On Symmetric Bi-derivations in Rings

Mohammad Ashraf (*)

SUMMARY. - Let R be a ring with centre Z(R). A bi-additive symmetric mapping $D(\cdot,\cdot): R\times R\longrightarrow R$ is called symmetric biderivation if for any fixed $y\in R, x\mapsto D(x,y)$ is a derivation. The main result of the present paper states that if R is a semiprime ring of characteristic different from two and three which admits a symmetric bi-derivation D such that [[D(x,x),x],x] $\in Z(R)$ holds for all $x\in R$, then [D(x,x),x]=0, for all $x\in R$. Further, some commutativity results are also obtained.

1. Introduction

Throughout, R will represent an associative ring with centre Z(R). A ring R is prime if aRb=(0) implies that a=0 or b=0, and is semiprime if aRa=(0) implies a=0. The commutator xy-yx will be written as [x,y]. We shall make the extensive use of commutator identities [xy,z]=[x,z]y+x[y,z] and [x,yz]=y[x,z]+[x,y]z. An additive mapping $d:R\longrightarrow R$ is called a derivation if d(xy)=d(x)y+xd(y) holds for all $x,y\in R$. A mapping $F:R\longrightarrow R$ is said to be centralizing on R if $[F(x),x]\in Z(R)$ for all $x\in R$. In the special case where [F(x),x]=0, for all $x\in R$, the mapping F is called commuting on F. A mapping F is called symmetric if F and F is a symmetric if F and F is a symmetric mapping will be called the trace of F. It is obvious that in case F is a symmetric mapping which

 $^{^{(*)}}$ Author's Address: Department of Mathematics, Aligarh Muslim University, Aligarh - 202 002 (India)

AMS Subject Classifications (1991): 16W25, 16N60, 16U80.

Key Words and phrases: Semiprime ring, derivation, commutator, centre.

is also bi-additive (i.e. additive in both arguments), the trace of B satisfies f(x+y) = f(x) + f(y) + 2B(x,y); $x,y \in R$. A symmetric bi-additive mapping $D(\cdot,\cdot): R \times R \longrightarrow R$ is called symmetric bi-derivation if D(xy,z) = D(x,z)y + xD(y,z) holds for $x,y,z \in R$.

The study of centralizing and commuting mappings was initiated by a well-known theorem due to Posner [9] which states that the existence of a non-zero centralizing derivation on a prime ring R implies that R is commutative. A number of authors have extended the Posner's theorem in several ways (cf. [1],[2],[3],[4],[7],[11] & [13], where further references can be found). The notion of additive commuting mapping is closely connected with the notion of bi-derivation. Every additive commuting mapping $F: R \longrightarrow R$ gives rise to a bi-derivation on R. Namely, linearizing [F(x), x] = 0, we get [F(x), y] = [x, F(y)]; $x, y \in R$ and hence we note that the map $(x,y) \mapsto [F(x),y]$ is a bi-derivation. The concept of bi-derivation was introduced by G. Maksa [5]. It is shown in [6] that symmetric bi-derivations are related to general solution of some functional equations. Some results concerning symmetric bi-derivations in prime rings can be found in [10] and [12]. Our main theorem in the present paper can be regarded as a contribution to the theory of centralizing and commuting mappings in semiprime rings. Further, we investigate commutativity of ring R which admits a symmetric bi-derivation $D(\cdot,\cdot): R \times R \longrightarrow R$ such that either xy - D(xy, xy) = yx - D(yx, yx)or xy + D(xy, xy) = yx + D(yx, yx), for all $x, y \in R$. Finally, it is shown that under rather a weak assumption, R turns out to be commutative.

2. Main results

THEOREM 2.1. Let R be a 2-torsion free and 3-torsion free semiprime ring. Suppose that there exists a symmetric bi-derivation $D(\cdot,\cdot): R \times R \longrightarrow R$ such that the mapping $x \mapsto [f(x),x]$ is centralizing on R, where f denotes the trace of D. Then f is commuting on R. *Proof.* First we shall show that the mapping $x \mapsto [f(x), x]$ is commuting on R. By our hypothesis, we have

$$[[f(x), x], x] \in Z(R), \text{ for all } x \in R.$$
 (1)

Linearize (1), to get

$$\begin{split} [[f(y),x],x] + 2[[D(x,y),x],x] + [[f(x),y],x] + [[f(y),y],x] + \\ 2[[D(x,y),y],x] + [[f(x),x],y] + [[f(y),x],y] + 2[[D(x,y),x],y] + \\ [[f(x),y],y] + 2[[D(x,y),y],y] \in Z(R) \end{split}$$

