 6q1% + 1)B5 — (5p2? + 30g1%p1 — 10p1? + 111 X) 55
(27)

(26)

Differentiating (27) we obtain

pa(5pig + X)By A B = 0. (28)

If there is a point s on the surface such that ps(sg) # 0, then 5p1q1 +
X = 0 on an open neighbourhood U of sy. Exterior differentiation
of (28) and the use of (24) yield

5p2” B A By = 0,

a contradiction. Hence ps = 0. The vanishing of ps is equivalent to
the isothermic property [11, Proposition 1.3, p. 33] O
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REMARK 4.2. The vanishing of p2 is connected to the conformal de-
formation problem of surfaces. Actually, the vanishing of ps is a nec-
essary and sufficient condition to have conformal deformation [11].
The notion of conformal deformation of surfaces is related to the
general deformation theory of submanifolds in homogeneous spaces
[8].

It is a classical result of Darboux [7] that isothermic canal surfaces

are Mobius equivalent to surfaces of revolution, cones, or cylinders.
We then have:

COROLLARY 4.3. Willmore canal surfaces are Mobius equivalent to
surfaces of revolution, cones, or cylinders.

REMARK 4.4. According as S be a cone, a cylinder, or a surface
of revolution, let ag C S?, ag C R?, ag C H? denote the directriz
curves of the cone, the cylinder, or the profile of the surface of revolu-
tion, respectively. Then the Euler—Lagrange equation (E-L) implies
that ag is a free elastic curve in the corresponding 2-dimensional
space form.

DEFINITION 4.5. A local coordinate system (u,v) is said to be adapted
to the Willmore canal surface if

Bo = g(v)du, f§ = dv, (29)
where g : R — R" is a positive smooth function.
LEMMA 4.6. Adapted coordinate systems exist near any point of S.

Proof. Since ﬁg is a closed form, we may find for any sy € R? a
local coordinate system (z,v) = ® : Y — R? defined in an open
neighbourhood U of sy such that

By =Tdz, B2 = dv,

where T' : ®(U) — R is a positive smooth function. From dg} =
—q1 85 A dv we get q1 = %(log T). Since po vanishes identically we
then have dg; A dv = 0. This implies %(log T) = 0 and hence

T(z,v) = Wl ),

The new coordinate system (u,v) defined by du = e?(®)dz, v is an
adapted one. O
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REMARK 4.7. If ® = (u,v) : U — R? and ®' = (u/,v') : U — R? are
adapted local coordinates, then
1
g':;g, v =rut+a, v =v+b, (30)

for T a positive constant, and a,b arbitrary constants. Therefore,
using the simply connectedness of R? and (30), it follows that there
exist globally defined adapted coordinates ® = (u,v) : RZ2 — R2,

From the structure equations we get

q1dv = d(log g), (31)
dg1 = —(1 + 2p1 + q1%)dv, (32)
dp1 = —4p1qidv. (33)
This implies
p1=hg ", (34)
d’g 2h
il 20 35
Tz T+ 50 (35)
where h is a constant. Equation (35) yields
dg\* 5 2h
99) — 2k 36
( dv) g+ gtk (36)

where k is a constant of integration. If g is not constant, (36) yields

g’ = % (\/k2+8hcos(2v+’y)+k),

where +y is a constant. Choosing on R? coordinates (u,v + %7), we
may assume that

g = % (\/k2 + 8h cos (2v) + k) . (37)

The constant k& only depends on the surface and will be called the
reduced modulus of the surface. We may give a classification of Will-
more canal surfaces into four types:

positivetype : g non constant and h > 0
negativetype : g non constant and h < 0
nulltype : g non constant and h =0

specialtype : g constant
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With respect to adapted coordinates (u,v), the normal framing
B of a Willmore canal surface satisfies the following ODE system?

