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Old and New Results on
Quasi-uniform Extension

Akos CsiszAr )

SUMMARY. - According to [17] or [12], U is a quasi-uniformity on
a set X iff it is a filter on X x X, the diagonal A = {(z,z) :
x€ X} CU forUelU (i.e. U is composed of entourages on X),
and, for each U € U, there is U' € U such that U? =U' o U’ =
{(z, 2) : Jy with (z,y), (y,z) eU'} CU.

The restriction U | Xo to Xo C X of the quasi-uniformity U on
X is composed of the sets U | Xo = U N (Xo x Xo) for U € U; it
s a quasi-uniformity on Xg.

Let Y D X, W be a quasi-uniformity on Y; W is an extension
of the quasi-uniformity U on X if W | X =U.

The purpose of the present paper is to give a survey on results,

due mainly to Hungarian topologists, concerning extensions of
quasi-uniformities.

1. Preliminaries

In the following, ¢/ and W will always denote quasi-uniformities on
X and Y D X, respectively. We shall write Z =Y — X.

The conjugate of U is the quasi-uniformity U~ = {U~' : U e U}
where U ! = {(2,9) : (y,z) € U}.

The quasi-uniformity & induces a topology 7 = U® on X for
which the neighbourhood filter of z € X is composed of the sets
U(z) for U € U; here U(A) = {y € X3z € A with (z,y) € U}
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whenever A C X and U C X x X, and U(z) =U({z}) ifz € X. We
write U~ for (U ™).

A quasi-uniformity U’ on X is finer than U if U C U'; the finest
U is discrete (i.e. A € U). U is coarser than U’ iff U' is finer than U.
Each topology admits a finest quasi-uniformity inducing it, its fine
quasi-uniformity.

For an extension W on Y of U, let us write

T=W? T =W V=W|Z

Let s(p) be the trace b(p) | X on X of the T-neighbourhood filter
b(p) of p € Z (& € s(p) may happen), s (p) be the same for 7
instead of T, t(z) be the trace on Z of b(z) for z € X.

Suppose X, Y, U and some combination of 7, T, s, s, V are
given. An extension W is said to be compatible with this combination
iff it induces the given elements of the combination. If 7 is given, it
is always a topology on Y'; similarly, a given 7~ is a topology on Y,
s and s~ are mappings from Z to the collection Fil(X) of all (proper
or improper) filters in X, and V is a quasi-uniformity on Z. If 7 or
T~ is given, b(a) and b~ (a) are the T- and 7 -neighbourhood filter
of a € Y, respectively, and s(p) (s~ (p)) is the trace on X of b(p)
(b= (p)) for p € Z.

2. The case (U, s)

We look for an extension W compatible with (U,s), i.e. such that
W | X = U and the trace of the W'-neighbourhood filter of p € Z
is a given filter s(p) in X. A filter v in X is said to be U-round iff,
for R € v there are U € U and R’ € v such that U(R') C R.

THEOREM 2.1. [4]. There is an extension compatible with (U,s) iff
each filter s(p) (p € Z) is U-round.

A topology on Y is a loose extension iff X is open for this topology
and the subspace Z is discrete.

COROLLARY 2.2. [5]. If the above condition is fullfilled, then there
is a finest extension compatible with (U,s) for which T is a loose
extension of U and V is discrete.
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In the case considered now, there is, in general, no coarsest com-
patible extension ([9]).

3. The case (U,s ,5)

Now, besides U, mappings s,s~ : Z — Fil(X) are given and we look
for a W such that W | X = U and s(p) (s~ (p)) is the trace on X of
the W% (W~')-neighbourhood filter of p € Z.

A pair (v7,t) of filters in X is said to be (U—)Cauchy iff,for
U €U, there are sets R~ € t~ and R € v satisfying R~ x R C U.

THEOREM 3.1. [8]. There is an extension compatible with (U,s,s)
iff each s~ (p) is U™ -round, each s(p) is U-round, and each pair
(s~ (p),s(p)) is Cauchy (p € Z).

Let 7! and 7! be topologies on Y. We say that the bitopology
(T-1,T1) is biregular (regular in [13]) iff each T'-neighbourhood of
a point contains a 7 *-closed T*-neighbourhood of the given point.

COROLLARY 3.2. [8]. If the conditions in 3.1 are fullfilled, there is a
finest extension compatible with (U,s,s); for this W, the bitopology
(T, T) is the finest biregular bitopology such that U~ =T~ | X,
UP = T | X and the trace of the T~ -(T-)neighbourhood filter of
p € Z is equal to s~ (p) (s(p)).