Now replacing x by -x and comparing the relation so obtained with the above, we get by 2-torsionfreeness of R

$$2[[D(x,y),x],x] + [[f(x),y],x] + [[f(y),y],x] + [[f(x),x],y] + [[f(y),x],y] + 2[[D(x,y),y],y] \in Z(R), \text{ for all } x,y \in R.$$
 (2)

Substituting 2x instead of x in (2), comparing the relation so obtained with (2) and using the fact that characteristic of R is different from 2 and 3, we obtain

$$[[f(x), y], x] + [[f(x), x], y] + 2[[D(x, y), x], x] \in Z(R),$$
for all $x, y \in R$. (3)

Replace y by x^2 in (3) to get

$$[[f(x), x^2], x] + [[f(x), x], x^2] + 2[[f(x)x + xf(x), x], x] \in Z(R).$$

This yields that

 $\begin{aligned} &[[f(x),x],x]x+x[[f(x),x],x]+[[f(x),x],x]x+x[[f(x),x],x]+\\ &2[[f(x),x],x]x+2x[[f(x),x],x]\in Z(R). \text{ Since } [[f(x),x],x]\in Z(R)\\ &\text{and characteristic of }R\text{ is different from 2 and 3, the later relation}\\ &\text{reduces to } [[f(x),x],x]x\in Z(R)\text{ for all }x\in R. \text{ Thus we obtain} \end{aligned}$

$$[[f(x), x], x][y, x] = 0, \text{ for all } x, y \in R.$$
 (4)

Replacing y by y[f(x), x] in (4) and using (4), we have

$$[[f(x), x], x]y[[f(x), x], x] = 0$$

, and the semiprimeness of R yields that

$$[[f(x), x], x] = 0, \quad \text{for all } x \in R. \tag{5}$$

Now, using similar techniques as used to get (3) from (1), we arrive at

$$[[f(x), x], y] + [[f(x), y], x] + 2[[D(x, y), x], x] = 0, \text{ for all } x, y \in R.$$
(6)

Substituting yz for y in (6), we get

$$\begin{split} y[[f(x),x],z] + & [[f(x),x],y]z + [y[f(x),z] + [f(x),y]z,x] + \\ & 2[[yD(x,z) + D(x,y)z,x],x] \\ &= y[[f(x),x],z] + [[f(x),x],y]z + y[[f(x),z],x] + [y,x][f(x),z] \\ & + [f(x),y][z,x] \\ & + [[f(x),y],x]z + 2y[[D(x,z),x],x] + 4[y,x][D(x,z),x] \\ & + 2[[y,x],x]D(x,z) + \\ & 4[D(x,y),x][z,x] + 2D(x,y)[[z,x],x] + 2[[D(x,y),x],x]z \\ &= 0 \end{split}$$

Now, application of (6) yields that

$$[f(x), y][z, x] + [y, x][f(x), z] + 4[D(x, y), x][z, x] + 2D(x, y)[[z, x], x] + 2[[y, x], x]D(x, z) + 4[y, x][D(x, z), x] = 0, \text{ for all } x, y, z \in R.$$
(7)

Replacing of z by x in (7) gives that

$$5[y,x][f(x),x] + 2[[y,x],x]f(x) = 0$$
, for all $x, y \in R$. (8)

Again replace y by x and z by y in (7), to get

$$5[f(x), x][y, x] + 2f(x)[[y, x], x] = 0, \text{ for all } x, y \in R.$$
 (9)

Now replacing y by yz in (8), we have

$$5[y,x]z[f(x),x] + 5y[z,x][f(x),x] + 2[[y,x],x]zf(x) + 2y[[z,x],x]f(x) + 4[y,x][z,x]f(x) = 0,$$

and application of (8) gives that

$$5[y, x]z[f(x), x] + 2[[y, x], x]zf(x) + 4[y, x][z, x]f(x) = 0,$$
for all $x, y, z \in R$. (10)

Now putting f(x) for z in (10), we get

$$5[y,x]f(x)[f(x),x] + 2[[y,x],x]f(x)^{2} + 4[y,x][f(x),x]f(x) = 0,$$
for all $x, y \in R$.
(11)

We also conclude from (8) that $5[y,x][f(x),x]f(x) + 2[[y,x],x]f(x)^2 = 0$, for all $x,y \in R$. Combining of the last equation with (11) yields that

$$[y, x] (5f(x)[f(x), x] - [f(x), x]f(x)) = 0$$
, for all $x, y \in R$. (12)