2 Zg Bo + Bz) dv,

dB() = gBldU + <——
gav

h d,
dBq = (—330 + —ng +gB3 + gB4> du,
g dv
d h
dBQ = ——gBld’U/ + (—430 — B?, + B4> dlua
dv g
dB3 = —gBldu + BQd’U, dBy = %Bldu + (—4
g g gdv

5. Willmore Canal Surfaces of Positive Type

Preparatory Material. Let S = f(R?) be a Willmore canal surface
1

of positive type. Replacing, if necessary, (u,v) with (h™4u,v), we

may assume that h = 1 so that

g (v) = % (\/ k2 + 8 cos (2v) +k) , keRr (39)

We put
1/1 k k 1/1 k
= — — 2 —_ — = — _ —— — 2 —
el 2<2\/k+ 6>>62 6>e3 2<2 k+8+6>
(40)
and consider the Weierstras’s elliptic function p(z) satisfying
dp\?
(%) =0 e)lo-eno—ca) (a)

3Let M = G x R? and let g1, p: be coordinates of RZ. On M we introduce

exterior differential 1-forms *, a =1,...,10 by
1 3 2 1 3 3 2 3 4 0
N =wo, N =wo —wi, n° =wo +ws, n = ws,
5_ 2 1 6_ 0 2 7T_ 0 1
N’ =wi —qwo, 1N = Wwo — 2qiwp, n = Wi — Ppiwo,

n® =wy —piwy, n° =dp1+4prqws, 1'° =dg + (14 2p1 +q1”)ws.

Notice that the exterior differential system ' =n> =--- =9 =0, wiAwd #0
is completely integrable and its solutions are of the form (B, q1,p1): S — M, B
normal framing of S.
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Observe that

+->e (42)

—
=iy

g(v)?

and that equality occurs if and only if g(y) = 0. Moreover, ﬁ + %

increases (decreases) monotonically when g(v) < 0 (g(v) > 0). Let

w1 denote the real half period of p(z). As ¢t € R increases from 0 to

w1, p(t) decreases monotonically from +oo to e1, and as t increases

from wy to 2w1, p(t) increases monotonically from e; to +oo.
Accordingly, we define s(v) : R — (0,2w1) by

(P|(0,w1))_1 <g(11,)2 + %) g(v) >0

s(v) = w1 g(v) =0 (43)
(p|(w1,zw1))_1 (ﬁg + %) g(v) < 0.

s is a continuous function which is smooth on {v € R: g(v) # 0}.
Moreover, a direct calculation shows that

ds V2

v g
Thus, s is a smooth function. Let now o(z) and {(z) be the sigma and
zeta functions associated to the elliptic function p(z). Fix zp such
that p(z9) = —% (note that we may choose zy = tow; + w3, where
to € (0,1] and ws is the imaginary half period) and let L : R — R be
given by

L(t) = —2ﬂ) (log H + 2t§(z0)> E#0

_ 1 o U(t—ZO) 2 .
20 = g0y (8 g +2600) k=0

The function L arises from a Weierstrass’s integral of the third kind
and satisfies

(44)

dt 2 3p(t) +k
dL(t) 1 -
dt  2p(t) o

aL(t) 3kl 1 k0
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We then define A\(v) : R — R by

A(v) = L(s(v)), (45)
and compute
2
A _ VU9
dv kg? + 2 (46)
@ __ 9 k=0
dv 2 -

Three cases may occur: £k >0, k=0, k£ <0.

THEOREM 5.1. Let S = f(R?) C E? be a Willmore canal surface of
positive type and reduced modulus k, and let s and L be the functions
defined by (43) and (44) respectively.

Case k > 0. S is equivalent to the surface of revolution f(u,v) =
(zt,22,23) € E® given by

eLls()]
6p[s(v)] + 2k

(VB v/2(66[s ()] — F) sin Vu,
—/2(6[s(v)] — &) cos \/Eu) .

