Old and New Results on Quasi-uniform Extension

Ákos Császár (*)

SUMMARY. - According to [17] or [12], \mathcal{U} is a quasi-uniformity on a set X iff it is a filter on $X \times X$, the diagonal $\Delta = \{(x, x) : x \in X\} \subset U$ for $U \in \mathcal{U}$ (i.e. \mathcal{U} is composed of entourages on X), and, for each $U \in \mathcal{U}$, there is $U' \in \mathcal{U}$ such that $U'^2 = U' \circ U' = \{(x, z) : \exists y \text{ with } (x, y), (y, z) \in U'\} \subset U$.

The restriction $\mathcal{U} \mid X_0$ to $X_0 \subset X$ of the quasi-uniformity \mathcal{U} on X is composed of the sets $U \mid X_0 = U \cap (X_0 \times X_0)$ for $U \in \mathcal{U}$; it is a quasi-uniformity on X_0 .

Let $Y \supset X$, \mathcal{W} be a quasi-uniformity on Y; \mathcal{W} is an extension of the quasi-uniformity \mathcal{U} on X if $\mathcal{W} \mid X = \mathcal{U}$.

The purpose of the present paper is to give a survey on results, due mainly to Hungarian topologists, concerning extensions of quasi-uniformities.

1. Preliminaries

In the following, \mathcal{U} and \mathcal{W} will always denote quasi-uniformities on X and $Y \supset X$, respectively. We shall write Z = Y - X.

The conjugate of \mathcal{U} is the quasi-uniformity $\mathcal{U}^- = \{U^{-1} : U \in \mathcal{U}\}$ where $U^{-1} = \{(x, y) : (y, x) \in U\}.$

The quasi-uniformity \mathcal{U} induces a topology $\mathcal{T} = \mathcal{U}^{tp}$ on X for which the neighbourhood filter of $x \in X$ is composed of the sets U(x) for $U \in \mathcal{U}$; here $U(A) = \{y \in X \exists x \in A \text{ with } (x, y) \in U\}$

^(*) Author's address: H-1052 Budapest, Pàrizsi utca 6/a

Research supported by Hungarian Foundation for Scientific Research, grant no. T016094

whenever $A \subset X$ and $U \subset X \times X$, and $U(x) = U(\{x\})$ if $x \in X$. We write \mathcal{U}^{-tp} for $(U^{-})^{tp}$.

A quasi-uniformity U' on X is finer than \mathcal{U} if $\mathcal{U} \subset \mathcal{U}'$; the finest \mathcal{U} is discrete (i.e. $\Delta \in \mathcal{U}$). \mathcal{U} is coarser than \mathcal{U}' iff \mathcal{U}' is finer than \mathcal{U} . Each topology admits a finest quasi-uniformity inducing it, its fine quasi-uniformity.

For an extension \mathcal{W} on Y of \mathcal{U} , let us write

$$\mathcal{T} = \mathcal{W}^{tp}, \quad \mathcal{T}^- = \mathcal{W}^{-tp}, \quad \mathcal{V} = \mathcal{W} \mid Z.$$

Let $\mathfrak{s}(p)$ be the *trace* $\mathfrak{b}(p) \mid X$ on X of the \mathcal{T} -neighbourhood filter $\mathfrak{b}(p)$ of $p \in Z$ ($\emptyset \in \mathfrak{s}(p)$ may happen), $\mathfrak{s}^{-}(p)$ be the same for \mathcal{T}^{-} instead of \mathcal{T} , $\mathfrak{t}(x)$ be the trace on Z of $\mathfrak{b}(x)$ for $x \in X$.