The bitopology (7, T) described here is said to be the fine bireg-
ular extension of (U™, U™) associated with (s, ).
In general, the is no coarsest extension in this case ([7]).

4. The case (U,T)

We look now for a W satisfying W | X = U, W? = T for a given
topology T on Y.

THEOREM 4.1. [10]. There is an extension compatible with (U,T)
iff UP = T | X, the trace on X of each T -neighbourhood filter is
U-round and U CU(T) | X for the fine quasi-uniformity U(T) of T.

Unfortunately, there is no useful construction for (7 ); therefore
it is interesting to look for necessary and for sufficient conditions.
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Let us say that ¢ : Z — exp X is a Z-selector if p(p) € s(p)
for p € Z and the trace s(p) of the T-neighbourhood filter of p.
Denote by @ the collection of all Z-selectors. The collection ¥ of
the X-selectors v : X — exp Z is defined similarly with the con-
dition ¢ (z) € t(x) for z € X and the trace t(x) on Z of the T-
neighbourhood filter of x € X.

PROPOSITION 4.2. [2]. For the existence of an extension compatible
with (U, T) it is necessary that UP = T | X, each s(p) (with the
above meaning of s(p)) (p € Z) is U-round and, for each U € U,
there are ¢ € ® and v € U such that p(¢(z)) C U(zx) for z € X.

Here ¢(A) = U{¢(p) : p € A} whenever A C Z, and ¢(B) is
similarly defined for B C X.

Suppose now that 7 is a strict extension of U™, i.e. the sets
s(G) = GU{p € Z : G € s(p)}, where G is UP-open, constitute
a base for 7. In this case, the above necessary condition can be
formulated in another way. For this purpose, let us consider a family
{s(p) : p € Z} of filters in X and say that it is uniformly tame iff,
for U € U and x € X, there are ¢ € ® and U-open sets G () such
that z € G(z) and ¢(p) C U(z) whenever G(z) € s(p).

Now J. Gerlits has formulated the following result:

COROLLARY 4.3. [4]. If the topology T is a strict extension of U,
then the ezistence of an extension compatible with (U, T) implies that
the family {s(p) : p € Z} of the trace filters is uniformly tame.

PROBLEM 4.4: Are the conditions in 4.2 sufficient for the existence
of an extension compatible with (U, T), at least in the case of a strict
extension T 7

In the present case, the usual situation holds:

COROLLARY 4.5. [4]. If there is a extension compatible with (U,T)
then there is a finest one.

On the other hand, there is, in general, no coarsest extension
compatible with (U, T) ([9]).

Let us now mention some sufficient conditions.

THEOREM 4.6. [10]. If X is T-closed and U = T | X then there
exists an extension compatible with (U, T).
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THEOREM 4.7. [10]. In the case X is T-open, an extension com-
patible with (U, T) exists iff U = T | X and each s(p) (p € Z) is
U-round.

The following statement was proved in [4] for the case of strict
extensions and in [10] in the general case:

THEOREM 4.8. [10]. IfU'"” =T | X, and each s(p) (p € Z) is U-
round and U-stable then there exists an extension compatible with

u,T).

Here a filter t on X is said to be U-stable iff U € U implies
({U(R): Ret} €.

5. The case (U, 7, T)

We are looking for a W satisfying W | X =U, WP =T WP =T
for given topologies 7, 7T on Y.

THEOREM 5.1. [7]. If there exists an extension compatible with
U, T, T) then U =T~ | X, UP = T | X, each trace filter
s (p) (s(p)) of the T—-(T-) neighbourhood filter of p € Z is U™ -
round (U-round) and each pair (s~ (p)), (s(p)) is Cauchy.

THEOREM 5.2. [7]. If the conditions in 5.1 are fullfilled and the
bitopology (T—,T) is the fine bireqular extension of (U™, UP), then
there exists an extension compatible with (U, T —,T).

An obvious necessary condition for the existing of a compatible
extension in this case is:

(*) there is a quasi-uniformity W on Y such that

W=7 W=7 W X=u", W|X=U.

Now a sufficient condition can be obtained with the help of the
following property: a family {(s~ (p),s(p)) : p € Z} of filters pairs in
X is uniformly weakly concentrated iff, for U € U, there is U' € U
such that K, L € s(p), K ,L~ €s (p)and K- xK CU', L~ xLC
U'imply K~ x L CU.