Replacing y by zy in (12), we get [z,x]y (5f(x)[f(x),x]-[f(x),x]f(x)) =0, for all $x,y,z\in R$, and in particular if z=f(x), then we arrive at

$$[f(x), x]y (5f(x)[f(x), x] - [f(x), x]f(x)) = 0, \text{ for all } x, y \in R.$$
(13)

Left multiplication of (13) by 5f(x) gives

$$5f(x)[f(x), x]y (5f(x)[f(x), x] - [f(x), x]f(x)) = 0,$$
for all $x, y \in R$. (14)

Putting in (13) f(x)y for y, we arrive at

$$[f(x), x]f(x)y (5f(x)[f(x), x] - [f(x), x]f(x)) = 0, \text{ for all } x, y \in R.$$
(15)

Subtracting (15) from (14), we arrive at

$$(5f(x)[f(x), x] - [f(x), x]f(x)) y (5f(x)[f(x), x] - [f(x), x]f(x))$$

= 0, for all $x, y \in R$

and the semiprimeness of R yields that

$$5f(x)[f(x), x] - [f(x), x]f(x) = 0. (16)$$

Now replacing zy for y in (9) and using similar techniques as used to get (12) from (8), we have (5[f(x),x]f(x)-f(x)[f(x),x])[y,x]=0. Further, repetition of arguments which led to (16) from (12) yields that

$$5[f(x), x]f(x) - f(x)[f(x), x] = 0. (17)$$

Combining (16) and (17) and using the fact that characteristic of R is different from 2 and 3, one obtains

$$f(x)[f(x), x] = 0, \text{ for all } x \in R.$$

$$(18)$$

Using similar arguments as used to get (2) from (1), the above relation yields that

$$f(x)[f(y),x] + f(y)[f(x),x] + f(y)[f(y),x] + 4D(x,y)[D(x,y),x] + 2f(x)[D(x,y),y] + 2f(y)[D(x,y),y] + 2D(x,y)[f(x),y] + 2D(x,y)[f(y),y] = 0, \text{ for all } x,y \in R.$$
 (19)

Now, replacing x by 2x in the above relation and comparing the new relation so obtained with the above, we get

$$f(y)[f(y), x] + 2f(y)[D(x, y), y] + 2D(x, y)[f(y), y] = 0,$$
for all $x, y \in R$. (20)

Substituting xy for x in (20), we have

$$f(y)[f(y), x]y + f(y)x[f(y), y] + 2f(y)[D(x, y), y]y + 2f(y)[x, y]f(y) + 2f(y)x[f(y), y] + 2D(x, y)y[f(y), y] = 0,$$
 for all $x, y \in R$. (21)

In view of (20) the above relation at once yields that

$$3f(y)x[f(y), y] + 2f(y)[x, y]f(y) - 2D(x, y)[[f(y), y], y] = 0$$

, and application of (5), gives

$$3f(y)x[f(y), y] + 2f(y)[x, y]f(y) = 0$$
, for all $x, y \in R$. (22)

Replace x by yx in (22), to get

$$3f(y)yx[f(y), y] + 2f(y)y[x, y]f(y) = 0$$
, for all $x, y \in R$. (23)

Left multiplication of (22) by y gives

$$3yf(y)x[f(y), y] + 2yf(y)[x, y]f(y) = 0$$
, for all $x, y \in R$. (24)

Subtracting (24) from (23), we obtain

$$3[f(y), y]x[f(y), y] + 2[f(y), y][x, y]f(y) = 0, \text{ for all } x, y \in R.$$
(25)

In particular, if y = f(x) in (10), and changing x by y and z by x, then we have

$$5[f(y), y]x[f(y), y] + 4[f(y), y][x, y]f(y) = 0, \text{ for all } x, y \in R.$$
(26)

Now from (25) and (26), it follows that [f(y), y]x[f(y), y] = 0, and the semiprimeness of R yields that [f(y), y] = 0, for all $y \in R$ - i.e. f is commuting on R.