Suppose X, Y, \mathcal{U} and some combination of \mathcal{T} , \mathcal{T}^- , \mathfrak{s} , \mathfrak{s}^- , \mathcal{V} are given. An extension \mathcal{W} is said to be *compatible* with this combination iff it induces the given elements of the combination. If \mathcal{T} is given, it is always a topology on Y; similarly, a given \mathcal{T}^- is a topology on Y, \mathfrak{s} and \mathfrak{s}^- are mappings from Z to the collection Fil(X) of all (proper or improper) filters in X, and \mathcal{V} is a quasi-uniformity on Z. If \mathcal{T} or \mathcal{T}^- is given, $\mathfrak{b}(a)$ and $\mathfrak{b}^-(a)$ are the \mathcal{T} - and \mathcal{T}^- -neighbourhood filter of $a \in Y$, respectively, and $\mathfrak{s}(p)$ ($\mathfrak{s}^-(p)$) is the trace on X of $\mathfrak{b}(p)$ ($\mathfrak{b}^-(p)$) for $p \in Z$.

2. The case $(\mathcal{U}, \mathfrak{s})$

We look for an extension \mathcal{W} compatible with $(\mathcal{U}, \mathfrak{s})$, i.e. such that $\mathcal{W} \mid X = \mathcal{U}$ and the trace of the \mathcal{W}^{tp} -neighbourhood filter of $p \in Z$ is a given filter $\mathfrak{s}(p)$ in X. A filter \mathfrak{r} in X is said to be \mathcal{U} -round iff, for $R \in \mathfrak{r}$ there are $U \in \mathcal{U}$ and $R' \in \mathfrak{r}$ such that $U(R') \subset R$.

THEOREM 2.1. [4]. There is an extension compatible with $(\mathcal{U}, \mathfrak{s})$ iff each filter $\mathfrak{s}(p)$ $(p \in \mathbb{Z})$ is \mathcal{U} -round.

A topology on Y is a *loose* extension iff X is open for this topology and the subspace Z is discrete.

COROLLARY 2.2. [5]. If the above condition is fullfilled, then there is a finest extension compatible with $(\mathcal{U}, \mathfrak{s})$ for which \mathcal{T} is a loose extension of \mathcal{U}^{tp} and \mathcal{V} is discrete. In the case considered now, there is, in general, no coarsest compatible extension ([9]).

3. The case $(\mathcal{U}, \mathfrak{s}^{-}, \mathfrak{s})$

Now, besides \mathcal{U} , mappings $\mathfrak{s}, \mathfrak{s}^- : Z \to \operatorname{Fil}(X)$ are given and we look for a \mathcal{W} such that $\mathcal{W} \mid X = \mathcal{U}$ and $\mathfrak{s}(p)$ ($\mathfrak{s}^-(p)$) is the trace on X of the \mathcal{W}^{tp} (\mathcal{W}^{-tp})-neighbourhood filter of $p \in Z$.

A pair $(\mathfrak{r}^-, \mathfrak{r})$ of filters in X is said to be $(\mathcal{U}-)Cauchy$ iff, for $U \in \mathcal{U}$, there are sets $R^- \in \mathfrak{r}^-$ and $R \in \mathfrak{r}$ satisfying $R^- \times R \subset U$.

THEOREM 3.1. [8]. There is an extension compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathfrak{s})$ iff each $\mathfrak{s}^-(p)$ is \mathcal{U}^- -round, each $\mathfrak{s}(p)$ is \mathcal{U} -round, and each pair $(\mathfrak{s}^-(p), \mathfrak{s}(p))$ is Cauchy $(p \in Z)$.

Let \mathcal{T}^1 and \mathcal{T}^{-1} be topologies on Y. We say that the *bitopology* $(\mathcal{T}^{-1}, \mathcal{T}^1)$ is *biregular* (regular in [13]) iff each \mathcal{T}^i -neighbourhood of a point contains a \mathcal{T}^{-i} -closed \mathcal{T}^i -neighbourhood of the given point.

COROLLARY 3.2. [8]. If the conditions in 3.1 are fullfilled, there is a finest extension compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathfrak{s})$; for this \mathcal{W} , the bitopology $(\mathcal{T}^-, \mathcal{T})$ is the finest biregular bitopology such that $\mathcal{U}^{-tp} = \mathcal{T}^- | X$, $\mathcal{U}^{tp} = \mathcal{T} | X$ and the trace of the $\mathcal{T}^- \cdot (\mathcal{T} \cdot)$ neighbourhood filter of $p \in Z$ is equal to $\mathfrak{s}^-(p)$ ($\mathfrak{s}(p)$).

