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Invariants on Compact Spaces

Francisco Balibrea Gallego (�)

Summary. - From the dynamical point of view, topological invari-
ants are those characteristics on compact topological spaces which

are kept by topological conjugacy. In this paper we consider three

of them of special interest: topological entropy, sequence topo-

logical entropy and rotational entropy. We survey some of their

properties and obtain some useful formulas to their computation

over the space of continuous maps on the compact space.

1. Introduction

Let X be a compact topological space and f : X ! X a continuous
map.When we iterate this map over all the points onX we obtain the
discrete dynamical system denoted by the pair (X; f). In this setting
we are interested in knowing the behavior of all the orbits generated
by f (we will call it the dynamics of f), that is, all the sequences
(fn(x))1n=0where f

n = fn�1 � f for every n � 1 and f0 = Identity:
In particular we want to consider how these orbits mix together. To
some extent this can be measured by a topological invariant on X
called the topological entropy which will be denoted by h.

By a topological invariant we mean some characteristic de�ned
on the set of continuous maps of the topological space into itsef
that are not changed by topological conjugacy. We say that two
maps on X; f and g are topologically conjugated if there exists an
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homeomorphism d on X such that f �d = d�g: In this case it is held
that h(f) = h(g) (see [1]).

The topological entropy is an anologous to another invariant, the
metric entropy, introduced by Kolmogorov and Sinai in the setting
of probabilistic measure spaces, [10] and [13]. This invariant mea-
sures how complicated is a transformation on the space from the
theoretical point of view of the invariant measures. But this metric
entropy can not distinguish how is the dynamics concentrated on
sets of measure zero. On the contrary, the topological entropy can
be \disturbed" by the parts of the dynamics concentrated on very
small sets. Surprisingly there is a relationship between these two
notions (one purely metric and topological the other) through the
set of f -invariant measures which can be de�ned on X.

Not all the zero topological entropy maps are of the same type.
It would be interesting to get another tool to be able to distinguish
them, since for this type of maps, topological entropy is a rough
measure. To get it, T.N. Goodman [8] introduced as an extention of
the notion of topological entropy another topological invariant,the
sequence topological entropy, where not all but the iterates given by
a sequence of numbers are considered.

Recently, W. Geller and M. Misiurewicz [7], in the setting of torus
transformations, have introduced another invariant on this type of
transformations, the rotational entropy, which allows us to take an
idea of how complicated the dynamics is if we consider the rotational
behavior of the maps.

All the invariants hold some formulas which allow to evaluate
them for some of the maps and compare them in most cases. But
not all the invariants behave in the same way, that is, not all the
invariants hold similar formulas and we �nd di�erences.

The aim of this paper is to review some of these formulas and
improve others for topological entropy and give some news for the
others invariants. This work can be also done in an analogous way
in the setting of metric invariants, but we will concentrate here in
the topological aspects.

We organize the paper in the following way. First we introduce
the notions of topological and sequence topological entropy (shortly
t.e. and s.t.e respectively). Secondly we consider some known and
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others new formulas for them. Finally, we will consider the rotational
entropy. In the inside we will present some open problems.

2. Topological and Sequence Topological Entropy

The notion of topological entropy was introduced in 1972 by Adler,
Konheim and McAndrew [1].Let X be a compact topological space
and � an open covering. The entropy of the covering � will be

H(�) = log N(�)

where N(�) means the minimum number of open sets in any �nite
subcover on X. Given two covers � and �, � _ � will denote the set
fA \B : A 2 �;B 2 �g: If f is a continuous map on X ,

f�1� = ff�1(S) : S 2 �g
The entropy of f referred to � is given by

h(f; �) = lim
n!1

1

n
H(� _ f�1� _ f�2� _ : : : _ f�n+1�)

this limit always exists and �nally the topological entropy of f is
given by

h(f) = sup
�

h(f; �)

where this supremum is calculated over all open �nite covers on X:
When we consider only the open covers given by the preimages

f�a1�; f�a2�; : : : ; f�an� where A = (ai)
1
i=1 is a sequence of positive

integers we have the notion of sequence topological entropy given by

hA(f) = sup
�

hA(f; �)

where

hA(f; �) = lim sup
n!1

1

n
H(

n_
i=1

f�ai�)

