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u-Embedded Sets in Topological
Spaces

JUAN TARRES AND M. AGRIPINA SANZ *)

SUMMARY. - We define the concept of a p-embedded set in a com-
pletely regular topological space X and we state that every v-
embedded set in X is p-embedded in X. Also, we give an example
which proves that the converse is not true.

1. Introduction.

All spaces considered in this paper are completely regular and Haus-
dorff. Tt is known that if X is the Stone-Céch compactification of
a topological space X; v X, its realcompactification of Hewitt, and
X, the topological completion of X defined by Dieudonné (see [2]),
then X C puX C vX C pX. R.L. Blair defines in [1] the concept
of a v-embedded set in a completely regular and Hausdorff space X
and he characterizes such subsets S C X by the condition vS C vX.
According to this definition, a subset S of X is v-embedded in X if
the extension t':vS — vX of the inclusion map :S — X induces a
homeomorphism from vS onto its image by ¢'. Following this defini-
tion, we can define the notion of a y- embedded set S in X by the
condition that S C uX. One easily sees that every v- embedded set
in X is y-embedded in it. However, one question naturally arises: is
every p-embedded set in X, v-embedded in such a space?. We an-
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swer negatively this question by means of an example of a set which
is pu-embedded in a completely regular and Hausdorff space but it is
not v-embedded in it.

2. u~embedded sets in topological spaces.

Let S be a subset of a space X, and ¢ the inclusion of § in X. We
call ¢ the Hewitt extension t:vS — v X of the inclusion 7, and ¢, the
extension of ¢ onto the topological completion uS of S, t: uS — uX,
such that ¢'|,5 = ¢, with uS C vS.

DEFINITION 2.1. A subset S of a space X is p-embedded in X if
t:uS — pX is a homeomorphism from pS onto t(uS).

If S is v-embedded in X, ¢': vS — t/(vS) is a homeomorphism
and since uS is a subset of vS, we have

PROPOSITION 2.2. If S is a v-embedded subset of X, then S is p-
embedded in X.

DEFINITION 2.3. ([1]) A subset S of a space X is c-( resp. cx-)
embedded in X in case every function in C(S) (resp. Cx(S)) has a
continuous extension over X. By [3], S is cx-embedded in X if and
only if BS = ClgxS. S is z- embedded in X in case every zero-set
Z in S is of the form Z' NS for some zero-set Z' in X.

In [1] Blair gives an example of a space X and a v- embedded
subset S of X, such that S is neither realcompact nor z-embedded in
X. Furthermore, S is a p-embedded subset of X, non realcompact.

One easily states the following implications: S is c-embedded
— §'is c*-embedded — S is z-embedded — S is v-embedded — S
is u- embedded.

Since every realcompact subset of X is cx-embedded in X ([1])
and every cozero-set in X is z-embedded in X, we have

PROPOSITION 2.4. Every realcompact subset of X and every cozero
set in X is u-embedded in X.

PROPOSITION 2.5. Let S be a subset of a space X, if uS C pX, S
is p-embedded in X. This is an immediate consequence of the fact
that t: uS — pS C pX, is a homeomorphism with t|s= 1.
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PROPOSITION 2.6. Every topologically complete subset of X is p-
embedded in X . This follows immediately from pS =S C X C puX,
and then pS C pX.

3. There are subsets which are pu-embedded but non
v-embedded in X.

In [3] R.Walker states the following theorem

THEOREM 3.1. ([3]) X is cx-embedded in BX iff every point of BX is
limit of a unique z-ultrafilter in X. Besides if we replace X for any

other space in which X is a dense subspace, the equivalence remains
valid.

Since X is dense in 4 X and X is cx-embedded in X, we have:

COROLLARY 3.2. Every point of pX is limit of a unique z- ultrafilter
n X.

PrOPOSITION 3.3. If Ay and As are topologically complete spaces
and c-embedded in X, then Ay U As is topologically complete space.

Proof. Let F be a real z-ultrafilter on X. From the countable inter-
section property of F'; A; or Ay meets every member of F. Let A; N
F; non empty, for every F; € F. Since A, is c-embedded in X, F|,
is a real z-ultrafilter on the topologically complete space A;. Hence,
Fla, converges to x € u(A;r) by virtue of Corollary 1 and thus F
converges to x € X. Consequently, X is a topologically complete
space. ]

From Propositions 4 and 5 we have

COROLLARY 3.4. The addition of two topologically complete spaces,
c-embedded in X, is p-embedded in X.

Finally, the next example find out that there exist u- embedded
sets in a completely regular and Hausdorff space which are not v-
embedded.
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ExXAMPLE 3.5. Let S1 y So two copies of a topologically complete non
realcompact space. Let S be the topological sum of S1 and So, and
let X be the one-point compactification of S. We have

1. S1U Sy is p-embedded in X.

2. S1USy is not v-embedded in X.

Proof. 1) Sy and Sy are topologically complete subsets of X and
evidently, both are c-embedded in X. Then, from the last corollary,
S1 U Sy is p-embedded in X, (uS C uX = X).

2) S1 U S5 is not realcompact, since S; is closed in S but S is
not realcompact. Hence, vS # S. Since S is clearly not c-embedded
in X, vS # X. Hence vS ¢ vX = X, and S is not v-embedded in
X. O
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