80 AKOS CSASZAR

THEOREM 5.3. [10]. If the conditions 5.1 and (*) are fullfilled and
the family {(s~(p),s(p)) : p € Z} is uniformly weakly concentrated
then there exists an extension compatible with (U, T ,T).

COROLLARY 5.4. [7]. If there is an extension compatible with (U, T —,
T) then there is a finest one.

In general, there is no coarsest compatible extension in this case

([7])-
6. The case (U, V,T)

Suppose now that, besides the quasi-uniformity &/ on X and the
topology 7 on Y, a quasi-unifomity V on Z is given and we look for
a W satisfying W | X =U, W | Z =V, W = T. This is a special
case of the problem of looking for simultaneous extensions.

THEOREM 6.1. [2]. An extension compatible with (U, V,T) exists iff
UP =T | X,V =T | Z, s(p) isU-round forp € Z, t(z) is V-round
for x € X, for each U € U there are p € ®, ¢ € U, V €V such that
o(V((x))) C U(x), and, for each V €V, there are p € ®, ¢ € U,
U € U such that (U (p(p))) C V(p) forp € Z.

COROLLARY 6.2. [2]. If X is a T-open or T -closed then the condi-
tions involving ® and ¥ can be omitted from 6.1.

COROLLARY 6.3. [2]. If there is an extension compatible with (U, V),
T) then there is a finest one.

In general, there is no coarsest extension in this case ([2]).

7. Questions of density

We say that the extension W is dense ift X is T-dense; it is doubly
dense iff X is both T-dense and 7 -dense; it is firm iff X is T *-dense
for T* = sup(T,T 7).

In any of the cases 2 to 6, there is a dense extension iff there is
an extension and s(p) is a proper filter for each p € Z.

There is a doubly dense extension compatible with (U4,s ,s) or
(U, T—,T) iff there is an extension and all s~ (p) and s(p) are proper
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filters for p € Z. A doubly dense extension compatible with (i, s)
exists iff there is a compatible extension and each filter s(p) is D-
Cauchy (Cauchy in [11]), i.e. it is a proper filter admitting a proper
cofilter s~ (p) such that (s~ (p),s(p)) is a Cauchy filter pair.

PROBLEM 7.1: Is there a similar statement in the cases (U,7T) or
u,v,7)?

A pair of filters (v7,t) is said to be linked iff R~ € v, R €t
imply R~ N R # (.

THEOREM 7.2. [8]. There ezists a firm extension compatible with
(U,s,5) or (U, T, T) iff there is a compatible extension and each
filter pair (s~ (p),s(p)) is linked. This extension is unique.

If v is a filter in X, the U-envelope of t is the filter composed of
all sets U(R) for U € U, R € t. A filter is said to be firmly D-Cauchy
iff it is the U-envelope of some filter v such that (r,t) is a Cauchy
filter pair.

THEOREM 7.3. [1]. There is a firm extension compatible with (U,s)
iff each filter s(p) (p € Z) is U-round and firmly D — Cauchy. This
extension 1s unique.

COROLLARY 7.4. [1]. There is a firm extension compatible with
(U, T) iff there is a firm extension compatible with (U,s) and T is a
strict extension of UP; this extension is unique.

8. Transitive extensions

A quasi-uniformity is transitive iff it admints (as a filter) a base com-
posed of transitive entourages. For a given topology, there is finest
transitive quasi-uniformity inducing it, its fine transitive quasi-
uniformity.

THEOREM 8.1. [5]. There is a transitive extension compatible with
U,T) iff U is transitive, U = T | X, s(p) is U-round for p € Z,
and U CU'(T) | X for the fine transitive quasi-uniformity U'(T) of
T.

THEOREM 8.2. [6]. If Uis transitive, each s (p) is U™ -round, each
s(p) is U-round, each pair (s~ (p),s(p)) is U-Cauchy (p € Z) and
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(T, T) is the fine biregular extension of (UP,UP) then there exists
a transitive extension compatible with (U, T, T).

Let us say that (U,V) is a regular pair iff U €e U, V € V, U and
V' are transitive entourages, and there are ¢ € ®, 1y € ¥ such that

e(V(¥(x))) CU(z), (U(p(p))) CV(p) forz e X, pe Z.

