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Quasi-invariant Measures on a Group
of Diffeomorphisms of an
Infinite-dimensional Real Manifold

and Induced Irreducible
Unitary Representations

S. V. LUDKOVSKY ¥

SUMMARY. - Quasi-invariant strongly differentiable measures on a
group of diffeomorphisms of an infinite-dimensional real Banach
manifold, relative to dense subgroups, are constructed. These
measures are used for the investigation of irreducible unitary rep-
resentations.

1. Introduction.

For a compact real Riemannian manifold M measures on a group
of diffeomorphisms of M were constructed, such that measures were
quasi-invariant relative to dense subgroups [38]. Such groups are not
locally compact, therefore, they can not possess non-zero measures
quasi-invariant relative to the entire groups [42].

On the other hand, the group G of diffeomorphisms appear nat-
urally in mathematical physics and in quantum mechanics [20, 31,
30]. In such theories a description of irreducible unitary representa-
tions and quasi-invariant measures on G is necessary. For a finite-
dimensional Riemannian manifold there is a natural measure on it
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known as the Riemannian volume element. In particular for the Eu-
clidean space R" it is simply the Lebesgue measure. But for an
infinte-dimensional real Banach space there is not any non-trivial
quasi-invariant measure realtive to shifts of the entire space X [15].
There are only measures quasi-invariant relative to the dense sub-
space Xg, Xg # X, X9 C X. These measures have not such unique
characteristic as the Riemannian volume element. Moreover, differ-
ent quasi-invariant measures on the Banach space X or on a mani-
fold M modelled on X may be non-equivalent or even orthogonal ([8]
Theorem I1.4.1, [3]). This is very important difference with the finite-
dimensional case, when all left-quasi-invariant measures on a locally
compact group are equivalent to the Haar measure ([4], Proposi-
tion VII.1.9.11). This circumstance is the reason for the existence
of vast families of inequivalent irreducible unitary representations on
a group of diffeomorphisms apart from the case of a locally com-
pact group. In [23] regular irreducible unitary representations of G’
for the one-dimensional manifold M associated with the Gaussian
quasi-invariant measures on G relative to the left action of the dense
subgroup G’ were constructed. But his proof was strongly related
with one-dimensionality of M.

In the previous paper of the author the group G := Dz'fféﬂ(M)
of diffeomorphisms of the infinite-dimensional real Banach EZ;-mani-
fold M was defined and investigated, where w > 3, § > v + 2 ([29]
§2.5, §2.8). In that article irreducible unitary representations associ-
ated with the quasi-invariant measures v on M relative to the action
of G were constructed. This article is devoted to the construction of
strongly differentiable Gaussian quasi-invariant measures p on G rel-
ative to the left action of a dense subgroup G’. Then such measures
are used for producing of irreducible unitary representations of G’. It
also is proved that on G there is not any non-trivial quasi-invariant
measure relative to both left L; and rigt R, actions of a dense sub-
group G’, as well as to the action of G’ by inner automorphisms «y,
where Ly (g) := hg, Ry(9) := gh, ay(g) := h™'gh, h € G', g € G.
This is another difference from the theory of quasi-invariant mea-
sures on locally compact groups. In particular results of this paper
encompass the case of the finite-dimensional Riemannian manifold
besides infinite-dimensional M.
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§2 contains some necessary specific isomorphisms of Banach spa-
ces assosiated with parameter-elliptic pseudodifferential operators.
This section is based on [1, 6, 17, 18, 16, 40, 41], therefore it is
given shortly. Quasi-invariant measures on the group G of diffeo-
morphisms are produced in §3. §4 is devoted to irreducible unitary
representations.

2. Some specific isomorphisms of Banach spaces.

NOTE 2.1. Let M be a complete connected Riemannian C°°-mani-
fold, which is Euclidean at infinity [6] and without a boundary. That
is, M \ Mg is a finite union of disjoint connected components €,
diffeomorphic with R™ \ B by diffeomorphisms ¢; : Q; — R® \
B, where B is a closed ball in R®, Mg = {2z € M : d(z,0) <
R}, 0 < R < o0, 0 is a fixed point in M, d(z,y) is a Riemannian
distance along a geodesic joining z and y € M, and OM = (. As
usually d(z,y) is induced by a Riemannian metric g on M, where
g: M — S9M is a section in the bundle o9 : SoM — M with values
g(p) € Pos T,M, that is, g(p) is the symmetric positive definite
bilinear form on T,M for each p € M (see §1.8 in [21]). We also
assume that M is with a finite atlas At(M) = {(U;, ¢i) : i = 1,...,k}
with charts (U;, ¢;), where U; are diffeomorphic to R®. Since My, is
compact, then ¢i°¢j_1 =: k and all their derivatives are bounded and
Cilz —y| < |k(z) — K(y)| < Colz —y| for each U; NU; # 0 and each
z,y € ¢;(U; NU;), where Cy and Cy are positive constants. Hence
this M Euclidean at infinity is also admissible by [18].

NOTE 2.2. For integer s > 0 and 8 € R let C5(TM) denotes a
completion of a space of sections f of a vector Riemannian tangent
bundle TM with f; == f o qﬁz_l € L(R™) for each U; relative to the
following norm

@) I fllesrary = Ti—osuprenlllo(@)* 1OV f ()], where
V is a covariant differential for M, n = dimgpM, n(B8) = 0 for
B >0 and n(B) =1 for B <0, o(z)? is a weight factor, o(z) =
(1 + |z|?)/2, |z| := d(z,0); L(M) is a Schwarz space of functions
on M with values in R™ (see L(M) in [35]). For t = s + q with
an integer s and 0 < q < 1 the weighted Holder space CE(TM) is
the linear space of sections f of the tangent bundle TM such that
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for each compact canonical closed subset V.C M, V = cl(Int V),
fIV € C! and are satisfied conditions (1,2):

() I ey erary = [ lleyeran +sup{[o(@)] 71|V £ ()

—7(z, ") V° f(2")||/[d(z,2")]? = d(z,2) < p(z), © € M} < o0,
(2) lim{||f|Mf{”C’é(T(M§)) : R— o0} =0,

where M§, = {z : © € M, d(z,0) > R}, p(z) denotes the in-
Jectivity mdzus of expy for the exponential mapping at z € M,
exp : TM — M, TM is a neighbourhood of the submanifold M
in TM = Uyen ToM, expy = explr,m, 0(Z) := min(o(z), o(z’))
and 7(z,x'") is the bitensor of parallel transport as in [6, 21].

Let CE(M, N) denote a space of Cf; mappings f : M — N to-
pogolized with the help of a metric

dt (f,9) Z ||fz,] gi,j”Cé(R",Rm)ﬂ

where f;; = qu ofo qﬁ._l and it is implied that f;; is defined on
¢;(U; 0 f-1(Uy)) if it is nonwoid and f; j is zero otherwise, (Uj, ¢;)
15 a finite atlas of N, dimpN = m, M and N are C*-manifolds
satisfying conditions of §2.1. Then Cg"(M, N) :=NZ, C}j(M, N) is
supplied with the topology given by a family of metrics {dlﬁ :l e N}

In view of the fundamental Theorem of Riemannian geometry
on M ezists the unique Levi-Civita connection w = wy for g. We
assume that g is of the same class of smoothness as M and while con-
sideration of the Holder space CE(TM) let g be satisfying condition
(i7):

(#) (g —e) € C5°(M, SaM), where e corresponds to the standard
scalar product in R™. Let also g be elliptic, that is, there exists ¢ > 0
such that

(131) ce(z)(&,€) < g(x)(&,&) for each & € TyM and x € M.

NOTE 2.3. Let M be a Riemannian locally compact C'°°-manifold
satisfying conditions of §2.1 and §2.2. Suppose P is the pseudodiffer-
ential operator corresponding to (1+A,), where A, is the Beltrami-
Laplace operator defined on Cg(TM ) for M with the Riemannian
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metric g. There are pseudodifferential operators P¢ and P!~ € such
that (P<P'=¢—P) ¢ OPSll’O by Theorems 11.3.8 and 11.4.4 [41]. Let
051*6’5(TM) be a Banach space equal to the completion of a space
CP(TM) withw € R, w =w' + 1+ €+ 6, relative to a norm

”f”C;lffaé(TM) = ”gHCi,(TM)

for each f with f;; :~]5(l+6+5)/2gi7j for each 4 and j, where g €
(T'M), oo >1>0, P corresponds to (1+ A.) for R* as P for M.