The bitopology $(\mathcal{T}^-, \mathcal{T})$ described here is said to be the fine biregular extension of $(\mathcal{U}^{-tp}, \mathcal{U}^{tp})$ associated with $(\mathfrak{s}^-, \mathfrak{s})$.

In general, the is no coarsest extension in this case ([7]).

4. The case $(\mathcal{U}, \mathcal{T})$

We look now for a \mathcal{W} satisfying $\mathcal{W} \mid X = \mathcal{U}, \ \mathcal{W}^{tp} = \mathcal{T}$ for a given topology \mathcal{T} on Y.

THEOREM 4.1. [10]. There is an extension compatible with $(\mathcal{U}, \mathcal{T})$ iff $\mathcal{U}^{tp} = \mathcal{T} \mid X$, the trace on X of each \mathcal{T} -neighbourhood filter is \mathcal{U} -round and $\mathcal{U} \subset \mathcal{U}(\mathcal{T}) \mid X$ for the fine quasi-uniformity $\mathcal{U}(\mathcal{T})$ of \mathcal{T} .

Unfortunately, there is no useful construction for $\mathcal{U}(\mathcal{T})$; therefore it is interesting to look for necessary and for sufficient conditions. Let us say that $\varphi : Z \to exp X$ is a Z-selector if $\varphi(p) \in \mathfrak{s}(p)$ for $p \in Z$ and the trace $\mathfrak{s}(p)$ of the \mathcal{T} -neighbourhood filter of p. Denote by Φ the collection of all Z-selectors. The collection Ψ of the X-selectors $\psi : X \to exp Z$ is defined similarly with the condition $\psi(x) \in \mathfrak{t}(x)$ for $x \in X$ and the trace $\mathfrak{t}(x)$ on Z of the \mathcal{T} neighbourhood filter of $x \in X$.

PROPOSITION 4.2. [2]. For the existence of an extension compatible with $(\mathcal{U}, \mathcal{T})$ it is necessary that $\mathcal{U}^{tp} = \mathcal{T} \mid X$, each $\mathfrak{s}(p)$ (with the above meaning of $\mathfrak{s}(p)$) $(p \in Z)$ is \mathcal{U} -round and, for each $U \in \mathcal{U}$, there are $\varphi \in \Phi$ and $\psi \in \Psi$ such that $\varphi(\psi(x)) \subset U(x)$ for $x \in X$.

Here $\varphi(A) = \bigcup \{ \varphi(p) : p \in A \}$ whenever $A \subset Z$, and $\varphi(B)$ is similarly defined for $B \subset X$.

Suppose now that \mathcal{T} is a *strict* extension of \mathcal{U}^{tp} , i.e. the sets $s(G) = G \cup \{p \in Z : G \in \mathfrak{s}(p)\}$, where G is \mathcal{U}^{tp} -open, constitute a base for \mathcal{T} . In this case, the above necessary condition can be formulated in another way. For this purpose, let us consider a family $\{\mathfrak{s}(p) : p \in Z\}$ of filters in X and say that it is *uniformly tame* iff, for $U \in \mathcal{U}$ and $x \in X$, there are $\varphi \in \Phi$ and \mathcal{U}^{tp} -open sets G(x) such that $x \in G(x)$ and $\varphi(p) \subset U(x)$ whenever $G(x) \in \mathfrak{s}(p)$.

Now J. Gerlits has formulated the following result:

COROLLARY 4.3. [4]. If the topology \mathcal{T} is a strict extension of \mathcal{U}^{tp} , then the existence of an extension compatible with $(\mathcal{U}, \mathcal{T})$ implies that the family $\{\mathfrak{s}(p) : p \in Z\}$ of the trace filters is uniformly tame.

PROBLEM 4.4: Are the conditions in 4.2 sufficient for the existence of an extension compatible with $(\mathcal{U}, \mathcal{T})$, at least in the case of a strict extension \mathcal{T} ?

In the present case, the usual situation holds:

COROLLARY 4.5. [4]. If there is a extension compatible with $(\mathcal{U}, \mathcal{T})$ then there is a finest one.