This notion has been used in the setting of dynamical systems
of the type (I; f) where I = [0; 1] and f 2 C(I; I) to distinguish
between chaotic and non chaotic dynamical systems in the Li-Yorke
sense (see [6]).
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Now we need to introduce some others notions of topological
dynamics. We will denote by Per(f) the set of periodic points of f
and by 
(f) the set of nonwandering points of f .A point x 2 X is
a nonwandering point if given any neighborhood of x, U(x), there is
a positive integer m such that U \ fm(U) = �: Given x 2 X, the
set of limit points of the sequence (fn(x))1n=0 is the !�limit set of
f , denoted by !f (x) and !(f) =

S
x2X

!f (x) will be the omega-limit

set of f: If x 2 !f (x) then x is a recurrent point of f: Let Rec(f) be

the set of recurrent points of f . The closure Rec(f) = C(f) is the
center of f:

For topological entropy the following formulas are held:

(i)
h(fk) = k h(f) for every positive integer k:

An easy proof can be found in [4].

(ii) The Bowen's formula

h(f) = h(f j 
(f))

which can be found in [5].

When X is a compact metric space, the Bowen�s formula can be
improved since C(f) = Rec(f) � 
(f).

Theorem 2.1. Let X be a compact metric space and f 2 C(X;X).
Then is

h(f) = h(f j Rec(f))
Proof. Let M(X; f) be the set of invariant measures on X (it is
supposed to have a � � Borel algebra de�ned on X);that is, if � 2
M(X; f) then is �(A) = �(f�1(A)) for every borelian set A.It can
be seen in [14] that for every invariant measure � 2 M(X; f) is
�(
(f)) = 1. But can be also seen that in fact is �(Rec(f)) = 1: To
see this,let (Un)

1
n=1 be a base on the topology of X:Then we have,

X n Rec(f) =
1[
n=1

(Un \
1\
k=1

f�k(X n Un))



INVARIANTS ON COMPACT SPACES 35

and for every n and � 2M(X; f) we have,

�(Un \
1\
k=1

f�k(X n Un)) = 0

using the recurrence theorem of Poincar�e (see [14]).
Therefore, if � 2 M(X; f) then is �(Rec(f)) = 1 and conse-

quently the metric entropy of f associated to � will be

h�(f) = h�(f j Rec(f))

and �nally by the variational principle (see for example [14]) we
have:

h(f) = sup
�2M(X;f)

h�(f) = sup
�2M(X;f)

h�(f j Rec(f)) =

h(f j Rec(f)) = h(f j C(f)):

3. On the Commutativity of t.e. and s.t.e.

When considering dynamical systems, one interesting problem is
to study what happens when we compose the maps de�ning them,
namely, if (X; f) and (X; g) are two dynamical systems, try to un-
derstand the behavior of the systems (X; f �g) and (X; g�f). In this
setting we are considering what happens with the two invariants we
have considered, the t.e. and s.t.e.

In [11] S. Kolyada and L.Snoha have proved that t.e. holds the
formula h(f �g) = h(g �f). Their proof is based in a type of entropy
adapted to sequences of maps.Now jointly with J. C�anovas we are
able to give a direct proof of it.

Theorem 3.1. Let f,g: X! X be continuous maps from the compact

topological space X into itself. Then

h(f � g) = h(g � f)

Proof. Let � be a �nite open cover of X. First it is easy to prove
that h(f; �) = h(f; f�1�):
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Then

N(

1_
i=1

(f � g)�i(�)) = N(g�1(

1_
i=1

(g � f)�i+1(f�1�))) �

� N((

1_
i=1

(g � f)�i+1(f�1�)))

therefore

h(f � g; �) � h(g � f; f�1�) � h(g � f);
and �nally h(f � g) � h(g � f): Interchanging f and g , we have the
reverse inequality and we end the proof.