LEMMA 2.4. Let C;=¢%(TM) =: X;,, be given by Note 2.8 with
€1 + 01 = €2 + 02. Then Xy, s isomorphic with Xo .

Proof. If Q € OPSY, then Q : C(TM) — C(TM) for compact
M and Q : C5(TM) — C5(TM) for noncompact M is a continu-
ous linear operator due to Theorems XI.2.1 and XI1.2.2 in [41]. In
fact, P¢ is given by Theorem XII.1.3 [41] as the function of the
self-adjoint elliptic operator. For each pseudodifferential operator
P(t9)/2 corresponding to the elliptic operator (1 4+ A)(€+9)/2 there
exists a decomposition for §; < da:

P(61+52)/2 — P(61+(51)/2P((527(51)/2 (mod OP861+(5271)
[37]. At the same time

P CS(TR™) — CJL3(TR®)

is the isomorphism for v > 0, R\N > a >0, R\N 3> 3 > «
by Theorem XI.2.5 [41]. On the other hand, there exists a linear
topological isomorphism J; : CE(TM) — C’EJr((TM) given by the
following formula J; f(z) := o(z) ¢ f(z), where (/2 >t > 0. Using
charts (Uj, ¢;) and Note 2.3 we get the statement of this Lemma. [

NOTATION 2.5. In view of Lemma 2.4 we denote C;=%%(T M) sim-
ply by C;l’e(TM).

THEOREM 2.6. Let M be a C*°-manifold fulfilling conditions of §2.1
and §2.2. Suppose s € L, 0 < q< 1, t=s54+q, 1 >25>5>0,
leEN, €N, >0,2(6+j) >n,n=dimgrM and

Ay|CH(TM) = (A1 + Ay),
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where 0 < b € R, fll’b and Ag are pseudodifferential operators cor-
responding to the following restrictions

A1y |CHTM) 5 =< b>Y +AI|C(TM)s and

Aol CHTM) = e(a; p(1), ...p(n)) V2D .. w2,

0 <p(l)+..4+pn) =p <24 cz;p(1),....,p(n)) € C*(T*M) with
an order ord(Ag) < 2j and z =1 — 25 + p, where T*M denotes a
cotangent bundle for M, < b >:= (1 + b*)"/2. Then there are an
extension of a linear operator Ay and by with 0 < by € R such that

Ay : CH(TM) — Ci 3 (TM)

is am isomorphism for each b > by.

Proof. Let at first
A p|CHTM) 5 = (< b >2 +A,)|CHTM) 4

and Ab|CIlB(TM) = (A1 + Ap), where 0 < b € R. The correspond-
ing pseudodifferential operator A is uniformly parameter-elliptic by
Definition 1.3 in [17]. For weighted Sobolev and Hoélder spaces there
are inclusions H3 ,(T'M) D CE (TM) for > a+n/2,t' > s €N,
B R, >0 and HY /4 (TM) € CY(TM) for § € R and
0 <te€ R\ Z, where [t] is the integral part of ¢, [t] < ¢, HS ,(TM)

is defined as the completion of C’;+n/2+1(TM) relative to the norm

S

U1 g, crary)® =D (lo(@)*FEVEf ()] 2 (0),
£=0

where X is the Riemannian volume element on M [21, 43]. By The-
orem 1.7 [17] and [1] there exists b; > 0 such that

Ay : Hyb (TM) — H3 29 (TM)

is the isomorphism for each b > b; and any s € N, where Hiz (TR"™)
is the Sobolev weighted space with parameter b, which has the norm

||f||H§’Z(TRn) =< b >/ My [l g, (rr=) and
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(Myf)(z) == f(<b>"" ).

Then there are inclusions H;:,g—nﬂ(TM) C CF(TM) for each s >
m+n/2 and § > 0 (with the help of Formula (1.12) in [18]). There-
fore, the restriction Ab|Cg (TM) of A, is the invertible operator.
Hence there exists b; > 0 such that

(i) Ay : CE(TM) — Cf (T M)

is the isomorphism for each b > by, where t' = s’ +¢q, | > t' > 27,
0 < g < 1, since the proof in [6] may be easily generalized for each
t' > 2j using results of [1, 7].

Let a(*) be a symbol of A, and

a—ajag € Si];l’y(T*M),

where -
a € SPHHTM), a1 € ST (T M),

az € St T(TTM), max(vy,ve) <25 —1, 0< [t — 7| < 1/4
and 0 < t” < 25 — 1 (see Definition 2.1 and Theorems 2.7, 5.1 in

18)).

Now we consider charts and the function a(z,&,b) =< &,b >~
be R with 0 < a < n, where < £,b >:= (e(£, )+ < b >2)1/2 e(x, %)
is the standard scalar product in R™. Then the Fourier transform
F¢ in L*(TR™) by £ is defined,

(id) a(x, k,b) = Fe(a(z, €,b))(k) € L/ (=)

and for each b € R\ {0} it decreases exponentially by & € R™ (see
theorem IX.46 and exer. IX.50 in [35]). In view of Theorem XI.2.5
[41]:

(#9) |OP(< &b>Y)fll2 < C x| fllcarvy-

Therefore, from the Hoélder conditions and (i47) using principal sym-
bols of pseudodifferential operators we have:

(i) |OP(a)fI| < C" x || fllct(rany,

where C' > 0 is a constant (see also §V.4 [40]). Using Theorems
about compositions of pseudodiffererntial operators and convolutions
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of generalised functions and functions we have, that for each o € R
and u = f o ¢; ' € L(TR®) for each chart (U;, ¢;) functions OP(<
&,b >y are defined, where b # 0.

At first we can consider a dense subspace P(T'M) of CE (TM)
consisting of f with f o ¢;' € D(TR™), for example, for functions f
with supports supp(f) C U; and then their finite linear combinations,
where supp(f o ¢; ') are compact subsets, supp(f) := cl{z € M :
flx) #0}, f: M — TM, f(z) € T,M. It is possible due to
Condition (2) of Definition 2.2, since 5 > 0.

For p(&,b) = aq1(&,b)as(€,b) with symbols a; and a, independent
from z € R™, for each f,g € D(TR™) we have

[ [0P@) A)IOP@)g)v)dy =

= | [F @ F()])F (a2(F(9))](y)dy =

-
= | e nf©aEns)d = | [0P@a) o)y
Rn R

since the Fourier transforms F and F~' are unitary operators on L2,

where §(¢) = F(g)(€), (9)"(z) = [F'(9)](2), z,y.§£ € R™. There-
fore, for each f,g € C5°(TM):

(v) [ 10P(@as) i) dy) =

= | [0P@)fIwI0P@2)s)w)A(dy)

is the bilinear functional by f, g having the continuous extension on
CE’ (TM) ® Céj_t (TM) due to Theorem I1.4.4 [40], the Lebesgue-
Fubini Theorem and Lemma 2.4, since 2(3 + j) > n and

/ <z >720H0) \(dz) < .
M

Then we take into account pseudodifferential operators dependent
on z, using approximation of a(z,£,b) by linear combinations of
cj(z)d;(&,b) with ¢cj(z) € C'(M,R) and symbols d;(£,b) indepen-
dent from z. Consequently, Aﬂ := OP(ai(z,&, b)as(x,&,b)) with
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b > by and by defined by formula (i) has the extension onto C’f; (TM)
and

(vi) Ay : CH(TM) = C}j, 3 (T M) is continuous, since

|(Apf,g)] < C x ”f”cg’(TM)HQHCEJ'—V’ (TM)

where (x, %) denotes the scalar product on L?(M, \), C' = const > 0.
The operator Ay is injective and differs with Ay on compact operator.
There exists a continuous operator B, = (Ay|Cg° (TM)) ! on H :=
Ap(C5°(TM)) C CfSo;(TM) such that