On the other hand, there is, in general, no coarsest extension compatible with $(\mathcal{U}, \mathcal{T})$ ([9]).

Let us now mention some sufficient conditions.

THEOREM 4.6. [10]. If X is \mathcal{T} -closed and $\mathcal{U}^{tp} = \mathcal{T} \mid X$ then there exists an extension compatible with $(\mathcal{U}, \mathcal{T})$.

THEOREM 4.7. [10]. In the case X is \mathcal{T} -open, an extension compatible with $(\mathcal{U}, \mathcal{T})$ exists iff $\mathcal{U}^{tp} = \mathcal{T} \mid X$ and each $\mathfrak{s}(p)$ $(p \in Z)$ is \mathcal{U} -round.

The following statement was proved in [4] for the case of strict extensions and in [10] in the general case:

THEOREM 4.8. [10]. If $\mathcal{U}^{tp} = \mathcal{T} \mid X$, and each $\mathfrak{s}(p)$ $(p \in Z)$ is \mathcal{U} -round and \mathcal{U} -stable then there exists an extension compatible with $(\mathcal{U}, \mathcal{T})$.

Here a filter \mathfrak{r} on X is said to be \mathcal{U} -stable iff $U \in \mathcal{U}$ implies $\bigcap \{ U(R) : R \in \mathfrak{r} \} \in \mathfrak{r}.$

5. The case $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$

We are looking for a \mathcal{W} satisfying $\mathcal{W} \mid X = \mathcal{U}, \mathcal{W}^{-tp} = \mathcal{T}^{-}, \mathcal{W}^{tp} = \mathcal{T}$ for given topologies $\mathcal{T}^{-}, \mathcal{T}$ on Y.

THEOREM 5.1. [7]. If there exists an extension compatible with $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$ then $\mathcal{U}^{-tp} = \mathcal{T}^- \mid X, \ \mathcal{U}^{tp} = \mathcal{T} \mid X$, each trace filter $\mathfrak{s}^-(p)$ ($\mathfrak{s}(p)$) of the $\mathcal{T}^-(\mathcal{T})$ neighbourhood filter of $p \in Z$ is \mathcal{U}^- -round (\mathcal{U} -round) and each pair ($\mathfrak{s}^-(p)$), ($\mathfrak{s}(p)$) is Cauchy.

THEOREM 5.2. [7]. If the conditions in 5.1 are fullfilled and the bitopology $(\mathcal{T}^-, \mathcal{T})$ is the fine biregular extension of $(\mathcal{U}^{-tp}, \mathcal{U}^{tp})$, then there exists an extension compatible with $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$.

An obvious necessary condition for the existing of a compatible extension in this case is:

(*) there is a quasi-uniformity \mathcal{W}' on Y such that

$$\mathcal{W}^{'-tp} = \mathcal{T}^-, \quad \mathcal{W}^{'tp} = \mathcal{T}, \ \mathcal{W}^{'-} \mid X = \mathcal{U}^-, \quad \mathcal{W}^{'} \mid X = \mathcal{U}.$$

Now a sufficient condition can be obtained with the help of the following property: a family $\{(\mathfrak{s}^-(p),\mathfrak{s}(p)): p \in Z\}$ of filters pairs in X is uniformly weakly concentrated iff, for $U \in \mathcal{U}$, there is $U' \in \mathcal{U}$ such that $K, L \in \mathfrak{s}(p), K^-, L^- \in \mathfrak{s}^-(p)$ and $K^- \times K \subset U', L^- \times L \subset U'$ imply $K^- \times L \subset U$.

THEOREM 5.3. [10]. If the conditions 5.1 and (*) are fullfilled and the family $\{(\mathfrak{s}^-(p), \mathfrak{s}(p)) : p \in Z\}$ is uniformly weakly concentrated then there exists an extension compatible with $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$.

COROLLARY 5.4. [7]. If there is an extension compatible with $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$ then there is a finest one.

In general, there is no coarsest compatible extension in this case ([7]).