Case k = 0. S is equivalent to the cylinder f(u,v) = ue; + B[s(v)]
with directriz curve = (0,2%,23) : (0,2w;) — E> given by

1
B(t) = (0, T’ —L(t)>,

and generating lines orthogonal to the plane z' = 0. Case k < 0. S
is equivalent to the cone f(u,v) = wy[s(v)] with vertex in the origin
and directriz curve y=(z',z%,23) : (0,2w1) — S*(V2) C E? defined
by

1

W) = ey (V=6F, —v/(126(2) + 48) cos L(2),

—V(12p(1) + 4k) sinL(t)) .
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Proof of Theorem 5.1. Case k > 0. Let

1 (B
m = ( 20 _9234) ; 2 = Bla
\/ﬁ g (47)
1 B() dg
= — | — B B B
73 \/E(g +d 2 tgb3+g 4)

From (34, 35), (36) it follows that (ng,m) = 0w, a,b = 1,2,3, and
by differentiating (47) and using (38), we find

dm =0, dnp= \/Engdu, dns = —\/Engdu. (48)

This shows that there exist constant vectors E, € L?, a = 1,2,3,
such that

(Ea, Ep) = dap,m = E1
etas = cos VkuEs + sin \/EUE,?,,’I]?, = —sin VkuEs + cos \/E’U,E,?,.

(49)
We now define
1 1 2 1dg
= =+ k) By +V2-—"By+
S k(2972 + k) {\/592 (92 ° gdv? (50)
2
g 2
+V2B3+ =~ (5 +k) Byy,
Ve (92 ) 4}
Co = 9 [p, ldig (51)
2T ik U gdv
Differentiating (50) and (51), we get, using (34, 35), (36) and
(38),
V2kg V2kg
d¢ = 3+ kg 5 5Gedv, d(y = 3+ kg T sCdv

From (46) it now follows that

1
(e_AE() + 6/\E4> , CQ = (6_>‘E0 — 6’\E4) , (52)

— 1 I
Cl—ﬁ 7%
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where Ey, E; are constant positive null vector in L% such that E =
(Eo,-..,E4) € G. Replacing, if necessary, f by E~!1f, we may as-
sume that E is the standard basis. By solving (47), (49), (50), (51)
and (52) for By, we then calculate

_ e ) \/ﬂ, 2sin \/Eu’ _ 2 cos Vku ’ (53)
9(v) 9(v)

which furnishes the required expression for f according to (43) and
(45).
Case kK = 0. We set

1 B
m=—= <_20_92-B4>a 772:-317
V2 \yg
(54)
_bBo

d
2 + 2B,y + gBs + gBu.
g dv

By (34, 35), (36) and (38), dn; = dnz = 0, dne = n3du, from which
we get

N3 =

m =FEy, n3=1E;, n2=FE +ukly, (55)

where E, € I’ and ||E1||? = ||E2||? = 1, |E4]|? = (E4, Ep) = 0,
a # b. We now set

2
g 1dg }

-9 !, -Yp,\. 56

“= { 2 gdv? (56)

Differentiating (56) and using (34, 35), (36) and (38), we have d(s =

5 Eadv and then by (46),

(o = —AE, + E3, (57)

where E3 € L%, | E3||? =1 and (E3, E,) =0, a # 3. We next put

1/1/1 2d 2
Clz—{— <—+\/_ gA) Bo—l-g—\/z_)\BQ‘l‘

212\g " ¢ dv
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Differentiation of (58) yields d¢; = (E1 + uE4)du and then
1
G =Eo+ub + §U2E4, (59)
where E, € ]LS, ||E0||2 = <E0,Ea> = 0 and <E(),Ea> = —1. Thus,

E = (Ey,...,E4) € G and, possibly replacing f by E~'f, we may
assume that F is the coordinate basis. By (54)—(59), we find

= 9) _ v) | = uil —L[s(v
f(u,v)—(u, 0L, X )) ( o L[()])-

Case k < 0. We put

1 (/B
m=—= <_20_92B4>7 772:B1a
V2 \g (60)
1 BO dg >
= —— + —=By+gBs+gB, ).
3 \/—_k (g dv 2 T gb3 T gby