(vit) ||f||Cg(TM) < Hh”C;’Jj]?(TM) for f = Byh, h € H, as follows

from the Oskolkov-Tarasov Theorem [33]. In view of formulas (v)
and (vi) an operator ByA, — I =: K} is compact on CE(TM) into
C}j (T'M). The operator B, can be written as By = By + Bg, where
B1p := OP((< b >2 +|¢?)77) with |£]2 = g,(&,€) for each z € M
and £ € T, M. Evidently, By ;A — I =: Ky is a compact operator
and there exists a constant Cy > 0 such that

”KQ,b”L(Cf,(TM),Cé(TM)) <(Cy<b >-1

for each b > by, since < £ >F (< b >2 +[€]2)77 < (< b>2 +[¢]2)"1/2
foreach k =0,1,...,2j—1 and each z € M, & € T, M, where L(X,Y)
denotes the standard space of continuous linear operators from one
real Banach space X into another real Banach space Y,

IKllLx,yy == sup ([Kzly/|z]x)
TEX,T

is a norm of an operator K € L(X,Y). Therefore, there exists a
finite-dimensional subspace R™ in Cé (T'M) and by > 0 such that

K| (CH(TM) © R Lieyran,cyran) < €
for each b > by, where 0 < € < 1/4. For the restriction K,|R™ it
is lightly to find b3 > 0 such that ||K,|R™|| < e for each b > bs,
since K3(R™) is a finite-dimensional subspace of Cé (T'M). From
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Lemma 2.4 it follows that PjCE(TM) = CE:_%(TM), where e, is
a standard scalar product in R®, P := OP((< b >2 +e,(&,8))).
On the other hand, Pi— A, =: K3} is a compact operator from
CE(TM) into CE;%?Y(TM) and the symbol of K3, belongs to the
class 857671’2]‘72(T*M), since Ay, — A, is the operator of the first
order. Analogously to the case of K; for K3 there exists by > 0

such that

”K&b”L(CB(TM),CE;?JZ(TM)) < 6”A37b”L(CE(TM),c;f;]ﬂ(TM))

for each b > by, where 0 < € < 1/4. Hence we can choose by =
max(j—p,..4)(bj) such that

Ao(CH(TM)) = C5 5 (TM)

for each b > bg.

If to consider < b >2% +Ag instead of (< b >2 +A,)J then these
operators differ on the compact operator. Therefore, Ay — Ay =: K
differ on the compact operator and its symbol k(z,&,b) belongs to
the class Si%_Q’% ~?(TM). Hence there exists by > 0 such that

Hf_fbHL(%(TM),c;j;JJZ(TM)) < (HAb||L(cé(TM),cgjr§JJl(TM)))/2
and A,C4(TM) = C;_5,(TM) for each b > by. O

3. Quasi-invariant measures on a group of
diffeomorphisms.

At first we give few preliminary definitions and results. Then we
formulate the main Theorem 3.10.

DEFINITIONS AND NOTES 3.1. Let U and V be open subsets in [s,
suppose 6 : U — V is a smooth mapping, co > ¢ > 0. We define a
uniform space EK(S} ’a(U, V') as a completion of a set @ relative to the

family of metrics given below [x, s : 7 =7(n),n € NJ,
Q:=[f: fe Egg’g(U, V'), there exists n € N such that

supp(f) CUNR", xp4,6(f,0) < oo for each r|, where
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(%) Xrpy,5(f:9) = sup sup pj, - 5(f,9) < oc and
neN zcU

() Hm xpq.6(flug. 9log) = 0,

for f in pj, , 5 restrictions are taken corresponding to U N R", that
is f|UﬂR“ :UNR" — f(U) cV,

Pro(fs9) = 04 5(flw;nrn), 9l nRm))
r =r(n) =t+4m(n)n, 2m(n) > n+[n/2]+1 for each n, v > 0 (see
§2.1 and §2.3 in [29]). Here pj, . ;(f,g) is the metric by arguments
z!,...,z" for f and g as functions by (z',...,2") in E;75(UHR“, V),
R" = X,, < ls, X,, are subspaces in ls, X;; — X, 41 for each n such
that U, en X is dense in lp. Evidently, B}/ (U, V) ¢ B (U, V)
for each ¢’ > 0 + 1, since

sup Phrs(frg) > sup ', 5(f,9)
for each 0 <[ € R and

Z (my...mpn™) 1€ < 00
(m;€N,i=1,...,n;neN)

for each % < e € R. We omit Hefor 0 =0.
Let EZL (U, V) = Nyen EXF (U V).

Let a Riemann separable manifold M be modelled either on R™
or [y and fulfils conditions of §2.2 and §2.4 [29], At(M) be finite and
(¢j0 7" —idi ;) € EXL}(Uy 1) for each Uy N U; # 0,

a metric g is of class Eg:;, where U; ; are open in [ domains of
pjo ¢t r'(n) > r(n) + 2, for each n, oo > x > 6 + 1.

DEFINITIONS AND NOTES 3.2. Let (M, g) fulfil conditions of §2.2
and §2.4 in [29] and §3.1 above, 1 < ¢ <%, 0<~y < . For f € G we
can define

De((z) = (f(2), V5.e0) € TS (M)|f (), where
(z) = (f(x),0(x)), O(x) € T(la), r,s € No, Ng := {0} UN,
N:={1,2,3,..}, £ € Bs;(TM) :=[¢ € B 5(M, TM)| 7(&(x)) = ]
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is the space of vector fields on M of the class Ef;’ 5

(€ B (M, T(M)) := [( € E j(M.T{(M)) : n(¢(z)) = f(x)
for each z € M|,

V is the covariant differentiation of tensor fields over M, f.& de-
notes the push-forward of &, that is, related with a pull-back f*
by f* = f.! (see §3.9(iv) in [14]), T%(l3) is the tensor space of
type (r,s) over lp, T7 (M) is the tensor bundle of type (r,s) over
M, TM corresponds to (r,s) = (1,0) [21, 22], (df){ = f.£ =:
Def, (DO)(€) = De(((2)), (VeO)(X1, s Xy) = (VO)(X1, ..., Xs:6).
X;(z) € TyM, X; € E(M), j = 1,..,8 € N, r € N, (df) ¥(z) :=
(df[r(¢(2)]) () € Tr-1(n(¢(z))M; df and V™df are well defined
for f € G analogously to §4 [10]. Indeed, the differential f, = df is
a section of T*M ® f*TM (with the induced connection in f*T'M).

LEMMA 3.3. In the notation of §3.2 D¢((x) € ngH—i s(M,T7(M))
and Dg, (df)™" are continuous mappings of E 7 s(M, Ty (M)) into

1
1B (M T (M)).

Proof. Let [My : k = k(n),n € N] be a sequence of submanifolds
as in §3.2 [29] with atlases At(My) = [(Ujx, ¢;5) = j] = At(M) N M,
that is U, = U; N My, for each j, k. From Definitions in §2, Lemma
3.2, Theorems 3.1 and 3.3 in [29] and §3.2 above it follows that Dg
and (df)~! are continuous, since f,¢ € EﬂHé(M, TM) and (df)~!
corresponds to f* = f 1, t>q> 1. O

NOTE 3.4. Let D¢ be as in §3.2, f and ¢ € Dz'fféy(;(M) with 0 <
t<ooand oo > >0, 00>6¢ >0, where M is a Hilbert manifold
and ¢ is a Riemannian metric as in §2.2 and §2.4 [29] and §3.1 above.
Then for each f and ¢ € Dif fé(M ) and [t] > [ in view of Theorem
2.5 1n [2], §5.1-5.3 in [36] and Lemma 3.3 it follows the equality (3.1):

(3:1) D De,y-Deygy(po f) =D [/ (i CHESNAILS)

o€ w(l)

Feetim
ZS SD“ Z ¢(D§ Ch Dga(l )f’ '50((11 Dip41)"" Dfo(iﬂl)f’
(4SS

Dgo'(illl+l)"'Dga'(llll+lz)f7"' Eo(iqly+-+im_1lm_1-+m—lm+1) " Dfo(z)f)
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where Dgf = f*f, Dgl...D&D&f = V¢*f*§l...V¢*f*§2f*§1 for [ >
I, Depo f = ¢ fi&, Sp is the symmetric group of {1,...,1} ele-
ments of which are considered as bijective mappings o : {1,...,1}
—{1,...,1}, S is the symmertizer of (Dt*+im¢)(a, ..., z) by all ar-
guments (a, ...,z) = (Déo(l)'“Déo(ll)f’ ""D&a(k—lm+1)"'D§a(l)f)’

Sg(al, ceey ap) = Z g(a(,(l), ceey ag(p))
oES)
for a function g of arguments ai, ..., ap; 3°,(;) denotes the summation
by all partitions w(l) of [, that is by all representations of | as lyi; +
o+ bty = 1,45 >0foreach j =1,...m,m>1, 11 >l > .. >
lm > 0.

