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Weierstrass Points, Inection Points

and Rami�cation Points of Curves

E. Ballico
(�)

Summary. - Let C be an integral curve of the smooth projective
surface S and P 2 C. Let � : X ! C be the normalization and
Q 2 X with �(Q) = P .We are interested in the case in which Q
is a Weierstrass point of X. We compute the semigroup N(Q;X)
of non{gaps of Q when S is a Hirzebruch surface Fe; P 2 Creg

and P is a total rami�cation point of the restriction to C of a
ruling Fe ! P 1. We study also families of pairs (X;Q) such that
the �rst two integers of N(Q;X) are k and d. To do that we
study families of pairs (P;C) with C plane curve , deg(C) = d,
C has multiplicity d � k at P , C is unibranch at P and a line
through P has intersection multiplicity d with C at P .

1. Introduction

We work over an algebraically closed �eld K with char(K) = 0. Let
C be an integral Gorenstein projective curve with g := pa(C) �
2. Fix P 2 Creg. Since C is smooth at P , for every integer t
the sheaf !C(�tP ) is a line bundle. Hence, exactly as in the case
of a smooth curve we may de�ne the numerical semigroup of non{
gaps of C at P , say N(P;C) � N, such that card(NnN) = g ([15],
[14]). P is not a Weierstrass point of C if and only if NnN(P;C) =
f1; : : : ; gg. We just recall that in generalN(P;C) is non a semigroup
(for any conceivable de�nition of N(P;C)) without the assumption
P 2 Creg ([14]). Reading [18], it seems obvious that the last assertion
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of [18] ,Th. 1, p. 545, is not quite true as stated. Hence it seems
natural to try to obtain a recipe for the construction of many triples
(g; k; d); k < d� 2k, of a pair (X;Q), where X is a smooth curve of
genus g and Q 2 X is a Weierstrass point with k and d as �rst two
positive integers of N(Q;X). Even more: we want to construct nice
families of such pairs. For any such pair (Q;X) the complete linear
system jdQj is a base point free and induces a morphism f : X ! P

2.
Assume f birational and set C := f(X), P := f(Q). The reduction
of the tangent cone of C at P is given by a unique line, L, which has
intersection multiplicity d with C at P . Furthermore, C is unibranch
at P and it has multiplicity d�k at P because every line D 6= L with
P 2 D has intersection multiplicity d � k. See Theorem 2.5 which
clari�es the case in which C is smooth outside P , except for a small
number of nodes which are in general P2. According to [17], Remark
13. 12, our approach should be the classical approach considered in
[4], p. 59, and in [13], p. 547. For the case in which g is the �rst
non gap and g + x, 1 � x � g � 1, is the only gap > g, see [17],
Th. 14. 7. For the case in which then map f : X ! C � P

2 is not
birational, see Remark 2.3. In section 3 we compute N(P;C) when
C is an integral curve contained in a Hirzebruch surface, P 2 Creg,
and P is a total rami�cation point of the restriction of a ruling of Fe
to C (see Theorems 3.1 and 3.5). We solve the same problem for the
curve X which is a partial normalization of C at a small number of
nodes and cusps which are general points of Fe (Theorem 3.3).

This research was partially supported by MURST and GNSAGA
of CNR (Italy).

2. Plane curves

In this section we consider the case of plane curves. Fix an integer
d � 4 and an integer y with 0 � y � d. At the beginning of this
section (Lemma 2.1 and Proposition 2.2) we consider the set{up of
[9], i. e. we consider a pair (C;P ) such that C is an integral plane
curve of degree d, P 2 Creg and such that the tangent line TPC
of C at P has intersection multiplicity y with C at P . With the
terminology of [9], P is called a (y � 2){inection point of P . Set
V (y; d) := fx 2 N : x = ay + b for some integers a; b with 0 � a �
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d�3 and 0 � b � d�3�ag and N(y; d) := ft 2 N : t�1 62 V (y; d)g.
With the de�nition of the semigroup of non{gaps for smooth points of
integral Gorenstein curves outlined in the introduction, the proofs of
[9], Lemma 2.1 and Prop. 2.2, work verbatim and give the following
lemma.

Lemma 2.1. Let u : X ! C be a partial normalization of an integral
plane curve C and P 2 Creg such that the tangent line TPC of C at P
has intersection multiplicity y with C at P . Then N(y; d) � N(P;C).

Proposition 2.2. Fix integers d, y with d � 4 and d � 2 � y � d.
Let C be an integral plane curve and P 2 Creg such that the tangent
line TPC of C at P has intersection multiplicity y with C at P . Then
N(y; d) = N(P;C).