From (34, 35), (36) we compute (ng,m) = dap, a,b =1,2,3, and by
differentiating (60), dn; = 0, dne = vV —knsdu, dns = V—knodu. It
follows that there exist constant vectors Ey, F; and E; € L° such
that

|E1||* = 1 = —(Eo, E4), |1 Eoll* = || E4l|* = 0,
_ R S S V=Fu
m = Fn, N2 = —E (6 Ey—e E4) ) (61)
_ Y R V=Fu
7]3—\/5(6 E()—l-e E4).
We now define
1 1 2
= +k)B —I—\f——B +
R T R {x/i 2 ( ) ° 2 (@)
2
g 2
+V2B3+ 2~ | S +k|Bsy,
TR (92 ) 4}
2
g ldg
=7 !B, —--2B\.
Co \/W{ 2" v 3} (63)
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Using (34, 35), (36) and (38), we get (n4,¢:) = 0, ((i,¢5) = dij,
and

V 9

A = =5 pCedv, b = V—2kg

Thus, from (46) we deduce

(1 =cos AEy +sin A\E3, (3 = —sin A\Es + cos AE3, (65)

where E = (Ey,...,E;) € G. Replacing, if necessary, f by E71f,
we may assume that E is the standard basis. By (60)—(64) and (65)
we find that

flu,v) = eV ku (\/—_kg, —gv297? + kcos A\(v)

—gVv/297? + ksin )\('u)) .

Introducing new adapted coordinates (Y% v) and using (43) and
(45), the proof is completed. O

6. Willmore Canal Surfaces of Negative Type

Preparatory Material. Let (u,v) be an adapted coordinate sys-
tem such that h = —1. In this case, the reduced modulus can be any
real number k > /8. Let

k 1/k 1/k 1
61=—>62=——(———\/k2 8)>e3=——<—+5 k2—8>

2\6

and let p(z) denote the Weierstrass’s elliptic function with roots
ea = P(wa), @ =1,2,3. Note that e; — ey < T < e1—es and that
the function

g(v

T(t) = (e — 62)80(75) —e3

o) e (66)

increases from e; — eg to e; — e3 as t increases from 0 to wq, while
decreases from e; — e3 to e; — eq as t increases from wj to 2w;. We
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now define s(v) : R — (0,2w1) to be the function

-1 1
S(U) _ (T‘(O,wl)) <g('0)i) we [0571'] (67)

-1
T 2w 2v € |m, 2m|.
(Ti(wr,201)) S [, 27]
We have that
dv g~

Let consider the function

_ VR(er ) [, olt—z0) Bl
L0 = =) {lga<t+zo)”<2“ o) ﬁ62+7>}’

(68)
where § = —2e1+e9, v = 3e1ea—eje3—eges, p(z0) = —% L(t) is the

elliptic integral of third kind [ £ p(t 62 ~2dt. We then set A(v) = L(s(v))
and compute

ax _ V2kg

dv ~ kg>—2

We are now in a position to prove

(69)

THEOREM 6.1. A Willmore canal surface S C E? of negative type is
equivalent to the surface of revolution obtained by rotating the curve
a:(0,2wr) = B3 given by

als(v)] = !

% — 2T[s(v)] cos L[s(v)] + vk
( 9% — 4TTs(v)] sin L[s(v)], 2/Ts(v) 0)

around the x'-azis. The functions T, s and L are defined by (66),
(67) and (68) respectively.

Proof. Let

1 B

n = —(—0+9234), 12 = By,
V2
1 B dg (70)

0
= (-2 By +gBs +gBu ).
13 \/IZ( e +de 2+9gb3+g 4)



WILLMORE CANAL SURFACES etc. 199

(34, 35) and (36) yield (ns,n5) = —0ap, a,b = 1,2,3. Differentiating
(70) and using (38),

dn =0, dny = VEknsdu, dnz = —Vknadu.