DEFINITION 3.5. Let (M, g) and D¢ be as in §3.2, let us denote with
the help of §3.4 the following expression

(3.2) Dy e d(C) = D[/ (i1 oo (1) o (L) )]
w(l)

& i1+t im+1
}; SD" " HB(C, De, gy Dy Iooves Degiiiiny Py f
gES]

where ( € fEI( M,T{(M)), [q] > 1, 8>~ 2>0.

LEMMA 3.6. Let (M,g) and {My, : k = k(n),n € N} be as in §2.2
and §2.4 [29] and §3.1 above with each atlas At(My) inherited from
At(M). Then there exists the locally finite partition of unity {p; :
i€ J}, JCN, for M such that

(i) Vi C supp(vpi) C Upgyy, Vi are open, ¢ (Vi) are locally con-
vex, p=p(i) € {i,...,s}, Uijes Vi = M;

(ii) vector fields [&,; : @ € NJ are in E(M) of class Eif:;:,
supp(&1,i) C supp(y), &; € E(My,) for each i < k;

(iii) [§i(x) : 4 € N] is a linear basis in T, M for each x € V;

(iv) for each | € J there exists x € V; with & ;(x) = e; for every
1, where e; is the standard basis in ls;

(v) 1/2 < ilI’lif’|§l,i||Et’B,,X(Tw) < sup 1€Lillmer,, (rviy <2 and

X3

Supi#j, leJ, zeVi, i and JEN |(£l,i(x)7§l,j($))l2,x| < 1/2 fOT’ some t' >
t, B >9>0.
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Proof. The manifold (M, g) is Riemannian and modelled on Iy, hence

it possesses the partition of unity {¢; : [ € J}, J C N, of class Eg/;(
fulfilling (i) due to §2.3 in [25], that is, >, ;4 (z) = 1 for each = €
M, () > 0 for each [ and z, supp(z/)l) =cl(x € M : ¢y(x) #0) C
Up), cl(B) denotes the closure of B C M. Let {M : k = k(n),n €
N} be as in 3.2 then ezp for M induces exp for My, as restrictions on
corresponding neighbourhoods of the zero sections in T'My. There-
fore, the Gaussian coordinates in M induce corresponding coordi-
nates in M, since each M,y has tubular neighbourhoods in My, )
(for j > 0) and in M (§4.4-4.6 [25]). Hence for each ¢ € =(Mj) there
is the equality £(z) = Y;cs &(x), where &(z) = 1 (2)é(x). There
are embeddings E(My,)) < E(My41)) < ..E(M) due to condi-
tions of being Hilbertian at infinity for M and conditions of §2.4 [29]
on g.

Then with the help of Gaussian coordinates, the base {e; : j € N}
in [ and parallel translation along geodesics we can choose by induc-
tion [¢; : &i(x) € Ty M; for each x € M; and of class Ef{{ ,% on M|
with §,; = & such that to satisfy (ii-v), since M} and M are

geodesically complete, (¢; o qb;l —id) are in the class Ei,wi for each

UinU; # 0, Ty, 4, == D(¢io qﬁfl) Ty, 4; — I are in the class
Ey +(1)x tin} s Ty, ¢; are the unitary operators in Iy for each z in the

domain of ¢; o qﬁj , fibers in the tangent bundle TM are isomor-

phic to Iy, fibers in TM; are isomorhic to R!, R < I, (see Chapter
VII in [25] and Chapter I in [14]), where I : Iy — Iy is the identity
operator. ]

DEFINITIONS AND NOTES 3.7. Let [fl : 1,4] be the same as in Lem-
ma 3.6 f € szfﬂ 5(M), ¢ > deg(Ap.mn))- Let us define operators:

<b(n) > B (fn) + D 1() Angn(n), £ (€115 -5 Ein)

leJ
where

n

g Gty &) = D Fopminy (98070, ey g 8G9

s=1
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(1) D2z(s 1) DQi(s—l—l) p2il)

Dy )
D 7oes Dy o g, )X

2m(n)—1

z a(p, 2i(s)) D, [(dfa) " 0 D" £

and f, := f |Mn are restrictions of f on the submanifolds M,, with
8 1= MiN; >om(n) J. Also deg(Apmn)) is a degree of A, () as the
differential operator, n and m(n ) €N, a(p, e Q,a=14(1)+..+
i(n) = 2m(n)n, gkl are components of g, on M,, the Riemannian
metric g, n on M, is induced by g, on M for each x € M, (gx’n)i’j =
gm(a/am 0/0x7), F ;,.m(n) are operators of polynomial types by
gy and Dg, ., 0 < b(n) € R. Let also A, be the Beltrami-Laplace
operator for M, given with the help of §3.2 [29] (see also [22]) and
Q, be a linear differential operator by the first argument

(€ EX(Mp|TM) :={&: M, - TM|rn({(z)) = x for each x € M,

¢ € EX(M,, TM)} with deg(€,) < 4m(n)n, ¢ € szfq+2m ™M),

supp(9) = cl(z € M : §{x) # 3) C ¢ (¢;(U;) N R) for some
j € {1,...,s}, W is some open nelghbourhood of id in szfﬂ s(M),

¢ € W, fe W, E(Y) =W, Y is an open neighbourhood of 0
in TiqDif f5 (M) (see §3.3 in [29]). When ¢ = t < deg(A, m(n)),
then A, () is considered as the corresponding pseudodifferential
operator.

LEMMA 3.8. Let the operator Ay, (f) and f be the same as in
§3.7. Then there exists F p m(ny and a(p, j) such that Ay )(E(V))

s the continuously Frechét differentiable by 1% mapping from Y ®

(S 5(T M) into B 00" (M, TM) with

Vi Animen © Bly— =
= AZminn 4 Q0 BY(TM) @ (E§ 5(TM,))®*mmn —
qg—4m(n)n
EB+4m(n)n (TM)’

VVAn,m(n) (E(V))kf:E(V)) : ng’(g(TM) 02y (E§’5(TMn))®4m(”)” s
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4m(n
Bt S(TM),

and

m(n) (¢ © f) - An,m(n)(f) E[g_:;:z(( ))2—1—;:2((2))’5 (M, TM).

Proof. For the submanifold M,, in M with the covariant differen-
tiation ,V and the torsion tensor T/, = 0 there is the equality
nVXgiz’]ﬁ = 2Vx(9sn)ij = 0 for each X € E(M,). In view of
Proposition III.7.6 [22] the curvature tensor field for M, is given by
the equation

;‘,k,l = (8I’f’j/8$k - ar;;,j/axl) + Z( 1 fcm - ijrf,m)
m
in local coordinates (z7), where

ngrﬂ = (Ogk,i/ 0’ + Dgj k) 05" — Dg;i/0") /2,

here g = g5, (see corollary 1V.2.4 [22] and §3.3 above); or
R(X,Y, Z) () = DT op) X o) Yo)s Zow)) = PTo(p) Yo(p) (X ()

Zow)) + Loy (Xow) Lor) Yow)s Zow)))—
L) Yow): Do) (Xow)> Zow)))

for M in local coordinates in infinite-dimensional case (§8.3 in [14]
and Lemma 1.5.3 in [21]). Consequently, the Riemannian connection
I' in My and R are in the class E3,, x > (. For tensor fields

Sj(1),....j(p) o0 My in the normal local coordinates we have

[V, VilSiay,...i) =

=R 1) kS, (2)sei®) — = = By e S50 i (0=1)
where [VT,Vk] = VTVk— VkVT. Then

Di(¢0 f)(w) = (¢)(f (2)) (DL (2))+

i ( ) [DE(¢:)(f@NID f () + By i),
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where

i /.
J—1 ik
Byp,j(z) = kz < k )(Df[(%)(f(fv))])(DZ f(z)),
=z
z=2m(n), £ € E(M,), 30 :=0for j = 1.
There are constant coefficients (7, u) fulfilling the following sys-
tem of linear algebraic equations

p s .
£ (1) o=
j=d

withd=0,...,w—1, w=1,..,min(2m(n) — 1,u) =: p and

p

Za(ja u) =1,

J=0

since this system is equivalent to

P (o —
Z (._:)a(j,u)zl

=k \

for Kk =0,1,...,p, where u > p,
u—k
det j 0
€ {(]_k)}.ﬂk;é I

(3) =0 fora <dord<0, <cal) :=a!/(d!(a - d)!)

for d =0, ..., a are the binomial coefficients.