6. The case $(\mathcal{U}, \mathcal{V}, \mathcal{T})$

Suppose now that, besides the quasi-uniformity \mathcal{U} on X and the topology \mathcal{T} on Y, a quasi-unifomity \mathcal{V} on Z is given and we look for a \mathcal{W} satisfying $\mathcal{W} \mid X = \mathcal{U}, \ \mathcal{W} \mid Z = \mathcal{V}, \ \mathcal{W}^{tp} = \mathcal{T}$. This is a special case of the problem of looking for simultaneous extensions.

THEOREM 6.1. [2]. An extension compatible with $(\mathcal{U}, \mathcal{V}, \mathcal{T})$ exists iff $\mathcal{U}^{tp} = \mathcal{T} \mid X, \mathcal{V}^{tp} = \mathcal{T} \mid Z, \mathfrak{s}(p)$ is \mathcal{U} -round for $p \in Z, \mathfrak{t}(x)$ is \mathcal{V} -round for $x \in X$, for each $U \in \mathcal{U}$ there are $\varphi \in \Phi, \psi \in \Psi, V \in \mathcal{V}$ such that $\varphi(V(\psi(x))) \subset U(x)$, and, for each $V \in \mathcal{V}$, there are $\varphi \in \Phi, \psi \in \Psi, U \in \mathcal{U}$ such that $\psi(U(\varphi(p))) \subset V(p)$ for $p \in Z$.

COROLLARY 6.2. [2]. If X is a \mathcal{T} -open or \mathcal{T} -closed then the conditions involving Φ and Ψ can be omitted from 6.1.

COROLLARY 6.3. [2]. If there is an extension compatible with $(\mathcal{U}, \mathcal{V}, \mathcal{T})$ then there is a finest one.

In general, there is no coarsest extension in this case ([2]).

7. Questions of density

We say that the extension \mathcal{W} is *dense* iff X is \mathcal{T} -dense; it is *doubly dense* iff X is both \mathcal{T} -dense and \mathcal{T}^- -dense; it is *firm* iff X is \mathcal{T}^* -dense for $\mathcal{T}^* = sup(\mathcal{T}, \mathcal{T}^-)$.

In any of the cases 2 to 6, there is a dense extension iff there is an extension and $\mathfrak{s}(p)$ is a proper filter for each $p \in \mathbb{Z}$.

There is a doubly dense extension compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathfrak{s})$ or $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$ iff there is an extension and all $\mathfrak{s}^-(p)$ and $\mathfrak{s}(p)$ are proper

filters for $p \in Z$. A doubly dense extension compatible with $(\mathcal{U}, \mathfrak{s})$ exists iff there is a compatible extension and each filter $\mathfrak{s}(p)$ is *D*-*Cauchy* (Cauchy in [11]), i.e. it is a proper filter admitting a proper *cofilter* $\mathfrak{s}^-(p)$ such that $(\mathfrak{s}^-(p), \mathfrak{s}(p))$ is a Cauchy filter pair.

PROBLEM 7.1: Is there a similar statement in the cases $(\mathcal{U}, \mathcal{T})$ or $(\mathcal{U}, \mathcal{V}, \mathcal{T})$?

A pair of filters $(\mathfrak{r}^-, \mathfrak{r})$ is said to be *linked* iff $R^- \in \mathfrak{r}^-$, $R \in \mathfrak{r}$ imply $R^- \cap R \neq \emptyset$.

THEOREM 7.2. [8]. There exists a firm extension compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathfrak{s})$ or $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$ iff there is a compatible extension and each filter pair $(\mathfrak{s}^-(p), \mathfrak{s}(p))$ is linked. This extension is unique.

If \mathfrak{r} is a filter in X, the \mathcal{U} -envelope of \mathfrak{r} is the filter composed of all sets U(R) for $U \in \mathcal{U}$, $R \in \mathfrak{r}$. A filter is said to be *firmly D-Cauchy* iff it is the \mathcal{U} -envelope of some filter \mathfrak{r} such that $(\mathfrak{r}, \mathfrak{r})$ is a Cauchy filter pair.