The problem for s.t.e. is more complicated since in general is
not true that hA(f; �) = hA(f; f

�1�) for any sequence of positive
integers A:It can only be proved that hA(f; �) � hA(f; f

�1�) =
hA+1(f; �) where if A = (ai)

1
i=1then A+ 1 = (ai + 1)1i=1: If the map

is surjective, then the commutativity can be proved.

Proposition 3.2. Let f,g: X! X be continuous maps fron the com-

pact topological space X into itself such that f�g and g�f be surjective.

Then for any sequence A=(ai)
1
i=1we have hA(f � g) = hA(g � f).

Proof. Since the map f � g is surjective, we have that for any cover
of X;�,

hA(f � g; (f � g)�1�) = hA(f � g; �)
Then following the same line of reasoning of Theorem 3.1 we have

hA(f � g; �) � hA(g � f; f�1�) � hA(g � f):

Therefore hA(f � g) � hA(g � f): Interchanging f and g we have
the result.

A key point to prove that hA(f) = hA+1(f) would be the validity
of the formula hA(f) = h(f j T

n�0
fn(X)); but this is at the moment

an open question.

If the conditions of the following Goodman' theorem are held
then we obtain also the commutativity of the s.t.e.
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Theorem 3.3. Let f: X! X be a continuous map and suppose X

has a �nite covering dimension. We consider a sequence of integers

A. Then:

hA(f) =

8>><>>:
0 if K(A) = 0
K(A)h�(f) if 0 < h�(f) <1
0 if 0 < K(A) <1; h�(f) = 0
1 if 0 < K(A) � 1; h�(f) =1

where

K(A) = lim
k!1

(lim sup
n!1

SA(n; k)

n
)

and

SA(n; k) = Card

1[
i=1

f�k + ai; : : : ; k + aig

Corollary 3.4. Let A and f�g : X ! X satisfy the conditions

given in Theorem 4. Then hA(f � g) = hA(g � f):
As an illustration of the di�erences of behavior between t.e.and

s.t.e. with respect to commutativity, we will consider the case of
antitriangulatr maps. We will say that F : X � X ! X � X is
an antitriangular map if F (x; y) = (f(y); g(x)) where fand g are
continuous maps from X into itsel.

Proposition 3.5. Let F:X�X ! X � X an antitriangular map

given by F(x,y)=(f(y),g(x)) for all (x,y)2 X�X: Then h(F ) = h(f �
g) = h(g � f):
Proof. If we calculate F 2(x; y) we can use the formula h(f1 � f2) =
h(f1)+h(f2) (see [5]), where fi : Xi ! Xi; i = 1; 2 are two continuous
maps and obtain, F 2(x; y) = (f � g(x); g � f(y)) and h(F 2) = h(f �
g)+h(g � f) = 2h(f � g) = 2h(g � f) by the commutativity. By other
hand h(F 2) = 2h(F ) and therefore h(F ) = h(f � g) = h(g � f).

But the above formula does not hold for s.t.e. To prove it, con-
sider the following example.

Example 3.6. Let Ta;b the transformation on the torus T2into itself,

given by Ta;b(x; y) = (ax; by) where a; b 2 S
1.It is not di�cult to see

that given the sequence A = (2i)1i=1, is h(Ta;b) = log 2:
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Now we consider the map Fa;b : T2 � T
2 ! T

2 � T
2 given by

Fa;b(x; y) = (Ta;b(y); Ta;b(x)): Then we have hA(F
2
a;b) = 2 hA(T

2
a;b)

using a formula given by Goodman [8]. Then using the previous
proposition we have hA(Fa;b) = hA(F

2
a;b) = 2 hA(T

2
a;b) = 2 hA(Ta;b) =

log 4:

4. The Formula hA(f
k) = k hA(f) is not true for s.t.e.

In this section we are giving an example proving that in general
hA(f

k) 6= k hA(f)

This example is not easy, so we will give only a sketch of the con-
struction.To this end we are introducing the Morse sequences.