Using the following facts (i-vi):

(i) the equality [V7,V;] = YP_gVeV., ViV for
p=2,3,..., VY := I for infinitely differentiable vector fields;

(ii) the corresponding to V pseudodifferential operators with ad-
ditional terms belonging to S} o0 with the well-known rules for their
compositions [18, 16];

(iii) the coefficients «(j,u) as above;

(iv) smoothness of I' and R;
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(v) the expression of the Beltrami-Laplace operator in normal co-
ordinates for the Levi-Civita connection in My: Ay = (gm’k)i’jvivj
(see Note 14 in v.2 [22]);

(vi) Lemma 3.2 [29] and Lemma 3.3 above -

we can find polynomials Fy ;, ,;,(n) by D¢, ; and g with coefficients
depending on z as functions in E | (M, R) such that to fulfil de-

mands of Lemma 3.8, since B ;(z) are polynomials of Dg f with
j=1,..;i = 2m(n) and (D{¢)(f(z)) with 1 < j <.

The differentiability by V follows from the existence of
{r'(n)—2:n}

50,X -mapping of some neighbourhood Y of 0 in the Banach
space TidDiffg 5(M) onto a neighbourhood W of id in Diffg s(M),

where E‘g;(;)ﬁm} C EX - Indeed, there is a neighbourhood W' of

id € Dif f§ 5(M) such that W? C U and it is given with the help
of the mapping F from §3.3(v) [29] (analogously for the class of the
smoothness of M considered here). Hence the differentiability by
J € W reduces to the differentiability of A, © Eby XeY (see
also Chapter 1 in [21]). O

DEFINITIONS AND NOTES 3.9. Let G := Dz‘fféﬂ(M) be a group of
diffeomorphisms. It has also a structure of a real smooth Banach
manifold. Let T'G be its tangent space, T* f := (f, Df,...,D*f); f €
G, where TFf .= T(T*=1f) for each k € N, T°f = f, Df := f, is
the differential of f (see [21, 25] and §3.3). For a o-additive measure
p o Af(G,u) — [0,00) C R a o-additive measure, its left shifts
po(E) = u(¢~" o E) are considered for each E € Af(G,u) and
¢ € G, where Af(G, ) is the completion of the Borel o-field B f(G)
on G by p-null sets, po E := {(¢oh): h € E}. Then p is called
quasi-invariant if there exists a dense subgroup G’ such that p4 is
equivalent to p for each ¢ € G'. Henceforth, we assume that a quasi-
invariance factor p,(¢,g) = pe(dg)/u(dg) is continuous by (¢,g) €
G' x G, (V) > 0 for some (open) neighbourhood V' C G of id, where
id = e is the unit element in G and u(G) < oco.

Let (M, F) be a space M of measures on (G, Bf(G)) with values in
R and G” be a dense subgroup in G such that a topology T on M is
compatible with G”, that is, 1 — pyp, is the homeomorphism of (M, F)
into itself for each h € G”. Let T be the topology of convergence for
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each £ € Bf(G). Let Z(G”) denotes the set of all differentiable vec-
tor fields X on G”, that is, X are sections of the tangent bundle TG”.
We say that the measure p is continuously differentiable if there ex-
ists its tangent mapping Tyue(E)(Xy) corresponding to the strong
differentiability relative to the Banach structures of the manifolds
G” and TG”. Its differential we denote Dypy(E), so Dgpig(E)(Xg)
is the o-additive real measure by E € Af(G,pu) for each ¢ € G”
and X € Z(G”) such that Du(E) : TG” — R is continuous for each
E € Af(G,p), where Dypy(E) = prao (Tu)y(E), pro:px F = F
is the projection in TN, p € N, T,N = F, N is another real Ba-
nach differentiable manifold modelled on a Banach space F. For a
differentiable mapping F' : G — N by TF : TG” — TN is de-
noted the corresponding tangent mapping, (T'u)s(E) := Typs(E).
Then by induction p is called n times continuously differentiable if
T 'y is continuously differentiable such that 7"y = T(T" 'p),
(D" 1) (E)(X1,¢, ---» Xn,p) are the o-additive real measures by E €
Af(G,p) for each Xy,...,X,, € E(G”), where (X;)y4 =: X, 4 for each
j=1..,nand ¢ € G”, D"u: Af(G,u) ® E(G")" — R.

THEOREM 3.10. Let M be a Eég:;z—mamfold as in §3.1 and G :=
Dz'fféﬁ(M). Then G has quasi-invariant infinitely differentiable
probability measures p relative to dense subgroups G', where x >
vy+2,v2>0.

Proof. Let at first 1 < ¢ € R\ Z. In view of Theorem 2.6 and
Lemma 3.8 each operator A,.,,,(,) o F from Y ® (EI%’,Y(TM))(XAm(n)n

into EZ((Z)) W(M ,TM) is continuously differentiable by V € Y, where

t(n) =t —s(n), B(n) = B+ s(n), s(n) = 4m(n)n, n = n(p), p € N,
Y is an open neighbourhood of id in TidDifféﬂ(M). Suppose that
b(n) > 0 are chosen in accordance with Theorem 2.6 and Lemma 3.8
such that

. 4 .
AZmn 4 Q- CH(TMy) — C im0 (TM,)
are the linear topological isomorphisms for Mn = M, \ OM,, Eu-
clidean at infinity due to §§2.1, 2.2 and 3.1 for each n € N.

There exists a subgroup Gy in G such that G consists of finite
compositions of elements g € G with supports supp(g) C Uj,,, where
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Uinmn = U;NM,, j =1,.,kand n € N are dependent from g,
supp(g) == cl{z € M : g(z) # =}, cl(v) denotes the closure of a
subset v in M. Then Gy is dense in G. An operator A defined below
is written at first for a neighbourhood Y NT;;Gq of 0 in T;3Gy, then it
is extended onto a neighbourhood Y of 0 in T;3G. Choose a sequence
{Bp : B, > 0,p € N} such that the following operator A(%)) is well
defined on Y,

A(Y) = Z BPAn(p);M(n(p))(d})eli’ € H,
p=1

where {€¢/, : p € N} is the standard orthonormal base in lo,

H = {5 = (e,PBPA;z(p) m(n(p))c P pE N)K € E;},'y(TM)}

3

is a Banach space with the following norm

1€l = ”C”EE’,Y(TM)

and B,, are chosen such that A : Y — H is the local uniform isomor-
phism, At(M) is finite, x > " >+’ 4+ 2. In H is dense a direct sum
of spaces

o

PEGD) (TM)@¢)y) = Z

p=1
[32]. From Lemma 3.2 and Theorem 3.3 [29] it follows that there are
U and W such that G' := Dif 55 »(M) acts uniformly continuous
from the left on W C U, where U and W are neighbourhoods of id
in G:= Difféﬁ(M). There is a neighbourhood P of id in G’ such
that PW C U. In view of Lemma 3.8 for each ¢ € P the operator
Sy(h) :== A[p(A~(h))] — h is nuclear on Vi := A(W) with values in
H, where h € Vi. There are B, > 0 such that A : Y — H is the
local uniform diffeomorphism, since y > " > v + 2.

