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Fuzziness in Chang's Fuzzy
Topological Spaces

Valent��n Gregori and Anna Vidal (�)

Summary. - It is known that fuzziness within the concept of open-
ness of a fuzzy set in a Chang's fuzzy topological space (fts)
is absent. In this paper we introduce a gradation of openness
for the open sets of a Chang fts (X; T ) by means of a map
� : IX �! I (I = [0; 1]), which is at the same time a fuzzy
topology on X in Shostak's sense. Then, we will be able to avoid
the fuzzy point concept, and to introduce an adequate theory for
�-neighbourhoods and ��Ti separation axioms which extend the
usual ones in General Topology. In particular, our �-Hausdor�
fuzzy space agrees with ��-Rodabaugh Hausdor� fuzzy space when
(X;T ) is interpreservative or �-locally minimal.

1. Introduction

In 1968 C. Chang [1] introduced the concept of a fuzzy topology on a
set X as a family T � IX , where I = [0; 1], satisfying the well-know
axioms, and he referred to each member of T as an open set. So, in
his de�nition of a fuzzy topology some authors notice fuzziness in the
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concept of opennes of a fuzzy set has not been considered. Keeping
this in view, A.P. Shostak [8], began the study of fuzzy structures of
topological type.

The idea of this paper is to allow open sets of a Chang's fuzzy topol-
ogy to be open to some degree by means of a particular Shostak's
fuzzy topology (or gradation of openness [2]) on X (Proposition 3.1).
This gradation of openness will enable us to introduce fuzzy topo-
logical concepts which are generalitation of the corresponding ones
in General Topology and to work with points of X instead of fuzzy
points (the idea of a fuzzy point and fuzzy point belonging is a rather
problematic, see Gottwald [4] for a discussion). After preliminary
section, in section 3 we de�ne the concept of an �-set and study
some de�nitions and properties relative to it. In particular we show
the family of all �-neighborhoods of x 2 X, have similar properties
to the classic cases. In section 4 we de�ne and study the families
of interpreservative and �-locally minimal spaces. In section 5 we
de�ne the concept of an �-Ti space (i = 0; 1; 2) and show that the
concept of an �-T2 space coincides with the ��-Hausdor� concept
due to S.E. Rodabaugh [7] in the spaces mentioned in section 4. Our
study may be thought to be just the beginning of this subjet which
is far from being completed.

2. Preliminary notions

Let X be a nonempty set and I the closed unit interval. A fuzzy set
of X is a map M : X �! I. M(x) is interpreted as the degree of
membership of a point x 2 X in a fuzzy set M , while an ordinary
subset A � X is identi�ed with its characteristic function and, in
consequence ; and X are identi�ed with the constant functions on
X, 0 and 1 respectively. As usual in fuzzy sets, we write A �
B if A(x) � B(x); x 2 X. We de�ne the union, intersection and

complement of fuzzy sets as follows:
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A.P. Shostak [8] de�ned a fuzzy topology on X as a function
� : IX �! I satisfying the following axioms:

(i) �(0) = �(1) = 1
(ii) �; � 2 IX implies �(� \ �) � �(�) ^ �(�)

(iii) �i 2 IX for all i 2 J implies �(
[
i

�i) �
^
i

�(�i)

K.C. Chattopadhyay et al. [2] rediscovered the Shostak's fuzzy
topology concept and called gradation of openness the function � .
Also, they called gradation of closedness on X [2], a function F :
IX �! I satisfying the above axioms (i)-(iii) but interchanging the
intersection with the union and vice-versa. From now, a fuzzy topol-
ogy in Shostak's sense will be called gradation of openness, and we
de�ne a fuzzy topological space, or fts for short, as a pair (X; T )
where T is a fuzzy topology in Chang's sense, on X, i.e., T is a
collection of fuzzy sets of X, closed under arbitrary unions and �-
nite intersections. A set is called open if it is in T , and closed if its
complement is in T . The interior of a fuzzy set A is the largest open
fuzzy set contained in A. If confusion is not possible we say X is a
space instead of a fts. We will denote inf B, the in�mum of a set B
of real numbers.

Recall the support of a fuzzy set A is supp A = fx 2 X : A(x) >
0g. We denote x 2̂ A whenever x 2 supp A, and we say A contains
the point x or that x is in A.

The next de�nition was given by Pu Pao-Ming et al. [6].

Definition 2.1. A fuzzy point is a fuzzy set px which takes the
value 0 for all y 2 X except one, that is x 2 X. The fuzzy point px is
said to belong to the fuzzy set A, denoted by px~2A, i� px(x) � A(x).

We notice x2̂A if px~2A.