A sequence B = (b0; b1; : : : ; bk�1) of zeros and ones is called a
block.The length of the block B is denoted by j B j= k:We denote
by B[i; j] = (bi; : : : ; bj); B[i; i] = B[i];and eB = (eb0; : : : ;ebk�1) whereebk = 1 � bk for k = 0; : : : ; k � 1:If C = (c0; : : : ; cm�1) is another
block, then we de�ne

B � C = B(c0)B(c1) : : : B(cm�1)

where B(0) = B;B(1) = eB.
Assume that j B j�j C j :Then fr(B;C) denotes the frequency

of B in C, That is

fr(B;C) = cardf0 � j �j C j � j B j: C[j; j+ j B j �1] = Bg

Let b0; b1; : : : be �nite blocks with length at least two starting
with zero, and let

x = b0 � b1 � : : :

Next, we consider

r�i = min

�
1

�i
fr(0; bi);

1

�i
fr(1; bi)

�
i � 0; �i =j bi j

Definition 4.1. The sequence x de�ned as above is called a gener-

alized Morse sequence (or in brief a Morse sequence) if

(1) in�nitely many of the b's are di�erent from 0 : : : 0,
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(2) in�nitely many of the b's are di�erent from 0101 : : : 01,

(3)
1P
i=0

r�i =1

More details about this sequences can be seen in [10].

Now consider the case k = 2 and the sequence

x = 01� 00� 01� 00� 00� 01� 00� 00� 00� : : :

We can give for x the two representations:

(1)

x = (01� 00) � (01� 00) � : : :

(2)

x = (01� 00� 01)� (00 � 01)� (00 � 01) � : : :

Assume that (ni)and (mi) are the corresponding sequences of
the products of lengths of the successive blocks in (1) and (2) re-
spectively.

Using the notion of ni-entropy of a Morse sequence x, h(ni)(x)
and some results by M.Lemanczyk in [12] we can see that h(ni)(x) =

log 1
2(1 +

p
5) and h(mi)(x) = log 2: As a consequence we can con-

struct an homeomorphism f preserving a measure on X; and such
that h(ni)(f

2) 6= 2 h(ni)(f). For more details see [12].

5. The Rotational Entropy

Given the dynamical system (X; f) and an observable map � : X !
R
d we are looking at its ergodic averages at di�erent points. When

these averages converge at a given point, the limit is the rotation

vector at this point and the set of all rotation vectors is the rotation
set.

When the observable map � is the displacement fuction, that is,
a map measuring the vector by which the point is displaced in the
universal covering space, we obtain the classical notion of rotation
sets.
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Given x 2 X; we de�ne the rotation vector at x as

lim
n!1

1

n

1X
i=0

�(f ix)

if this limit exists.If � denotes an ergodic measure on X, using the
Birko�'s ergodic theorem (see for example [14]), the above limit ex-
ists for �-almost point x and is equal to

R
X
� d�: We will say that �

is an ergodic invariant measure �-directional if the rotation set of f
restricted to the support of � consists of only one vector called the
direction of �.

The directional entropy of f in the direction v 2 R
d (or shortly

v-entropy of f) is de�ned by (using the variational principle):

hv(f) = supfh�(f) : � is ergodic with direction vg

We are asking if it is true that hv(f � g) = hv(g � f):
When the ergodic measure � has not a direction we say that

it is lost, (we follow the terminology and de�nitions introduced by
W.Geller and M.Misiurewicz in [7]). In this case we de�ne the lost

entropy of f by:

hl(f) = supfh�(f) : � is ergodic and lostg

We ask again if it is true that hl(f � g) = hl(g � f):
Let E(X; f � g) be the set of all ergodic invariant measures on

X;� 2 E(X; f � g) and its image eg� 2 E(X; g � f) (see [14] for de�ni-
tions), �rst we need to state the relationship between the supports
of the two measures.