Let {H, : n = n(p),p € N} be a sequence of Hilbert spaces over

R, then Iy ,{H, : n = n(p),p € N} denotes a Hilbert space with
elements x = (z, : ©, € H, for each n) having a finite norm

Izl == ( Y. n"zall3,)"? < oo,
pEN,n=n(p)
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where v > 0. Therefore, H contains a dense Hilbert subspace

X =loyp14e{Hp: n=n(p),p € N}

for each 0 < € € R, where H,, are isomorphic with the corresponding
weighted Sobolev spaces HQ[tE_]:_"[:(lr/l ?Ltln_/ém(n)n’b(n) (TM,) as in §2.6.
Let

, P
||f|| H;:Z(Rn’Rn) K
(> <bn) > a7 <@ >PH DEM, f) (@) 72 (mm g mm)
ol <s
where 0 < s €Z, 0<y€ER,BER, a=(a!,..,a"), 0 < o € Z,
la] = ol + ...+ a", 7% = 19729°7 "7 X is the Lebesgue measure
on R, f : R® — R® (Myf)(z) := f(< b >~1 x). Using charts
(Ujn, pj) of the atlas At(M,) = {(Ujn,#;) : j =1,...,k} we get
k

HfH,H;:g(TMn) = ( Z (“fm

ij=1

?

i 2\1/2
| H;:Z(Rn’Rn)) )

where f; ; = ¢;0 fo ¢]71, fi,j are extensions of f; ; from the open
domain V; ; := ¢;(Ujn N f_l(Ui,n)) of fi; on R", fi:j|(Rn\Vi,j) = 0.
Then

ot = 1By Ao P gt omso g,
for each g = ByA', ) f and f € Hg;i]:/[gﬂ]ﬂ’b(n)(TMn), n =
n(p) € N, p e N.
The Hilbert spaces gl Hn/2 41 —dm(n)n,b(n) (M,,R) and

2,8+4m(n)n—n/2
Hg;ﬂjn[l% ?Lf&ém(n)n’b(n)( My, 13 11+¢) have the natural embeddings

01, and 63, respectively into X, where n = n(p). There are also
embeddings

n
,b ,b
(@ Hg (RelaR)) — Hg (Rn’ R)a
=1
where {ej,..,e,} is the standard orthonormal basis in R™. The
space X has an orthonormal base which we denote by {é(
Dyiyl1, ...yl € N;jn = n(p) € N}, where

p7i§ll 7'-'7ln) :

{ewyistsootn) P15 ln €N} C
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{é(p,i;h,...,ln) : ll, vyl €N € N} C
t+1]+[n/2]+1-4 b
C 92,11(Hé,gjzur%)ll_n/gm(n)n ") (M, Ly 4146))-
Let J: X — X be a non-degenerate symmetric positive definite
nuclear correlation operator, for example,

1,n")~(+)e

Jé(p7i§llz-'-7ln) = (ll n (p7Z ll7 7l )

since Z (I1...dyn"i) 079 < o0
(5,01 e osln €N)

for each 0 < € € R (see [34]), where n = n(p) € N, p € N. Therefore,
J indices a Gaussian measure v on H from J(X) such that v is quasi-
invariant relative to shifts from a linear subspace Xy, Xo C J(X)
(see Chapter IIT in [8] and §I.4 in [24]). There exist 0 < ( € R and
a sufficiently small ¢, 0 < € € R, such that S,(Vy) C JT¢(X) C
Xy for each ¢ € P. In view of Theorems 26.1 and 26.2 [39] and
Chapter IV [8] the measure v on Vj is quasi-invariant and infinitely
differentiable relative to the operators (I + S) for each ¢ € P, since
the operators Ly and (I + Sy) are infinitely differentiable by ¢ € G
[9, 21, 29]. The measure v on H with the correlation operator J
and a zero mean value induces a measure i on Bf (W), a(Q) :=
v(A(Q)) for each Q € Bf(W). The spaces G and G’ in their own
uniformities are separable, Lindelof and paracompact, consequently,
there exist locally finite open coverings {g;W (i) : i« € N} of G and
{giW'(i) : i € N} of G with g; € G and W (i) C W, W(0) := W,
W'(i) c W(i) N G'. Hence

223 _1Q NW(i))

is countably additive and quasi-invariant relative to G' on Bf(QG).
Consequently, u(Q) := 1(Q)/u(G) is the probability quasi-invariant
infinitely differentiable measure.
Now let either 0 < #(1) <1 <t¢,ort>t(1) € Z and {2(i) : i =
2,...} be dense in M. This is possible, since M is separable. We
may define the following subsets of W and W (1) C Diffé(’(lg) (M) =:



QUASI-INVARIANT MEASURES etc. 123

G, Wl)NnG =W, W(k,t(1),c
Wik, t.c;f) :==1[g € W: p(ksg, f)
f € W, the mappings

p(k, K5 g, f) : Zsup[é WPV (f g —id)ap(2)]1, 0 5 =

i) i=1geW(Q): p(kig. f) < d,
< ¢|, where oo > ¢ > 0, k € N,

0,1,...,5(1),2 € F(k, k") +sup[[5(z) "DV D (Lo g —id), p(z)—

7(2,y) VO (f 0 g —id)ap(y)l1, ;]/1d(w, )1V : d(w,y) < p(a);
(z,y) € F?(k, k') and for (z,y) a chart exists U; 3 z,U; 3 y,z # 9

are continuous on G(1) relative to the metric pg(1)(g, f) in G(1),
F(k, k") == [2(k), ..., 2(K")] for each k' > k; p(k; g,f) = p(1,k; f,9),
1(1) = 5(1)+4(1).0 < (1) € 2,0 < (1) < L, 5(z) i= minlaa), o)}l
for a pair (z,y), hap = ¢a o h oy, so Wk + 1,t(1),¢; f) C
W (k,t(1),c; f) for each k € N. Therefore, "({W (k,t(1),¢; f) : k €
N} = B,(G(1), f,.c) N W (1), where

BP(G(l)afa C) = {g € G(l) : pG(l)(gaf) < C}a

whence the least o-field A generated by the family
V(1) == {W(k,t(1),c;f) : ¢ > 0,k € N,f € W} is such that A
D Bf(W(1)). Moreover,

o o

N (U Wk t(1),1/k; fa)) = {f}

k=1 m=1 n>m
for each f € W(1) and each sequence {f,} C W converging to
feG(l).

Then we put u (W(k,t(1),¢; f)) :== n(W(k,t,c; f)) for each ¢ >

0, f € W, k € N, whence pu; is finitely additive, since from E(1) N
L(1) =0 in G(1) it follows ENL = () in G, where E(1) and L(1) are
in V(1), E and L are corresponding sets in V := {W (k,t,c; f) : ¢ >
0,k € N, f € W}. From the definition of p it follows that

:U‘( ﬂ [ ﬂ [ U W(kata 1/k7fn)]]) =0,
k=1 m=1 n>m

consequently, £ is countably additive on Bf(W(1)). Each p(k; g, f)
is left-invariant: p(k;hg,hf) = p(k;g, f), hence hW(k,t,c;f) =
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W (k,t,c;hf) and hB'(f,c) = B'(hf,c) for each h,f € G, where
B'(f,c¢) := Mgy W(k,t,c; f), ¢ > 0. Therefore, p11 is extendable to
the quasi-invariant infinitely differentiable measure on G(1) relative
to G' (see above the analogous case of y on G and also [28]). O

THEOREM 3.11. Let (1) G be a group of diffeomorphisms as in The-
orem 3.10 or in [26], or (2) G be an infinite-dimensional over the
corresponding field (R or the local field K) Banach-Lie group such
that for its Banach-Lie algebra g there is not any dense subalgebra g'
such that ad(h) are nuclear in the case of R or compact in the case of
K operators for each h € g'. Assume that G' is a dense subgroup of
G. Then it does not have non-trivial quasi-invariant measure i with
values in R or F correspondingly which is quasi-invariant relative to
(a) the left Ly and right Ry shifts simultaneously or (b) relative to
inner automorphisms ay,(f) == h™'fh for each h € G', where F is a
local field.

Proof. For a Banach-Lie group there exists the exponential mapping
éxp : V. — W which is the local isomorphism of open V and W,
where 0 € V C g and e € W C G. Therefore, In(W NG') =: V' is
dense in V (see the Hausdorff series, §811.6-8, ch. II, §VIL.3 in [5]).

For a group of diffeomorphisms there exists a refinement At” (M)
of At(M) such that At” (M) provides a locally finite covering of M
by charts U” ;. Therefore, U := Uy \ (U, U”) is open M [11]. Let
Gy denote a subgroup of G consisting of f € G with supp(f) C U.
The set M \ U is closed in M, hence Gy is closed in G. From the
definition of topology in G it follows that G' N Gy =: G’y is dense
in Gy. In view of [11, 19] a retraction r exists of G onto Gy. Hence
each quasi-invariant measure p on G relative to G’ induces a quasi-
invaraint measure v(S) = u(r=1S) for each S € Bf(Gy) relative to
G'y. But U is the flat manifold and exp, is trivial for each z € U,
consequently, E is trivial on a sufficiently small neighbourhood W
of id € Gy. We denote v and Gy again by p and G.