THEOREM 8.3. [16]. There ezists a transitive extension compatible
with U, VT) iff UP =T | X, VP =T | Z, the filter t(x) is V-round
for x € X, s(p) is U-round for p € Z, and the members U in the

requlars pairs (U, V') constitute a base of U, those V constitute a base
of V.

9. Totally bounded extensions

A quasi-uniformity U is said to be totally bounded iff, for U € U,
there is a finite cover of X whose member A satisfy A x A C U.

THEOREM 9.1. [5]. There is a totally bounded extension compatible
with (U, T) iff U is totally bounded, UP = T | X, and each s(p) is
U-round.

COROLLARY 9.2. [5]. Under the above hypotheses, there is a finest
totally bounded extension compatible with (U, T).

10. Finite extensions

If the set Z is finite, one can formulate more precise statements in
many cases.

Let us say that a filter v in X is tame if, for U € U, thereis R € ¢
such that R C U(x) whenever t — x for the topology U'P.

The following sufficient condition can be found in [4] for the case
when 7T is a strict extension of U and in [6] in the general case:

THEOREM 10.1. If Z is finite, U? = T | X, each s(p) is U-round
and U-tame, then there is an extension compatible with (U,T).

Let X, denote the set of all points z € X such that p € Ne(z)
(pe€Z).
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THEOREM 10.2. [14]. If Z is finite, there is an extension compatible
with (U, T) iff U? =T | X, each s(p) is U-round and, for U € U,
there is S € s(p) such that x € X, implies S C U(z) (p € Z).

If filters s~ (p) are prescribed for p € Z, we can give a complete
description of the extensions compatible with (U,s, 7).

THEOREM 10.3. [14]. If Z is finite, there exists an extension com-
patible with (U,s=,T) iff UP = T | X and, for any p € Z, the
filter s(p) is U-round, s~ (p) is U -round, Ns (p) = X'p, the pair
(s~ (p),s(p)) is U-Cauchy, finally, for p, q € Z t(p) C t(q) implies
s (q) Cs (p), and t(p) Z t(q) implies the existence of S~ € s (q)
and S € s(p) with S— NS = 0.

COROLLARY 10.4. [1/]. Under the above hypotheses, the extension
compatible with (U,s~,T) is unique.

COROLLARY 10.5. [14]. If Z is finite, the extensions compatible with
(U, T) constitute a distributive lattice with N for inf, containing a
finest element but possibly without a coarsest element.

In some cases, however, there is a coarsest compatible extension;
let us say that a filter v is strictly tame for U iff there are, for a given
U € U, an entourage U’ € U and a set R € ¢t such that U'(z) € ©
implies R C U(x).

THEOREM 10.6. [6]. If Z is finite, T is a strict extension of U™P, and
each s(p) is round and striclty tame for U, then there is a coarsest
extension compatible with (U, T).

Let us say that the extension W is uniformly strict (strict in [4])
iff W € W implies the existence of W' € W such that s(W'(a)NX) C
Wi(a) fora €Y.

PROPOSITION 10.7. [4]. If there is a uniformly strict extension then
each s(p) is strictly tame for U.

THEOREM 10.8. [4]. If Z is finite, T is a strict extension of U™
and s(p) (p € Z) is round and strictly tame for U then there exists
a unique uniformly strict extension compatible with (U,T).
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The quasi-uniformity U is said to be uniformly regular (regular
in [4]) iff, for U € U, there is U' € U such that U'(z) C U(x) for
2 € X and the closure relative to Y. A filter v in X is said to be
reqularly tame iff, for U € U, there are U' € U and R € t such that
U'(z) N R' # ) for every R' € v implies R C U(z) (z € X).

PROPOSITION 10.9. [/]. If there is a uniformly reqular extension W
then U is uniformly regqular, the topology W' is reqular, and each
s(p) is round and regularly tame for U.

Conversely:

THEOREM 10.10. [3]. If Z is finite, U is uniformly reqular, T is a
reqular topology, and each s(p) is round and regularly tame for U

and p € Z then there exists a uniformly reqular extension compatible
with (U, T).

THEOREM 10.11. [7]. If Z is finite, then an extension compati-
ble with (U, T, T) exists iff (T ,T) is a biregular extension of
U™ . U™), each s(p) is U-round, s~ (p) is U™ -round, and each pair
(s~ (p),s(p)) is U-Cauchy.

The reader can find more useful information concerning older
results on quasi-uniform extensions in the paper [6].
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