THEOREM 7.3. [1]. There is a firm extension compatible with $(\mathcal{U}, \mathfrak{s})$ iff each filter $\mathfrak{s}(p)$ $(p \in Z)$ is \mathcal{U} -round and firmly D – Cauchy. This extension is unique.

COROLLARY 7.4. [1]. There is a firm extension compatible with $(\mathcal{U}, \mathcal{T})$ iff there is a firm extension compatible with $(\mathcal{U}, \mathfrak{s})$ and \mathcal{T} is a strict extension of \mathcal{U}^{tp} ; this extension is unique.

8. Transitive extensions

A quasi-uniformity is *transitive* iff it admints (as a filter) a base composed of transitive entourages. For a given topology, there is finest transitive quasi-uniformity inducing it, its *fine transitive quasiuniformity*.

THEOREM 8.1. [5]. There is a transitive extension compatible with $(\mathcal{U}, \mathcal{T})$ iff \mathcal{U} is transitive, $\mathcal{U}^{tp} = \mathcal{T} \mid X, \mathfrak{s}(p)$ is \mathcal{U} -round for $p \in Z$, and $\mathcal{U} \subset \mathcal{U}'(\mathcal{T}) \mid X$ for the fine transitive quasi-uniformity $\mathcal{U}'(\mathcal{T})$ of \mathcal{T} .

THEOREM 8.2. [6]. If \mathcal{U} is transitive, each $\mathfrak{s}^-(p)$ is \mathcal{U}^- -round, each $\mathfrak{s}(p)$ is \mathcal{U} -round, each pair $(\mathfrak{s}^-(p),\mathfrak{s}(p))$ is \mathcal{U} -Cauchy $(p \in \mathbb{Z})$ and

 $(\mathcal{T}^-, \mathcal{T})$ is the fine biregular extension of $(\mathcal{U}^{tp}, \mathcal{U}^{tp})$ then there exists a transitive extension compatible with $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$.

Let us say that (U, V) is a regular pair iff $U \in \mathcal{U}, V \in \mathcal{V}, U$ and V are transitive entourages, and there are $\varphi \in \Phi, \psi \in \Psi$ such that $\varphi(V(\psi(x))) \subset U(x), \psi(U(\varphi(p))) \subset V(p)$ for $x \in X, p \in Z$.

THEOREM 8.3. [16]. There exists a transitive extension compatible with $(\mathcal{U}, \mathcal{VT})$ iff $\mathcal{U}^{tp} = \mathcal{T} \mid X, \mathcal{V}^{tp} = \mathcal{T} \mid Z$, the filter $\mathfrak{t}(x)$ is \mathcal{V} -round for $x \in X$, $\mathfrak{s}(p)$ is \mathcal{U} -round for $p \in Z$, and the members U in the regulars pairs (U, V) constitute a base of \mathcal{U} , those \mathcal{V} constitute a base of V.

9. Totally bounded extensions

A quasi-uniformity \mathcal{U} is said to be *totally bounded* iff, for $U \in \mathcal{U}$, there is a finite cover of X whose member A satisfy $A \times A \subset U$.

THEOREM 9.1. [5]. There is a totally bounded extension compatible with $(\mathcal{U}, \mathcal{T})$ iff \mathcal{U} is totally bounded, $\mathcal{U}^{tp} = \mathcal{T} \mid X$, and each $\mathfrak{s}(p)$ is \mathcal{U} -round.

COROLLARY 9.2. [5]. Under the above hypotheses, there is a finest totally bounded extension compatible with $(\mathcal{U}, \mathcal{T})$.

10. Finite extensions

If the set Z is finite, one can formulate more precise statements in many cases.

Let us say that a filter \mathfrak{r} in X is *tame* if, for $U \in \mathcal{U}$, there is $R \in \mathfrak{r}$ such that $R \subset U(x)$ whenever $\mathfrak{r} \to x$ for the topology U^{tp} .

The following sufficient condition can be found in [4] for the case when \mathcal{T} is a strict extension of \mathcal{U}^{tp} and in [6] in the general case:

THEOREM 10.1. If Z is finite, $\mathcal{U}^{tp} = \mathcal{T} \mid X$, each $\mathfrak{s}(p)$ is \mathcal{U} -round and \mathcal{U} -tame, then there is an extension compatible with $(\mathcal{U}, \mathcal{T})$.