To each local one-parameter subgroup of G a vector field on U
corresponds for the group of diffeomorphisms or there corresponds an
element of g for the Banach-Lie group. If G is the non-Archimedean
group of diffeomorphisms then ad(h) is not a compact operator for
each smooth of class C* element h in E~'(W'), where W' = WNG'.
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For the real group of diffeomorphisms it is not a nuclear operator for
each such h. This follows from the consideration of the algebra of
smooth vector fields on U and the fact that the group of diffeomor-
phisms is simple and perfect.

If p is a quasi-invariant measure on G and fulfils either condition
(a) or (b) then in or E~' induce a measure A on V that is quasi-
invariant relative to ad(h) for each h € V', V! = In(W') or V' =
E~'(W') respectively. But this contradicts Theorems 2.31, 3.12,
Lemma 3.26 [27] in the non-Archimedean cases, the Minlos-Sazonov
Theorem and Theorem 19.1 [39] in the cases of the Banach-Lie group
or M over R for the group of diffeomorphisms. O

NoOTE 3.12. Let N and M be two manifolds such that N is a Hilbert
manifold and M is a Banach manifold as in Definition 2.8 [29]. In
view of corollary 2.9 [29] there exists a dense subgroup Di f fgﬁ,(N )
in D?jfféﬂ(M) with topologies 7/ and 7 respectively such that
7'|D’L'ff[t;’7/ (N) C 7', since § > v 4+ 2. Therefore, quasi-invariant and
infinitely differentiable measure A on Dif féﬁ, (N) relative to G’ (see
Theorem 3.10) induces quasi-invariant and infinitely differentiable
measure pon Dif f éﬁ(M ). This justifies the consideration of Hilbert
manifolds only in Theorem 3.10.

4. Irreducible unitary representations.

THEOREM 4.1. Let p be a quasi-invariant relative to G' measure on
Bf(G) with G := Diffé’(S(M) as in Theorem 3.10. Assume also that
H := L*(G, i, C) is the standard Hilbert space of equivalence classes
of square-integrable (by i) functions f : G — C. Then there exists a
strongly continuous injective homomorphism T : G' — U(H), where
U(H) is the unitary group on H in a topology induced from a Ba-
nach space L(H, H) of continuous linear operators supplied with the
operator norm.

Proof. Let f and h be in H, their scalar product is given by

(1.0 = [ hl)s(9)n(dg).
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where f and h : G — C, h denotes complex conjugated h. There
exists the regular representation T : G' — U(H) defined by the
following formula:

T(2)f(g) = (p(2,9)) 2 f(z""g),

where p(z,9) = p2(dg)/p(dg), p-(S) = p(2~'S) for each S € Bf(G),
z € G'. For each fixed z the quasi-invariance factor p(z,g) is con-
tinuous by g, hence T'(z)f(g) is measurable, if f(g) is measurable
relative to Af(G, u) and Bf(C). Therefore,

(T(2)f(9), T(2)h(g)) =/GB(Z‘lg)f(flg)p(z,g)u(dg) = (f.h),

consequently, T' is unitary. From

-1

piz2(dg)/u(dg) = p(2'z,9) = p(z, ()" g)p(7', g)

= [p2r2(dg) /1 (dg)][1r (dg) / p(dg)]

it follows that T(2)T(z) = T(2'z) and T'(id) = I, T(z~ ') = T~!(2).

For each v > 0 and a finite family of continuous functions f; :
G — Cwith ||f;llg =1, 7 = 1,...,m, there is an open neighbourhood
V of id in G' in the topology of G', such that |p(z,9) — 1| < v
for each z € V and each g € F for some open F in G, id € F
with pf (G \ F) < v for each z € V and f € {fi,..., fm}, where
! (dg) == |f(9)|n(dg), pl(S) := p! (27'S) for each S € Bf(G) (see
Theorems 26.1, 26.2 in [39] and the proof of Theorem 3.10).

In H continuous functions f(g) are dense, hence

[ 1£6) = £ (ple,9)) 2 Prtdg) < o

for each f € {f1,....fm} and z € V! = V N V”, where V” is an
open neighbourhood of id in G’ such that || f(g) — f(z '9)llg < v
for each z € V7, 0 < v < 1. Consequently T is strongly continuous,
that is, T is continuous relative to the strong topology on U(H)
induced from the strong topology on L(H,H), (see its definition
in [13]). Moreover, T is injective, since for each g # id there is
f€C%aG,C)N H, such that f(id) =0, f(g) =1, and || f| g > 0, so
T(f) # 1. O
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NOTE 4.2. In general T' is not continuous relative to the norm topol-
ogy on U(H), since for each z # id € G' and each 1/2 > v > 0
there is f € H with || f| 7 = 1, such that ||f — T'(2)f|lg > v, when
supp(f) =: J; is sufficiently small with zJy N J; = 0.

THEOREM 4.3. Let G be a group of diffeomorphisms with a real prob-
ability quasi-invariant measure p relative to a dense subgroup G' as
in Theorem 8.10. Then p may be chosen such that the associated
reqular unitary representation (see §4.1) of G' is irreducible.

Proof. Let a measure v on a Banach space H be of the same type as
in the proof of Theorem 3.10. Let a r-measurable function f : H —
C be such that v({z € H : f(z +y) # f(z)} = 0 for each y € X
with f € L'(H,v,C). Let also Py : ly — L(k) be projectors such
that Py(z) = xy, for each 7 = (3 en zlej), where zj = Z?:l tej,
zy € L(k), L(k) := spr(e1,....,ex), sprlej : j € N) :={y :y €
losy = Z?:l zlej; 27 € Ryn € N}. Since the dense subspace X in
H is isomorphic with /9, then each finite-dimensional subspace L(k)
is complemented in H [32]. From the proof of Proposition II.3.1 [§]
in view of the Fubini Theorem there exists a sequence of cylindrical
functions

fula) = ela®) = [ (Pt (= Powvrp,(dy)

HOL(k)

which converges to f in L'(H, v, C), where v = VL(k) ®VI-Pys VI-P,
is the measure on H © L(k). Each cylindrical function fj is v-almost
everywhere constant on H, since L(k) C X, for each k € N, conse-
quently, f is v-almost everywhere constant on H. Let A: W — Vg
be the same as in §3.10. From the construction of G’ and p with the
help of the local diffeomorphism A and v it follows that, if a function
f € LY(G, u, C) satisfies the following condition f"(g) = f(g) (mod
w) by g € G for each h € G', then f(z) = const (mod ), where
f"(g) = f(hg), g € G.

Let f(g) = chy(g) be the characteristic function of a subset U,
UCG,UE€Af(G,p), then f(hg) =1 g € hU. If f*(g) = f(9)
is true by g € G p-almost everywhere, then u({g € G : f*(g) #
f(g)}) = 0, that is u((h'U) A U) = 0, consequently, the measure
p satisfies the condition (P) from §VIII.19.5 [13], where A A B :=
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(A\ B)U(B\ A) for each A,B C G. For each subset E C G the
outer measure is bounded, p*(E) < 1, since u(G) = 1 and p is
non-negative [4], consequently, there exists F' € Bf(G) such that
F D FE and u(F) = p*(E). This F may be interpreted as the least
upper bound in Bf(G) relative to the latter equality. In view of the
Proposition VIII.19.5 [13] the measure y is ergodic, that is for each
Ue€Af(G,u) and F € Af(G, u) with pu(U) x u(F') # 0 there exists
h € G’ such that u((ho E)NF) # 0.