REMARK 2.2. If f(x) is centralizing on R -i.e. $[f(x), x] \in Z(R)$ for all $x \in R$, then a stronger result has been obtained by Bresar ([2], Theorem 2). In fact it has been shown that if R is a semi-prime ring with characteristic different from 2 and 3 and $D(\cdot, \cdot) : R \times R \longrightarrow R$

a symmetric and bi-additive mapping such that $[f(x), x] \in Z(R)$ for all $x \in R$, then [f(x), x] = 0, for all $x \in R$. In view of this result, it would be interesting to generalize further Theorem 2.1 in the case when the underlying mapping $D(\cdot, \cdot) : R \times R \longrightarrow R$ is only symmetric and bi-additive (not a bi-derivation).

REMARK 2.3. Theorem 2.1 also leads to the following conjecture: Let R be a semiprime ring with suitable characteristic restriction and let $D(\cdot,\cdot): R\times R\longrightarrow R$ be a symmetric biderivation. Suppose that for some integer $n\geq 1$, $f_n(x)=0$, for all $x\in R$, where $f_1(x)=f(x)$ and $f_{k+1}(x)=[f_k(x),x]$. In this case $f_2(x)=0$. We feel that the proof of this conjecture requires a different approach than those used in the proof of Theorem 2.1

REMARK 2.4. It is shown in ([10], Theorem 1) that the existence of a non-zero symmetric bi-derivation $D(\cdot,\cdot): R\times R\longrightarrow R$, where R is a prime ring of characteristic different from 2, with the property $[D(x,x),x]=0,\ x\in R$ forces R to be commutative. Hence combining this result with the above theorem we find the following theorem due to Vukman ([12], Theorem 2).

COROLLARY 2.5. Let R be a 2-torsion free and 3-torsion free prime ring. If there exists a non-zero symmetric bi-derivation $D(\cdot, \cdot): R \times R \longrightarrow R$ such that the mapping $x \mapsto [f(x), x]$ is centralizing on R, where f denotes the trace of D, then R is commutative.

Recently Daif and Bell ([8], Theorem 2) proved that if a semiprime ring R admits a derivation d such that either xy - d(xy) = yx - d(yx) for all $x, y \in R$, or xy + d(xy) = yx + d(yx) for all $x, y \in R$, then R is commutative. Motivated by this observation we prove the following.

THEOREM 2.6. Let R be a 2-torsion free ring. Suppose that there exists a symmetric bi-derivation $D(\cdot,\cdot): R \times R \longrightarrow R$ such that xy - f(xy) = yx - f(yx) for all $x, y \in R$, where f is the trace of D. Then R is commutative.

Proof. By our hypothesis, we have [x,y] = f(xy) - f(yx) for all $x,y \in R$. This can be rewritten as

$$[x,y] = [x^2, f(y)] + [f(x), y^2] + 2xD(x,y)y - 2yD(x,y)x,$$
for all $x, y \in R$. (27)

Replace x by x + y in (27), to get

$$[x,y] = [x^2, f(y)] + [xy, f(y)] + [yx, f(y)] + [f(x), y^2] + 2[D(x,y), y^2] + 2xD(x,y)y + 2xf(y)y - 2yD(x,y)x - 2yf(y)x.$$

This in view of (27) yields that

$$0 = [xy, f(y)] + [yx, f(y)] + 2[D(x, y), y^{2}] + 2xf(y)y - 2yf(y)x$$
 for all $x, y \in R$. (28)

Replacing y by x + y in (28) and using (28), we have

$$2([x^{2}, f(y)] + [f(x), y^{2}] + 2xD(x, y)y - 2yD(x, y)x) = 0$$

for all $x, y \in R$. Since the characteristic of R is different from two, the last equation implies that

$$[x,y] = [x^2, f(y)] + [f(x), y^2] + 2xD(x,y)y - 2yD(x,y)x = 0$$

for all $x, y \in R$, and hence R is commutative.

Using similar techniques as above, one can prove the following.

THEOREM 2.7. Let R be a 2-torsion free ring. Suppose that there exists a symmetric bi-derivation $D(\cdot,\cdot): R \times R \longrightarrow R$ such that xy + f(xy) = yx + f(yx) for all $x, y \in R$, where f is the trace of D. Then R is commutative.

THEOREM 2.8. Let R be a 2-torsion free ring. Suppose that there exists a symmetric bi-additive mapping $B(\cdot,\cdot): R\times R\longrightarrow R$ for which either xy-B(x,x)=yx-B(y,y), for all $x,y\in R$ or xy+B(x,x)=yx+B(y,y), for all $x,y\in R$. Then R is commutative.