Let X_p denote the set of all points $x \in X$ such that $p \in \cap \mathfrak{r}(x)$ $(p \in Z)$. THEOREM 10.2. [14]. If Z is finite, there is an extension compatible with $(\mathcal{U}, \mathcal{T})$ iff $\mathcal{U}^{tp} = \mathcal{T} \mid X$, each $\mathfrak{s}(p)$ is \mathcal{U} -round and, for $U \in \mathcal{U}$, there is $S \in \mathfrak{s}(p)$ such that $x \in \tilde{X}_p$ implies $S \subset U(x)$ $(p \in Z)$.

If filters $\mathfrak{s}^-(p)$ are prescribed for $p \in Z$, we can give a complete description of the extensions compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathcal{T})$.

THEOREM 10.3. [14]. If Z is finite, there exists an extension compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathcal{T})$ iff $\mathcal{U}^{tp} = \mathcal{T} \mid X$ and, for any $p \in Z$, the filter $\mathfrak{s}(p)$ is \mathcal{U} -round, $\mathfrak{s}^-(p)$ is \mathcal{U}^- -round, $\cap \mathfrak{s}^-(p) = \tilde{X}_p$, the pair $(\mathfrak{s}^-(p), \mathfrak{s}(p))$ is \mathcal{U} -Cauchy, finally, for $p, q \in Z \mathfrak{r}(p) \subset \mathfrak{r}(q)$ implies $\mathfrak{s}^-(q) \subset \mathfrak{s}^-(p)$, and $\mathfrak{r}(p) \not\subset \mathfrak{r}(q)$ implies the existence of $S^- \in \mathfrak{s}^-(q)$ and $S \in \mathfrak{s}(p)$ with $S^- \cap S = \emptyset$.

COROLLARY 10.4. [14]. Under the above hypotheses, the extension compatible with $(\mathcal{U}, \mathfrak{s}^-, \mathcal{T})$ is unique.

COROLLARY 10.5. [14]. If Z is finite, the extensions compatible with $(\mathcal{U}, \mathcal{T})$ constitute a distributive lattice with \cap for inf, containing a finest element but possibly without a coarsest element.

In some cases, however, there is a coarsest compatible extension; let us say that a filter \mathfrak{r} is *strictly tame* for \mathcal{U} iff there are, for a given $U \in \mathcal{U}$, an entourage $U' \in \mathcal{U}$ and a set $R \in \mathfrak{r}$ such that $U'(x) \in \mathfrak{r}$ implies $R \subset U(x)$.

THEOREM 10.6. [6]. If Z is finite, \mathcal{T} is a strict extension of \mathcal{U}^{tp} , and each $\mathfrak{s}(p)$ is round and strictly tame for \mathcal{U} , then there is a coarsest extension compatible with $(\mathcal{U}, \mathcal{T})$.

Let us say that the extension \mathcal{W} is uniformly strict (strict in [4]) iff $W \in \mathcal{W}$ implies the existence of $W' \in \mathcal{W}$ such that $s(W'(a) \cap X) \subset W(a)$ for $a \in Y$.

PROPOSITION 10.7. [4]. If there is a uniformly strict extension then each $\mathfrak{s}(p)$ is strictly tame for \mathcal{U} .

THEOREM 10.8. [4]. If Z is finite, \mathcal{T} is a strict extension of \mathcal{U}^{tp} and $\mathfrak{s}(p)$ $(p \in Z)$ is round and strictly tame for \mathcal{U} then there exists a unique uniformly strict extension compatible with $(\mathcal{U}, \mathcal{T})$. The quasi-uniformity \mathcal{U} is said to be uniformly regular (regular in [4]) iff, for $U \in \mathcal{U}$, there is $U' \in \mathcal{U}$ such that $\overline{U'(x)} \subset U(x)$ for $x \in X$ and the closure relative to \mathcal{U}^{tp} . A filter \mathfrak{r} in X is said to be regularly tame iff, for $U \in \mathcal{U}$, there are $U' \in \mathcal{U}$ and $R \in \mathfrak{r}$ such that $U'(x) \cap R' \neq \emptyset$ for every $R' \in \mathfrak{r}$ implies $R \subset U(x)$ ($x \in X$).

