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Multi Valued Analytic Functionals on
Compact Riemann Surfaces of Genus
g=>1

IRENE SABADINT (*)

SUMMARY. - In this paper we study analytic functionals on compact
Riemann surfaces of genus g > 1, from the modern point of view
of hyperfunctions. We will give some topological duality theorems
and an integral representation for these functionals.

1. Introduction

The purpose of this paper is the study of analytic functionals defined
on closed sets of a compact Riemann surface of genus g > 1.

This problem, in a primitive form, was proposed by L. Fantappié,
who treated the case g = 0, while some of his students dealt with
the general case (see [10], [13], [14]). In all these papers no topol-
ogy is considered on the spaces used (for obvious historical reasons).
Moreover, the modern theory of hyperfunctions of Sato, which seems
the natural tool for this kind of duality, did not appear until a few
years later, and so it seems interesting to link this approach to more
classical theories.

In [2], Fantappié defined the space of “ultraregular functions”, de-
noted with S(), on an open set U of CP!, as the space of holomor-
phic functions in U, vanishing at infinity if this point belongs to U.
He then proceeded to define a linear region R as a subset of S
closed with respect to the C-linear combinations of its elements. Let
K be the intersection of all regions of CP! where the functions of
R are defined. We then have that the set of holomorphic functions
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on K, denoted with (K), coincides with R and so we can define an
analytic functional as an element of the dual of (K). We have the
following;:

THEOREM 1.1. (/2]) Let F' be an analytic functional defined on (K).
The wvalue it assumes for any function y(t) € (K) is given by:

Flu(®) = 5 [ vttty (1)
™ Jc
where C is a closed smooth curve on the Riemann sphere, encircling
all points in which y(t) is not reqular and not containing points in
which u(t) is not defined.
The function u(t), called indicatriz, is a holomorphic function de-
fined, on the complement of K, by

1
t):=F, | ——
wr () * [m — t]
REMARK 1.2. This theorem shows that analytic functionals carried
by a compact K are in bijective correspondence with their indicatrices
i.e. holomorphic functions defined on the complement of K.

If the indicatrix u(t) is a multi-valued function, then there are
difficulties in the interpretation of (1) which gives different values
according to the chosen determination of u(¢) . Fantappié suggested
to replace the curve C on the Riemann sphere with a closed curve on
the Riemann surface associated with the indicatrix. In such a way
we can explain the different values obtained from the integral (1) as
integrations along cycles which are not homologous. M. Vaccaro (see
[14]) and S. Martis Biddau (see [10]) have worked in this direction,
and in sections 1 and 2 we will try to give a more modern flavour to
their results.

Our approach will follow A. Martineau who, first, understood that
Sato’s hyperfunctions are a generalization of indicatrices of analytic
functionals. To sketch his ideas we need the following:

DEFINITION 1.3. The space of hyperfunctions on R" is
B(R") := H"(C", C"\R"; 0)

where O 1is the sheaf of germs of analytic functions.
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The duality theorem proved by Martineau, see [8], is the follow-
ing:

THEOREM 1.4. Let K C C" be a compact set. We have:

0 ifp#n

HP(C",C"\K;0) = {O(K)’ ifp—n

where

O(K) := indlimgcyccnO(U)
and U wvaries in the family of open sets containing K.

If K is a compact set in R, we can define the space of real analytic
functions as

A(K) = indlimgcyccO(U)

where U is an open as above. The link with hyperfunctions is now
clear: the dual of the space A(K), according to formula (2), is:

A(K) = Bk (R),

i.e. the space of hyperfunctions supported by K (unlike analytic
functionals, hyperfunctions form a sheaf and we can therefore use
the notion of support).

It is known that Bx (R) is an FS—space, while A(K) is a DFS-space.
Bi (R) is even a Montel space, so it is reflexive, and we have:

In this paper we will prove some similar results on Riemann surfaces.
In section 1 we will give a duality theorem and we will explain a fact
first mentioned in a paper by S. Martis Biddau. It is in fact possible
to show that in the case of multi—valued analytic functionals the
indicatrix is nothing but a hyperfunction. We will then give, in
section 2, an integral representation for these analytic functionals.