3. Gradation of openness

The proof of the following proposition can be seen in [5]

Proposition 3.1. Let X be a nonempty set. Then the map � :
IX �! I given by �(0) = 1 and �(A) = inffA(x) : x 2 supp Ag
if A 6= 0, satis�es both the axioms of gradation of openness and the
axioms of gradation of closedness.
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The real number �(A) is the degree of openness [8] of the fuzzy
set A; clearly, �(A) = � implies the degree of membership of each
point in the support of A, in the fuzzy set A, is at least �. We notice
�(A) = 1 i� A is an ordinary subset of X and �(A) = 0 i� there is a
sequence fxng in X such that A(xn) > 0, 8n 2 N and lim

n
A(xn) = 0.

With this terminology we give the following de�nitions.

Definitions 3.2. The fuzzy set A of X is an �-set if �(A) � �;
moreover, if A was open (closed) we will say A is �-open (�-
closed).

Clearly, each A 2 IX is a 0-set and the 1-sets are only the ordi-
nary subsets of X.

Since � is a gradation of openness and closedness, we have the
following proposition.

Proposition 3.3. The union and intersection of �-sets is an �-set.

The following example shows that if A is an �-set and A � B,
then B is not an �-set necesarily.

Example 3.4. Let X be a set with at least two points and � 2]0; 1].
Let fM;Ng be a partition of X. We de�ne the following fuzzy sets
A and B:

A(x) = � if x 2M and A(x) = 0 if x 2 N

B(x) = � if x 2M and B(x) = �=2 if x 2 N

We have that A is an �-set and A � B, but B is not.

Nevertheless we have the following proposition.

Proposition 3.5. Let A;B be fuzzy sets. If A is an �-set, A � B
and supp B �supp A, then B is an �-set.

Proof. It is obvious.

Definitions 3.6. Let (X;T ) be a fts and let � 2 I. The fuzzy topol-
ogy T� = fA 2 T : �(A) � �g is called the � -level of openness of
the fuzzy topology T .

Clearly fT� : � 2 Ig is a descending family, (i.e., � > � implies
T� � T�), where T0 = T and T1 is an ordinary topology on X.
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We call �-interior of the fuzzy set A, denoted int�(A), the largest
�-open contained in A, i.e.,

int�(A) = [fG 2 T� : G � Ag.
Clearly, int�(A) is wellde�ned, since 0 2 T� 8� 2 I, and int�(A) �

A for each A 2 IX . Note, int0(A) is the interior of A in Chang's
sense and the �-interior of a fuzzy set A is just its interior in the
�-level fuzzy topology T�.
We say that the fuzzy set A is an �-neighborhood, or �-nbhd

for short, of p 2 X if there exists G 2 T� such that p 2̂ G � A.
Equivalently, a point in (the support of) int�(A) will be called an
�-interior point of A. The �-nbhd system of a point p 2 X, is
the family N�(p) of all �-nbhd's of the point p. Obviously, if � >
� then N�(p) � N�(p). With this notation we have the following
proposition.

Proposition 3.7. Let (X; T ) be a fts, A 2 IX , � 2 I and p 2 X.
Then,

(i) A is �-open if and only if A = int�(A).

(ii) p 2̂ int�(A) if and only if A 2 N�(p).

Proof. It is obvious.

If A is an �-open set, then A is an �-neighbourhood of all points
of its support, but the converse is not true as shows the following
example.

Example 3.8. Let (X;T ) be a topological space,� 2]0; 1[ and let T =
f0;1g [ f� � U : U 2 Tg. Then any U 2 T is an �-neighbourhood
for any point x 2 U , i.e. for any point of its support, but obviously
U fails to be �-open in (X; T ).

In the next proposition we show that the family N�(p) satis�es
similar properties to the corresponding ones in General Topology.

Proposition 3.9. Let (X; T ) be a fts and let � 2 I. For each point
p 2 X let N�(p) be the family of all �-nbhd's of p. Then

1. If M 2 N�(p), then p 2̂ M .

2. If M;N 2 N�(p), then M \N 2 N�(p).
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3. If M 2 N�(p) and M � N , then N 2 N�(p).

4. If M 2 N�(p), then there is N 2 N�(p) such that �(N) � �,
N �M and N 2 N�(q); 8q 2̂ N .

Proof. 1. If M 2 N�(p), then there exists G 2 T� such that
p2̂G �M , and therefore p 2̂ M .

2. If M;N 2 N�(p), then there are two �-open fuzzy sets G1 and
G2 such that p 2̂ G1 � M , p 2̂ G2 � N . Since G1 \G2 2 T�
and p 2̂ G1 \G2 �M \N , we have M \N 2 N�(p).

3. If M 2 N�(p), there exists G 2 T� such that p 2̂ G �M � N
and therefore N 2 N�(p).

4. Suppose M 2 N�(p). Then there exists G 2 T� such that
p 2̂ G � M . Let N = G. We have �(N) � � and N 2
N�(q); 8q 2̂ N .