PROPOSITION 10.9. [4]. If there is a uniformly regular extension \mathcal{W} then \mathcal{U} is uniformly regular, the topology \mathcal{W}^{tp} is regular, and each $\mathfrak{s}(p)$ is round and regularly tame for \mathcal{U} .

Conversely:

THEOREM 10.10. [3]. If Z is finite, \mathcal{U} is uniformly regular, \mathcal{T} is a regular topology, and each $\mathfrak{s}(p)$ is round and regularly tame for \mathcal{U} and $p \in Z$ then there exists a uniformly regular extension compatible with $(\mathcal{U}, \mathcal{T})$.

THEOREM 10.11. [7]. If Z is finite, then an extension compatible with $(\mathcal{U}, \mathcal{T}^-, \mathcal{T})$ exists iff $(\mathcal{T}^-, \mathcal{T})$ is a biregular extension of $(\mathcal{U}^{-tp}, \mathcal{U}^{tp})$, each $\mathfrak{s}(p)$ is \mathcal{U} -round, $\mathfrak{s}^-(p)$ is \mathcal{U}^- -round, and each pair $(\mathfrak{s}^-(p), \mathfrak{s}(p))$ is \mathcal{U} -Cauchy.

The reader can find more useful information concerning older results on quasi-uniform extensions in the paper [6].

References

- [1] A. CSÁSZÁR, On a class of D-Cauchy filters, Serdica Math. Journal.
- [2] Á. CSÁSZÁR, On a problem of simultaneous quasi-uniform extensions, Acta Math. Hungar.
- [3] A. CSÁSZÁR, Regular extensions of quasi-uniformities, Studia Sci. Math. Hungar 14 (1979), 15-26.
- [4] A. CSÁSZÁR, Extensions of quasi-uniformities, Acta Math. Acad. Sci. Hungar 37 (1981), 121–145.
- [5] Å. CSÁSZÁR, On J. Deák's construction for quasi-uniform extensions, Rend. Ist. Mat. Univ. Trieste, **30 Suppl.** (1999), 87-90.
- [6] J. DEÁK, A survey of compatible extensions (presenting 77 unsolved problems), Coll. Math. Soc. J. Bolyai 55 (1989), 127–175.
- J. DEÁK, Extensions of quasi-uniformities for prescribed bitopologies I, Stud. Sci. Math. Hungar 25 (1990), 45-67.
- [8] J. DEÁK, Extensions of quasi-uniformities for prescribed bitopologies II, Stud. Sci. Math. Hungar 25 (1990), 69-91.

- [9] J. DEÁK, Notes on extensions of quasi-uniformities for prescribed topologies, Stud. Sci. Math. Hungar 25 (1990), 231-234.
- [10] J. DEÁK, Quasi-uniform extensions for finer topologies, Stud. Sci. Math. Hungar 25 (1990), 97-105.
- [11] D. DOITCHINOV, Another class of complete quasi-uniform spaces, C. R. Acad. Bulgare Sci. 44 (1991), 1991.
- [12] P. FLETCHER AND W.F. LINDGREN, *Quasi-uniform spaces*, Marcel Dekker Inc., New York and Basel, 1982.
- [13] J.C. KELLY, *Bitopological spaces*, Proc. London Math. Soc. **13** (1963), no. 3, 71–89.
- [14] A. LOSONCZI, Finite quasi-uniform extensions i, Acta Math. Hungar.
- [15] A. LOSONCZI, Finite quasi-uniform extensions ii, Acta Math. Hungar.
- [16] A. LOSONCZI, Special simultaneous quasi-uniform extensions, Acta Math. Hungar.
- [17] L. NACHIBIN, Sur les espaces uniformes ordonnés, C. R. Paris 226 (1948), 774-775.

Received November 10, 1997.