From Theorem 1.1.2 [8] it follows that (G, Bf(G)) is a Radon
space, since (G is separable and complete. Therefore, a class of com-
pact subsets approximates from below each measure uf, p/(dg) =
|f(9)|p(dg), where f € L?(G,u,C) =: H. Due to the Egorov Theo-
rem 2.3.7 [12] for each € > 0 and for each sequence f,,(g) converging
to f(g) for p-almost every g € G, when n — oo, there exists a
compact subset K in G such that 4(G \ K) < € and f,(g) converges
on K uniformly by ¢ € K, when n — oo. In each Hilbert space
L?(R™, )\, R) the linear span of functions f(z) = exp[(b,z) — (az, z)]
is dense, where b and z € R"™, a is a real symmetric positive definite
n X n matrix, (*,*) is the standard scalar product in R™ and A is the
Lebesgue measure on R". If a non-linear operator U on X satisfies
conditions of Theorem 26.1 [39], then

v (de)/v(dz) = |detU" (U ()| pv(x — U (2), ),
where vV (B) := v(U~!B) for each B € Bf(X),

pu(z,2) = exp{ [2(z,e1)(z,e1) — (z, €)1/ M}

=1

by Theorem 26.2 [39], where \; and e; are eigenvalues and eigenfunc-
tions of the correlation operator J on X enumerated by [ € N,
z € Xy, pu(z,2) = v,(dz)/v(dz), v,(B) = v(B — z) for each
B € Bf(X). Since the Gaussian measure v induces with the help
of subalgebras of cylinder subsets in Bf(H) and Bf(X) the corre-
sponding Gaussian measure on H, which is also denoted by v, then
analogous formulas of quasi-invariance factor are true for v on H
[8]. Hence in view of the Stone-Weierstrass Theorem A.8 [13] an
algebra V(Q) of finite pointwise products of functions from the fol-
lowing space spc{t(g) := (p(h,g))"/? : h € G'} =: Q is dense in
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L?(G,u, C), since p(e,g) = 1 for each ¢ € G and Lj, : G — G are
diffeomorphisms of the manifold G, Ly(g) = hg.

For each m € N there are C*°-curves ¢§’- € G' N W, where
j=1..,mand b€ (-2,2) :=={a: -2 < a < 2;a € R} is a pa-
rameter, such that ¢?|b:0 =eand ¢; := gb} and vectors (8¢?/8b)|b:g
for j = 1,...,m are linearly independent in T,G’. Then the following
condition det(¥(g)) = 0 defines a submanifold Gy in G of codimen-
sion over R,

(1) codimrGy > 1, where ¥(g) is a matrix dependent from g € G
with matrix elements

Uy5(9) == Dl (p(¢5,9))"/>.

If f € H is such that (f(g), (p(¢,9))"/?)z = 0 for each ¢ € G'NW,
then differentials of these scalars products by ¢ are zero. But V(Q)
is dense in H and in view of condition (i) this means that f = 0,
since for each m there are ¢; € G' N W such that det¥(g) # 0 p-
almost everywhere on G, g € G. If || f|| 7 > 0, then u(supp(f)) > 0,
consequently, u(G'supp(f)) = 1, since G'U = G for each open U in
G and for each € > 0 there exists an open U, U D supp(f), such that
p(U \ supp(f)) <e. )

This means that the vector f is cyclic, where fo € H and fy(g) =
1 for each g € G. From the construction of y it follows that for each
fi,j and fo; € H,j=1,..,n,n € N and each ¢ > ( there exists h €
G’ such that (T f1 5, f2,5) al < €l(f1,5, fo)ml, when |(fi, f25)al >
0, since G is the Radon space by Theorem 1.1.2 [8] and G is not
locally compact. This means that there is not any finite-dimensional
G'-invariant subspace H' in H such that T, H' C H' for each h € G’
and H' # {0}. Hence if there is a G'-invariant closed subspace H' in
H it is isomorphic with the subspace L?(V, i1, C), where V € Bf(G).

Let Ag denotes a *-subalgebra of L(H, H) generated by the fam-
ily of unitary operators {T}, : h € G'}. In view of the von Neumann
double commuter Theorem (see §VI.24.2 [13]) A¢” coincides with the
weak and strong operator closures of A in L(H, H), where Ag' de-
notes the commuting algebra of Ag and Ag” = (Ag')’. Suppose that
A is a probability Radon measure on G’ such that X\ has not any atoms
and supp(\) = G'. Let a(z) € L>®(G,pn,C), f and g € H, B(h) €
L?(G'", )\, C). Since L%(G', )\, C) is infinite-dimensional, then for each
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finite family of a € {a1,...,am} C L®(G, 1, C), f € {f1,s fm} CH
there exists B(h) € L?(G’,\,C), h € G', such that

A is orthogonal to /G F@) (5 9) (k. 9)) /2 = 3(9)](dg)

for each s,57 = 1,...,m. Hence each operator of multiplication on
a;(g) belongs to Ag”, since due to cyclicity of fo there exists 3(h)
such that

(Fovasf) = [ [ (@80 o(h,9))/2 ik g)A(dh)n(dg)

= [ [ B0 @ gD htdg),
| £:@)as(o) o)) =
L [ @Bt sito)xdn)n(dg) = (fusa; i)

Hence Ag” contains subalgebra of all operators of multiplication on
functions from L>*(G, u, C).

Let us remind the following. A Banach bundle B over a Hausdorff
space G’ is a bundle < B, 7 > over G’, together with operations and
norms making each fiber By, (h € G') into a Banach space such that
conditions BB(i — iv) are satisfied:

BB(i) ¢ — ||z]| is continuous on B to R;

BB(ii) the operation + is continuous as a function on {(z,y) €
B x B:7w(x) =n(y)} to B;

BB(iit) for each A € C, the map z — Az is continuous on B to
B;

BB(iv) if h € G" and {z;} is any net of elements of B such that
llz;|| = 0 and w(z;) — h in G’, then z; — 0p in B, where 7 : B — G’
is a bundle projection, By, := m~!(h) is the fiber over h (see §I11.13.4
[13]). If G’ is a Hausdorff topological group, then a Banach algebraic
bundle over G’ is a Banach bundle B =< B, 7 > over G’ together
with a binary operation e on B satisfying conditions AB(i — v):

AB(i) m(bec) = n(b)m(c) for b and ¢ € B;

AB(ii) for each z and y € G’ the product e is bilinear on By, x By
to B

k)

vy
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AB(iii) the product e on B is associative;

AB(iv) [[bec| < [bll x lc]| (b,c € B);

AB(v) the map e is continuous on B x B to B (see §VIIIL.2.2
).

[13]). With G’ and a Banach algebra A the trivial Banach bundle
B = A x G is associative, in particular let A = C (see §VII1.2.7 [13]).

The regular representation T" of q gives rise to a canonical regu-
lar H-projection-valued measure P: P(W)f = Chy f, where f € H,
W € Bf(G), Chy is the characteristic function of W. Therefore,

T,P(W) = P(ho W)Ty,

for each h € G' and W € Bf(G), since p(h,h ' o g)p(h,g) = 1 =
p(e,g) for each (h,g9) € G' x G, Chyy(h™! o g) = Chpow(g) and
T (P(W)f(g)) = p(h,g)/2P(h o W)f(h ' og). Thus < T,P > is
a system of imprimitivity for G’ over G, which is denoted T#. This
means that conditions ST(: — 7i1) are satisfied:

SI(i) T is a unitary representation of G';

SI(ii) P is a regular H-projection-valued Borel measure on G
and

SI(iii) T,P(W) = P(ho W)T), for all h € G' and W € Bf(G).

For each F € L*®(G,u,C) let ap be the operator in L(H, H)
consisting of multiplication by F: ar(f) = Ff, f € H. The map
F — ap is an isometric *-isomorphism of L (G, u, C) into L(H, H)
(see §VIIL.19.2[13]). Therefore, Propositions VII1.19.2,5[13] (using
the approach of this particular case given above) are applicable in
our situation.

If p is a projection onto a closed T*-stable subspace of H, then
p commutes with all P(W). Hence p commutes with multiplication
by all F € L®(G,pu,C), so by VIIL.19.2 [13] p = P(V), where V €
Bf(G). Also p commutes with all Tj,, h € G', consequently, (hoV)\V
and (h='oV)\V are y-null for each h € G’, hence u((hoV)AV) =0
for all h € G'. In view of ergodicity of y and proposition VII1.19.5
[13] either u(V) = 0 or u(G\ V) = 0, hence either p =0 or p = I,
where I is the unit operator. Hence T is the irreducible unitary
representation. ]
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