Proposition 3.10. Let � 2 I. If N� is a function which assigns
to each p 2 X a nonempty family N�(p) of fuzzy sets satisfying
properties 1, 2 and 3 of the above proposition, then the family

T� = fM 2 IX : �(M) � �;M 2 N�(p); 8p 2̂ Mg

is a fuzzy topology on X. If property 4 of the above proposition is
also satis�ed, then N�(p) is precisely the �-nbhd system of p relative
to the topology T�.

Proof. First, we will show that T� is a fuzzy topology on X.

Obviously 0 2 T� and since M � 1, 8M 2 N�(p), according to
property 3, 1 2 N�(p), 8p 2 X, i.e, 1 2 T�.

LetM;N 2 T�. If p 2̂M\N , clearly p 2̂M and p 2̂ N , therefore
M;N 2 N�(p) and according to property 2 we have M \N 2 N�(p).
Now, by Proposition 3.3, �(M \N) � � and then M \N 2 T�.

Let fMigi2J be a family of sets of T� and let M =
[
i

Mi. If

p 2̂ M , then we have 0 <

 [
i

Mi

!
(p), and therefore there exists
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j 2 J such that 0 < Mj(p), i.e, p 2̂ Mj . Therefore, Mj 2 N�(p)
and according to property 3, M 2 N�(p). Now, by Proposition 3.3,
�(M) � � and then M 2 T�.

Now, we suppose property 4 is also satis�ed. We will see that the
�-neighbourhood system of p, V�(p), relative to the fuzzy topology
T�, is the family N�(p).

If M 2 V�(p), then there exists an �-open, G of T� with p2̂G �
M . Therefore, G 2 N�(p) and, according to property 3, we have
M 2 N�(p).

If M 2 N�(p), according to property 4, there exists N 2 N�(p),
with N �M and such that �(N) � � and N 2 N (q), 8q2̂N . Then
we have N 2 T� such that p 2̂ N �M , i.e., M 2 N�(p).

Observetion 3.11: In [6], the authors de�ned the concept of neigh-
borhood of a fuzzy point and they showed similar results, but in [9]
Shostak remarks that there are inaccuracies in the formulation of
these authors. In fact, the family constructed by the authors is a
base for a fuzzy topology, but it is not a fuzzy topology.

4. Interpreservative and locally minimal fts

We begin with the following de�nitions.

Definitions 4.1. Let (X;T ) be a fts. We say X is interpreser-
vative if the intersection of each family of open sets is an open set,
or equivalently, if the family of closed sets is a fuzzy topology on X.
We say X is locally minimal if \fG 2 T : x 2̂ Gg is open for
each x 2 X, i.e., each x 2 X admits a smallest nbhd. We say X is
�-locally minimal, � 2]0; 1], if \fG 2 T : x 2̂ Gg is �-open, for
each x 2 X.

Clearly, for � > � > 0, �-locally minimal implies �-locally min-
imal. Also, an �-locally minimal space is locally minimal but the
converse is false as shows the next example.

Example 4.2. Let X the real interval ]1;+1[ with the fuzzy topology
T = f0;1; Gg where G(x) = 1=x; x 2 X. Obviosly G is the smallest
nbhd of each point of X and so, X is locally minimal but �(G) = 0
and then X is not �-locally minimal for any � 2]0; 1].
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In the following proposition we study the relationship between
interpreservative and locally minimal spaces.

Proposition 4.3. Let � 2]0; 1] and let (X;T ) be an interpreserva-
tive fts where �(G) � �, for each G 2 T . Then T is �- locally
minimal (therefore locally minimal).

Proof. Let x 2 X and Ax = fG 2 T : x2̂Gg. We consider Gx =\
G2Ax

G. Since T is interpreservative we have Gx 2 T . It is su�cient

to prove Gx 6= 0. Now, for each G 2 Ax we have G(x) � � > 0.

Therefore Gx(x) =
^

G2Ax

G(x) � � > 0 and x 2̂ Gx, i.e., Gx 6= 0.

Then the �-open Gx is the smallest nbhd of x. In the following
example we will see that we cannot remove the condition �(G) �
� > 0, for each G 2 T , in the above proposition.

Example 4.4. Let X be the unit interval [0,1]. For each h 2]0; 1],
we consider the following functions

fh(x) =

�
2hx; x 2 [0; 1=2]
2h(1 � x); x 2 [1=2; 1]

The family A = ffh : 0 < h � 1g [ f0g [ f1g is an interpreservative
fuzzy topology, however there does not exist the smallest nbhd for any
x 2 X.

Also, we can �nd a locally minimal space that is not an interpreser-
vative space.