Proof. Suppose that xy - B(x, x) = yx - B(y, y), for all $x, y \in R$. This can be rewritten as [x, y] = f(x) - f(y), where f is the trace of B. Repalcing x by x + y, we get

$$[x, y] = f(x) + 2B(x, y), \text{ for all } x, y \in R.$$
 (29)

Now substituting -x for x in (29) and comparing the relation so obtained with (29), we get 2f(x) = 0. This implies that f(x) = 0 for all $x \in R$. Now linearizing f(x) = 0, one obtains 2B(x, y) = 0 for all $x, y \in R$, and hence in view of (29), we get the required result. \square

In the event if R satisfies xy + B(x,x) = yx + B(y,y), for all $x,y \in R$, then by using similar arguments as above one can prove the result.

In view of the above theorems it is natural to question that: what can we say about the commutativity of a ring R if it satisfies rather a weak condition namely $[x,y]-f(xy)+f(yx)\in Z(R)$ for all $x,y\in R$ or $[x,y]+f(xy)-f(yx)\in Z(R)$ for all $x,y\in R$? The following theorems deal with the commutativity of such rings.

THEOREM 2.9. Let R be a 2-torsion free semiprime ring. Suppose that there exists a symmetric bi-derivation $D(\cdot,\cdot): R\times R\longrightarrow R$ such that either $[x,y]-f(xy)+f(yx)\in Z(R)$ for all $x,y\in R$ or $[x,y]+f(xy)-f(yx)\in Z(R)$, for all $x,y\in R$, where f is the trace of D. Then R is commutative.

Proof. Let R satisfy $[x,y]-f(xy)+f(yx)\in Z(R)$, for all $x,y\in R$. Using similar arguments as used to get (28), we have $[xy,f(y)]+[yx,f(x)]+2[D(x,y),y^2]+2xf(y)y-2yf(y)x\in Z(R)$, for all $x,y\in R$. Further replacing y by x+y in the last relation and using the fact that characteristic of R is different from 2, we find that $f(xy)-f(yx)\in Z(R)$. Combining this with our hypothesis, we get $[x,y]\in Z(R)$. Now repalce y by yx, to get $[x,y]x\in Z(R)$ i.e. [x,y][x,r]=0, for all $x,y,r\in R$. Substituting xy for x, we have $[x,y]x\in R$. Use similar arguments if x satisfies the property $[x,y]+f(xy)-f(yx)\in Z(R)$.

Similarly, one can prove the following.

THEOREM 2.10. Let R be a 2-torsion free semiprime ring. Suppose that there exists a symmetric bi-additive mapping $B(\cdot,\cdot): R \times R \longrightarrow R$ such that either $[x,y]-B(x,x)+B(y,y)\in Z(R)$, for all $x,y\in R$ or $[x,y]+B(x,x)-B(y,y)\in Z(R)$, for all $x,y\in R$. Then R is commutative.

REMARK 2.11. It is equally easy to prove the commutativity of a 2-torsion free ring R (resp. 2-torsion free semiprime ring R) satisfying the property [x,y] = B(x,y), for all $x,y \in R$ (resp. $[x,y] - B(x,y) \in Z(R)$, for all $x,y \in R$), where $B(\cdot,\cdot) : R \times R \longrightarrow R$ is a symmetric bi-additive mapping.

Acknowledgement

The author is greatly indebted to the referee for his valuable suggestions.

REFERENCES

- [1] H.E. BELL AND W.S. MARTINDALE, Centralizing mapping of semiprime rings, Canad. Math. Bull. **30** (1987), 92–101.
- [2] M. Bresar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc. 114 (1992), 641–649.
- [3] M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
- [4] M. Bresar, Commuting traces of bi-additive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525–546.
- [5] G. Maksa, A remark on symmetric bi-additive functions having non-negative diagonalization, Glasnik Mat. 15 (1980), 279–280.
- [6] G. Maksa, On the trace of symmetric bi-derivation, C.R. Math. Rep. Acad. Sci. Canada 9 (1987), 303–307.
- [7] J. MAYNE, Centralizing mapping of prime rings, Canad. Math. Bull. 27 (1984), 122–126.
- [8] M.N.DAIF AND H.E.BELL, Remarks on derivations on semiprime rings, Internat. J. Math. & Math. Sci. 15 (1992), 205–206.
- [9] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [10] J. Vukman, Symmetric bi-derivations in prime and semiprime rings, Aequationes Math. 38 (1989), 245–254.

- [11] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52.
- [12] J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), 181–189.
- [13] J. Vukman, Derivations in semiprime rings, Bull. Austral. Math. Soc. 53 (1995), 353–359.

Received February 12, 1998.