Lemma 5.1. It is held that f�1(supp �) � supp eg�:
Proof. Let E = supp �:Then E is closed and �(E) = 1:Now consider
the closed set f�1(E) 2 �(X):Then we have:

eg�(f�1(E)) = �(g�1(f�1(E))) = �((f � g)�1(E)) = �(E) = 1

and from this it follows supp eg� � f�1(E):

In what follows we will denote by E(X; f � g; v) the set of ergodic
measures of f � g having as direction v.
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Lemma 5.2. Let � 2 E(X; f � g; v) and let y2supp eg�: Then
lim
n!1

1

n

1X
i=0

�
�
(g � f)i(y)� = Z

X

� deg�
Proof. It is necessary to prove that

lim
n!1

1

n

1X
i=0

�
�
(f � g)i(x)� = lim

n!1

1X
i=1

�
�
(f � g)i(x)�

For this we consider

lim
n!1

1

n

1X
i=0

�
�
(f � g)i(x)� = lim

n!1

"
1

n

1X
i=1

�
�
(f � g)i(x)�+ 1

n
�(x)

#
;

and since lim
n!1

1
n
�(x) = 0 we have the proof.

Using Lemma 5.1, if y 2 supp eg�,then f(y) = x 2supp �: We apply
now the last formula to obtain:

lim
n!1

1

n

1X
i=0

�
�
(g � f)i(y)� = lim

n!1

1

n

1X
i=1

�
�
(g � f)i(y)� =

= lim
n!1

1

n� 1

n�2X
i=0

� � g �(f � g)i(x)� = Z
X

� � g d� =

Z
X

� d(eg�):

Lemma 5.3. There exists a one to one map from E(X; f � g; v) into
E(X; g � f; u); where v=

R
� d� and u=

R
� d(eg�:

Proof. If � 2 E(X; f � g; v); then it is ergodic and has as rotation
vector v:It can be proved (see [3]) that there exists a one to one
map between the sets E(X; f � g) and E(X; g � f): Therefore eg� is
ergodic, and by Lemma 5.2, u has as rotation vector, that is eg� 2
E(X; g � f; u):

In this case the map eg jE(X;f�g;v) (�) = eg� de�ned for all � 2
E(X; f �g; v) is well de�ned and using the mentioned result it is easy
to see that the map is one to one.
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Now the main theorem is immediate:

Theorem 5.4. Let v=
R
X
� d� and u=

R
X
� deg�: Then the rotational

entropy with respect to the vectors u and v satis�es the formula:

hv(f � g) = hu(g � f)

Proof. It is an immediate consequence of Lemma 5.3 and the fact
that if � 2M(X; f � g) then h�(f � g) = h

eg�(g � f) (see [3]).

For the lost measures we obtain analogous results. If we denote
by E(X; f � g; l) the set of the lost ergodic measures of f � g, we have
Lemma 5.5. E(X; f � g; l) = egE(X; g � f; l)
Proof. Let � 2 E(X; f�g; l) and suppose that eg� =2 E(X; g�f; l):Theneg� has a rotation vector and by Lemma 5.3, ef � eg� has a rotation
set which is a contradiction.

We �nish with the following result:

Theorem 5.6. For the lost entropy it is held:

hl(f � g) = hl(g � f)

Proof. It is enough to apply Lemma 5.3 and the result mentioned in
the proof of Theorem 5.4.

6. Remarks

In the cases of t.e. and s.t.e. we have given some examples which
are concerned with certain topological spaces where we have stud-
ied the two topological invariants. Now we can state the following
question: What is the role played by the topology of the spaces?.
In other words, given a compact topological space, can we construct
continuous functions on it having a prescribed topological entropy?.
The same question for the sequence topological entropy.

In the setting of X = [0; 1] the problem is solved (see [2]). Given
any positive number � it is possible to construct a continuous map
on it having � as a topological entropy.The construction can be also
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made for zero and in�nite topological entropy. If we wish a C1-
map the problem can be also be solved except in the case of in�nite
entropy for which is impossible.

But unfortunately in the general case we can not give an answer
to this problem. We guess that if the topological space contains a
type Cantor set then the answer could be a�rmative and the con-
struction can be made.
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