Example 4.5. Consider in the real line R the laminated indiscrete
fuzzy topology L, i.e., L is constituted by the constant functions from
R to the unit interval I. We denote fc : R �! I the constant
function fc(x) = c for each x 2 R. Take � 2]0; 1] and consider the
fuzzy topology T = C� [ ff�=2g with C� = ffc 2 L : c > �g [ f0g.
Then, f�=2 is the smallest nbhd of x, for all x 2 R and therefore
(R; T ) is locally minimal. However\

c>�

fc = f� =2 T :
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We have seen that in general the two concepts interpreservative
and locally minimal are not equivalent, but they are for ordinary
topologies.

Proposition 4.6. Let (X;T ) be a topological space. Then X is in-
terpreservative if and only if it is locally minimal.

Proof. It is obvious.

Proposition 4.7. Let (X;T ) be a locally minimal fts. Then each
nonempty intersection of open sets contains a nonempty open set.

Proof. Let G =
\
i2J

Gi with Gi 2 T ; 8i 2 J . If G 6= 0, then there

exists x 2̂ G and therefore x 2̂ Gi; 8i 2 J . For this x 2 X let Gx

be the smallest nbhd of x. We have Gx � Gi; 8i 2 J and therefore

Gx �
\
i2J

Gi. Gx is the required open set.

5. Separation axioms in fts

We will de�ne new separation axioms for fts.

Definition 5.1. Let � 2 I. We say the fts (X; T ) is �-Hausdor�,
or �-T2, if for all points of space x; y 2 X with x 6= y, there are
G;H 2 T� such that x2̂G, y2̂H and G \ H = 0. �-T1 if for all
x; y 2 X with x 6= y there are G;H 2 T� such that x2̂G, y2̂H,x =2
supp H and y =2 supp G. �-T0 if for all x; y 2 X with x 6= y there
is G 2 T� such that x2̂G, and y =2 supp G.

Clearly, the following implications are satis�ed.

�-T2 �! �-T1 �! �-T0

Also, for � > � we have �-Ti �! �-Ti, for i = 0; 1; 2. The following
de�nition is due to S.E. Rodabaugh [7].

Definition 5.2. A fts (X; T ) is ��-Hausdor� if for all x; y 2 X
with x 6= y, there are G;H 2 T such that G(x) � �, H(y) � � and
G \H = 0.
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Clearly an �-Hausdor� space is ��-Hausdor�.
We will see in the next two propositions that the �-Hausdor�

and ��-Hausdor� concepts agree in interpreservative and �-locally
minimal spaces.

Proposition 5.3. Let (X;T ) be an interpreservative fts and let � 2
]0; 1]. Then (X;T ) is �-Hausdor� if and only if it is ��-Hausdor�.

Proof. We only see the converse. Assume that (X;T ) is interp-
reservative and ��-Hausdor� and let x; z 2 X; x 6= z. Further,
let the open fuzzy sets Ux = ^fU : U 2 T ; U(x) � �g,
Vz = ^fV : V 2 T ; V (z) � �g. Then, obviously, Ux ^ Vz = 0

and �(Ux) � �; �(Vz) � � (notice that supp Ux = fxg and supp Vz
= fzg, since X is ��-Hausdor� ) and hence X is �-Hausdor�.

Proposition 5.4. Let � 2]0; 1] and let (X; T ) be an �-locally min-
imal space. Then (X;T ) is �-Hausdor� if and only if it is ��-
Hausdor�.

Proof. We only see the converse.
Suppose X is ��-Hausdor�. For each a 2 X we denote Ga the

smallest nbhd of a, which is �-open by the hypothesis. Now consider
Ua = ^fU : U 2 T ; U(a) � �g. We have Ga � Ua, and therefore
supp Ga = fag, since X is ��-Hausdor�. Finally, let x; z 2 X with
x 6= z. Then, Gx \Gz = 0 and thus (X; T ) is �-Hausdor�.

There are some de�nitions of Hausdorfness depending on fuzzy
points. One of these was given by D. Adnajevic.

Definition 5.5. The fts (X;T ) is Hausdor� (denoted Adn-H2, here)
if for all fuzzy points px; qy 2 IX with x 6= y, there are G;H 2 T ,
such that px 2̂ G, qy 2̂ H and G \H = 0.

Observetion 5.6: In [3] there is the following diagram which re-
lates various fuzzy Hausdor� conditions:

Adn-H2 () GSW-H =) SLS-H () LP-FT2 =) ��-Hausdor�

Clearly a fts X is 1�-Hausdor� if and only if it is Adn-H2. Now,
as a consequence of Propositions 5.3 and 5.4 we can complete and
particularize the above diagram. In fact, the conditions Adn-H2,
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GSW-H, SLS-H, LP-FT2, 1�-Hausdor� and 1-Hausdor� are equiva-
lent for interpreservative fts , 1-locally minimal fts or locally minimal
(ordinary) topological space.
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