2. Hyperfunctions on Riemann Surfaces

Sato, in his fundamental paper [11] introduced hyperfunctions on
a m—dimensional real analytic manifold M which can be complexi-
fied (or “analytically prolonged”) to a paracompact m—dimensional
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complex analytic manifold X as a relative m—cohomology class of
Xmod(X\M) with coefficients in the sheaf of analytic functions.
Harvey and Wells have completed (see [5]) the study of this subject
in a quite general setting.

Even though it is possible to adapt the results of [5] to the case of
Riemann surfaces, for our purposes we prefer to introduce the main
results we need. Keeping in mind that hyperfunctions on an open
set 2 C R are defined by:

1 .y = 9V\Q)
B(Q)=H (V\Q,V;0) = o)

we will restate some preliminaries on hyperfunctions on a Riemann
surface.

DEFINITION 2.1. Let ¥ be a Riemann surface. A subset I' of 3 is
called a 1-dimensional submanifold if every point P € 3 has an
open neighbourhood U with local homomorphism ¢, such that ¢ maps
homeomorphically U onto the open unit disc and in such a way that
the intersection U NI corresponds to the real diameter. T is also
said to be an analytic submanifold.

We now define the sheaf of hyperfunctions on I' as follows:
let 2 be an open set of I'; an open set U C X is called a neighbour-
hoodof Q if © is a relatively closed set of U. We associate to each
open set {2 of I' the following vector space:
OU\Q)
——= = B(Q 3
0wy = B Q)
which will be called called the space of hyperfunctions.
The following is a quite expected fact in the theory of hyperfunc-
tions:

THEOREM 2.2. The correspondence Q@ — B(£2), Q open set in T,
defines a flabby sheaf of vector spaces on I'.

If we define the support of a hyperfunction f € B(Q) as the
complement in € of the largest open set on which f is 0 and if B[K]
is the space of hyperfunctions with support in a compact K, it is
possible to show the following result:



MULTI VALUED ANALYTIC FUNCTIONALS etc. 41

O(U\K)

PROPOSITION 2.3. B[K]| = oy

Let now ¥ be a compact Riemann surface of genus g > 1, let K C
3 be a closed subset of ¥ and let V' C X be a Stein neighbourhood
of K. We recall that all proper, open and connected sets V of X
are Stein, because they are open and connected Riemann surfaces.
Since the space HY(K,O), ¢ > 1, is a direct limit of H1(V,0), V
Stein open containing K, and since H4(V,0) = 0, ¢ > 1, by Cartan’s
Theorem B, (see [1]), then H!(K, Q) = 0. This fact will now be used
to prove a duality theorem.

Let us write the exact sequence of cohomology with compact support
(see [4]):

0 — HYV\K,0) — HY(V,0) — HY(K,0) —
— H)(V\K,0) — H)(V,0) — 0.

It is known that, if V' is Stein, then H(V,0O) = 0, for any n #
dim V = 1, we then obtain:

0 — H°(K,0) — HYV\K,0) — H}(V,0) — 0. (4)

The well known Serre duality theorem (see [12]) assures that the
spaces H9(V,QP) and H.~9(V, QY P) are in duality, so H:(V\K, O) =
HO(V,Q') and HY(V,0) = HO(V,Q'). The dual sequence of (4) is:

0 +— O(K) +— H'(V\K, Q" «+— H(V,Q') «—0

from which we obtain:

HO(V\K,QI) ~ Ql(V\K) 5
V.Y Q) ©)

O(K) =

On an open set V', and in general on an open, connected Riemann
surface, we have O = Q!, so that

O(V\K)
K) =
which formally coincides with result (2) if we recall that ng‘\/[)( )

H'(V,V\K;0). The main difference with the complex case is that
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it is not possible to replace V with the compact surface ¥ which is
not Stein.

Under the hypotheses of this section, that is K is a compact of a real
analytic submanifold I' of X, we have

O(K) = Bk (6)

We recall that O(K) is a Montel space (see [9]), so it is a reflexive
space. We can conclude that

By = O(K).

The isomorphism (6) allows us to explain the difficulty discussed in
a paper of S. Martis Biddau (see [10]), concerning the integral rep-
resentation of the functionals associated to multi-valued functions.
Let us restate the isomorphism (6) in a more suitable form:

THEOREM 2.4. Let u = u(z) an algebraic multi-valued function de-
fined by f(u,z) = 0, with f polynomial of degree m in the variable
u. Let us cut the Riemann sphere by the cuts \i ...\, in such a
way that we can separate one of the determinations u, = u,(x) of
the function u(z). Let K = U"_ )\, we have:

O(K)" = Bg.
Proof. 1t is a consequence of the isomorphism (6). O

APPLICATION 2.5: Theorem 2.4 allows us to give a modern flavour
to the following argument (see section 1 of [10]).