This shows that there exist constant vectors A,E», E3 € L, such
that

m = A7
Ny = cos VkuEs + sin VkuEs, (71)
n3 = —sin VkuEy 4 cos VkuEs,

where (A, E,) = 0, (E,, Ey) = 64, a,b = 2,3, and ||A||? = —1. We
then set

1 2
¢ = { ( +l~c)B +\f——B+
' k(—2g_2 + k) \/_g ° 2 (72)
g> (2
+V2B3— = (5 +k) By,
V2 (92 ) 4}
Co = 9 [p, ldig (73)
TV 2rkg U gdv?
Using (34, 35), (36) and (38), we get (1a,(p) = 0, {Ca, o) = dap, and
V2k \/_
A = Y odv, ey =~ (74)
kg? — 2
Thus, from (69) it follows that
(1 =cos AB +sin A\C, (3 =sinAB — cos \C, (75)

where B,C € 15, |B||> = ||C||?> = 1 and (B, C) = 0. Setting E; = C,
Ey = %(A—I—B), E, = %(A—B), we have E = (Ey,...,E,;) € G.
We then assume that F is the standard basis of R>. By (70)-(73)
and (75) we obtain

1
U, v) = :
flu,v) Vk—2g2cos A+ Vk
2 si 2
( ok — g sin ), sm\/Eu’_ cosx/lgu>’
g g

which implies the required result by (67). O
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7. Willmore Canal Surfaces of Null and Special Type

THEOREM 7.1. A Willmore canal surface of null type is equivalent
to the catenoid.

Proof. Let (u,v) be adapted coordinates suth that A = 0 and k£ = 1.
Setting q; = sinh 7, we have coshT = ¢~ !. We put

mo = (1+a@*Bo, m = B,
1
- By.

dg dg
= —By + gB3 + gBy, = —gBy + —Bs, = —
T2 U29394 3 gb2 37]41(11
(76)

d dv

By differentiating (76) and using (34, 35), (36) and (38), we obtain

dno = —dq1 Bz + 1+ qi?mdu, dp = duny, dnpy = —dum,

d
dns = Lm, N4 = By,
1+ Q12

(77)

where E; is a null vector in L5. This shows that there exist constant
vectors Ey, E, E3 € L%, such that

m = cosuF)] +sinuFy, 12 = —sinuF; + cosuksy,

N (78)
n3 = sinh™"(q1)F4 + E3,

where (E,, Ey) = g, a,b = 1,2,3. The third equation of (78)
implies

n3 = TE4 + E3. (79)
(76), (78) and (79) yield
sinh 7 1
= — —sinh7FE,. 80
2 cosh7'772 cosh7'773 ST (80)

By (77)—(80), we deduce that

dno = d(sin (u) cosh (7)) E; — d(cos (u) cosh (7)) Es + dTE3 mod Ey,
(81)
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and hence

no = Ey + sin (u) cosh (1) Ey — cos (u) cosh (7)Ey + 7E3  mod Ey,
(82)

where E = (Ey,...,E;) € G. Then, we assume that E is the stan-
dard basis of I’ and obtain

f(u,v) = (sin (u) cosh (1), — cos (u) cosh (1), 7).

Eventually we state

THEOREM 7.2. A Willmore canal surface of special type is equivalent
to the stereographic projection of the minimal Clifford torus in S°,
i.e.,

£ )_\/5 cos v2v cos V2u sin\/2u
ho= sinv2v 4+ v2 sinv2v + 2 sinvV2v +v2 |

Proof. Let (u,v) be an adapted coordinate system such that h = —%
and k£ = 2. We then have q; =0, p; = —% and g = 1. By (38),

d(BO + 234) =0, d(A() + B3) = 2Bsdw, d(Bo — B3) = 2B1du,
2

d
W(BO + B3) + 2(30 + B3) - B() + 2B4,
d2
W(BO - B3) + 2(B() - Bg) = B(] + 2B4.

It follows that

A

By+2By=A, By+ B3 =cosV2vB; +sinvV2vBs + oL
A

By — B3 = cos V2uCy + sin V2uCs + >

where A, B;, C; € L. Define E = (Ey,...,E;) € G by

—~

1 1
AZE(E0+E4), BIZEEI; By = Ey — Ey4,
1 1
Oy = By, Cp=——F;.
1 7 2 2 7 3
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Replacing, if necessary, f by E~1f, we may assume that E is the
standard basis of L°. We then compute By in terms of E and obtain
the required expression for f. O
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