Without loss of generality we can suppose that the cuts Ai,... A,
have an extreme in a regular point and the other extreme in a branch
point of u,; moreover cuts must not intersect. The function u, may
also have isolated singularities which are however located on branch
points. This fact involves some difficulties that are beyond our pur-
poses and that do not affect the validity of our statements. So we
will suppose that u, is regular on the Riemann sphere except on cuts
A1 ... Ap and consider the functional

Fyly(2)] = — /C ur (2)y(z)de

T 2mi
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where y(x) is a function regular on cuts, C is a smooth curve con-
taining cuts and leaving out points on which y(#) is not regular. We
can also suppose that the curve C is composed by h curves, one for
each cut, leaving the regular extreme ¢ of the cut A\g, wrapping it
and returning in ¢;. So we have:

h 1 h
Bly@) =Y 5 [ wrolyle)ds =Y Frlyle)
s=1 e, s=1

If we call “abelian linear functional” a functional like:

Fly(@)] = 5 [ u(ohy(z)ds
™ Jc

where u(z) is an algebraic function, C is a closed or open curve on
the relative Riemann surface and y(z) is a regular function on C, we
have that every functional F;, is an abelian functional. In effect, it
suffices to think at the curve C as drawn on the Riemann surface of
u(z) and joining two different points having the same abscissa ;.
Varying the curve C with continuity until it coincides with edges of
the cut As and denoting with w,(z) and u; (z) the values of u, ()
on the edges of the cut, we obtain:

h h
Flye)) = Y Fuly(e)) = Y- 5 [ (i (0) = 7 (2))ylo)ds =
s=1 s=1 T As

= 57 [ 6 @) — v @)ya)te
Now we observe that, under our assumptions, K = U?Zl)\s can be
seen as a compact on a 1-dimensional submanifold. Then we notice
that the difference u; (z) — u, (z) is the boundary value representa-
tion of [u,(z)] on the compact K i.e. the class of u,(z) in Bk, so we
can write

This equality shows that in the case of multi-valued functions the in-
dicatrix is a hyperfunction as prescribed by the isomorphism O(K )’
Bxk.
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3. Integral Representation of Functionals

In this paragraph we introduce an indicatrix, which will allow us to
calculate the value of a functional by an integral, adapting an idea
originally given in [14].

LEMMA 3.1. Let Fy, be the functional in O(K)" defined by:

Fioly(z)] = y(to)

where K is a compact set on a compact Riemann surface 3. contained
in an open set Uy, with chart x. Then there exists a 1-differential
form v(tg,z)dz € QYV\K), with V open set containing K, such
that for all y(z) € O(K) we have:

1
Fulyta)) = 5 [ la)otto. s
where C is a closed smooth curve encircling all points in which y(x) is

not regular and containing points in which v(tg, x)dx is not defined.

Proof. 1If y(x) € O(K), then y(z) € O(U), where U is an open set
containing K. Let V C ¥ be an open set containing the open U
where y is regular. An indicatrix on V must satisfy two requests:

i) Yty € V, v(ty, z)dz is regular on V;

ii) Vtg € V the residue at %y, calculated along a smooth curve C
encircling tg is 1.

Let C be a curve in V. Let C be the contour of a region U containing
K. The differential form y(z)v(to, z)dz is:

i) regular in all points of C, Vty € U;
ii) regular in all points of U unless .

Since the residue at tq is y(to), Vg € U, we can write the following
equality which is a generalization of the Cauchy formula:

y(t) = % /C Y@t z)ds Vel (7)
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Let M and N be two points on the Riemann surface X and let
D = M — N adivisor on Y. It is known that there is on ¥ an abelian
differential of the third kind with poles in M and N and residues +1
and —1 respectively. The difference between two such differentials
is an abelian differential of the first kind. It is also known that on
a Riemann surface of genus g there are oc9 differentials of the first
kind. Now we consider g points P, P, ..., P, on X and a divisor
D, = 23:1 n;P;, n; € Z. We can suppose that D, is not special
and that D, does not contain M and N. The differential vanishing
on the points P; is unique, because D, is not special, so there is a
unique differential form v(¢, z)dz having as zeros, fixed with respect
to t, the points P;, a pole fixed at N and a pole at M of abscissa ¢
with residue 1. The 1-differential form v(¢,z)dz is an indicatrix of
F}, in a region V' not containing D, and N. In other words, we have:

Rl = olt) = 3= [w@p(ta)e  vieU

T 2mi

where C belongs to the region U of regularity of y(t) and it is the
contour of U not containing D, and N. O

THEOREM 3.2. Let F € O(K)', K compact on a Riemann surface
Y. Then there exists a 1-differential form u(z)dz € QY(V\K), with
V' open set containing K, such that for all y(z) € O(K) we have:

Fly(2)] = —— /c y(a)ulz)ds

~ o

where C is a closed smooth curve encircling all points in which y(z)
is not reqular and containing points in which u(x)dx is not defined.

Proof. We will assume that K is contained in an open set U, with
coordinate chart z.

Let F € O(K)', F : O(K) — C. We recall the following facts
whose proofs are easily obtained ([2], [3] and [14]):

AP (o1, 2)dr) = F (< -y(t,2)da) (8)

F( /C y(t,x)d) = /C Fy(y(t, 2)dx) (9)



46 I. SABADINI

We will use (9) to construct an indicatrix of the functional F €
O(K)'. By lemma 3.1, we have an indicatrix for the functional F;
defined as follows:

Fily(z)] :==y(t).

With the notation above we can say that the function in (7) is defined
for t € U while the function y(t) is defined and regular in U. We
will call such function () instead of y(t). It is clear that g(¢) is a
analytic continuation of y(t), so, given a functional F € O(K)', F
can be applied to the function g(¢). We have:

1

2mi

Flg(t)] = Fly(t)] = F /Cy(m)v(t,fﬂ)dx]

where y(z)v(t, z)dz is regular for any = € C, and for any ¢t € K.
From property (9), we obtain

T 2mi

Fly(t)] = — /C (@) Flo(t, 2)da].

We observe that we can apply F to the differential form (¢, z)dx
thought as analytic function in %, because x € C, t € K, so t # =x.
The indicatrix we get is:

u(z)dr = Flv(t, z)dz].

In the general case, we have a complex coordinate covering (Uy, z4)
on ¥ with transition functions z, = fo3(23). An analytic functional
F is a collection {F,} of analytic functionals on z,(U,) C C, such
that, if U, N Up # 0, we have

Fg = fas(Fa)
where
f;B(Fa(f) = Fo(f - fﬂa)‘]ﬂa]

J3q is the Jacobian determinant of the map fg,. Let y € O(K): we
can cover K with finitely many coordinate neighbourhoods U; ... Uy.
Since B is flabby we have the decomposition:

y=yr+...yn K, = suppyq, C U,, a=1...N.
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Then we obtain

N N
Fly] = F[ ya]:ZFa[?/a]

o=

where F,, € O(K,)', Ko C U, with chart z,. By virtue of the above
considerations, we have an indicatrix for each F,, and we can write:

N N 1
0;1 Fa[?/a] = 0;1 2—7” /Ca ya(wa)ua(wa)dma

this ends the proof. O

APPLICATION 3.3: The point M is variable in K while points P,
and N are chosen out of K so we can find a region V containing K
and not containing D, and N. So we have as many indicatrices as
choices of D, and N out of K.

Let v'(t,z)dz e v"(t,z)dz two indicatrices of the functional Fj,.
Their difference is an indicatrix of the functional 0 € O(K)'.

Let v(t, z)dz = v'(t,z)dx — v"(t,z)dz. We have two cases:

i) o(t,z)dz is an abelian differential of the first kind;

ii) 9(t,z)dz is an abelian differential of the third kind with N’ and
N" (the notation is obvious) poles of the first order with residues
+1 and -1 respectively.

Let u'(z)dx and v”(x)dz be indicatrices obtained applying the func-
tional F' to v’ and v" respectively, and let @(z)dz = u'(z)dx —
u'"(z)dz. By linearity we have:

u(z)dzr = F[o(t, z)dz].

So we can say that an indicatrix u(z)dz belongs to Q'(V\K) and
that two indicatrices differ in a form @(z)dr € Q'(V). Then an

QL(V\K)
(V)

indicatrix is an element of the quotient as prescribed by the

isomorphism in (5).
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