Now we consider the problem described in the introduction. We
want to construct for several triples (g; k; d) good families of pairs
(X;Q) with X smooth genus g curve and Q Weierstrass point of X
whose �rst non{gaps are k and d. We will try to �nd a plane model
(C;P ) for (X;Q) such that C n fPg has only nodes as singularities.
We cannot apply [6], Th. 0. 2, because in our situation the two
numerical assumptions of [6] Th. 0. 2, are never simultaneously
satis�ed, except in the trivial case k = d� 1, i. e. the case in which
C is smooth at Q; for this case, see appendix of [9] in which more is
proved. However, we may easily adapt the proofs and ideas contained
in [6] to cover our situation.

Remark 2.3. As recalled in the introduction the set{up considered
in this section covers all pairs (X;Q) with Q Weierstrass point on
X whose �rst non{gaps are k and d with k < d < 2k and such that
the complete linear system jdQj on X induces a birational morphism
f : X ! P

2. Now we will show how to reduce to this case the
construction of all the possible examples for which f is not birational.
Start with a pair (X 0; Q0) with X 0 of genus g0 � 3 and P 0 such
that the �rst non{gaps are k0 and d0 with k0 < d0 < 2k0. Take an
integer t � 2 and a rami�ed degree t convering � : X ! X 0 which is
totally rami�ed over P 0 and with X smooth of genus g; set k := tk0,
d := td0 and Q := ��1(Q0)red. Using Castelnuovo{Severi inequality
(see e. g. [1], Ch. 3) we see that for many values of t, g, g0, d0 and
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k0, the integers k and d must be the �rst non{gaps of P ; for instance
if t = 2 is true if d � g � 2g0. Viceversa, start with the integers g,
k, d and assume thath f : X ! P

2 is not birational. Let g0 be the
genus of the normalization of f(X). Since h0(f(X);Of (X)(1)) = 3
and k < d < 2k, it is easy to check that g0 � 3.

We recall the ideas introduced in [10] to study equisingular de-
formations of plane curves. We need this reference for our problem
because we need deformations of a unibranch point which preserve
the condition \unibranch" and the multiplicity. We �x integers k
and d with 3 � k < d; in the application to gap{sequences it is suf-
�cient to consider the case d < 2k. For simplicity we work over the
�eld of complex numbers C. We �x P 2 P2 and the germ at P (in
the analytic category) of a curve T with a unibranch singularity at
P with multiplicity d�k. Call L the reduced tangent cone of T at P
seen as a line in P2; we assume that L has intersection multiplicity
d with L at P . The construction of all such examples is obvious in
terms of Puis�eux expansions. The paper [10] contains the de�nition
of a zero{dimensional subscheme Z 0 of P2 (called the generalized
singularity scheme) such that the condition h1(P2; IZ0(d)) = 0 gives
the existence of a plane curve U of degree d with P 2 U and such
that U is topologically equivalent to T at P . For any Q 2 P2 and
integer x > 0, let xQ the fat point of order x in P2 supported by Q,
i. e. the (x � 1)-th in�nitesimal neighborhood of Q in P2. Hence
dP jL is the e�ective divisor of degree d on L given by the multiple
of order d of P . Taking Z 00 := Z 0 [ (dP jL) [ (d � k)Q instead of
Z 0 if h1(P2; IZ00(d)) = 0 we may obtain an irreducible plane curve
V of degree d topologically equivalent to T near P , V and L having
intersection multiplicity d at P and such that V has multiplicity at
least d� at P . If Z 00 does not contain (d�k+1)P , then we may even
�nd such V with multiplicity d � k at P . Take the germ T at P of
any integral unibranch curve at P whose ideal sheaf IT at P contains
IZ00 and let c be its conductor; since T is Gorenstein at P , the partial
normalization T 00 of T at P has dimK(OT 00=OT ) = dimK(OT;P=c);
we are interested mainly in the case in which dimK(OT;P=c) is as
small as possible (compatibility with the order data). Let Z be the
minimal zero{dimensional subscheme of P2 containing both Z 0 and
the scheme T=c; since every deformation of T preserving c preserves
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the geometric genus, if h1(P2; IZ(d)) = 0 we may obtain an irre-
ducible plane curve V of degree d topologically equivalent to T near
P , V and L having intersection multiplicity d at P , such that V
has multiplicity at least d � k at P and such that the arithmetic
genus of the partial normalization at P is �xed and is it given by
(d � 1)(d � 2)=2 � dimK(OT;P=c). We will call any such Z suitable
for the pair (k; d).

Definition 2.4. Let Z be a zero-dimensional subscheme of P2 and
L � P

2 a line. Set Zf1g := Z, Z(1) := Z \ L and call Zf2g the
residual scheme ResL(Z) of Z with respect to L. De�ne inductively
Z(i) and Zfi+1g using the formulas Z(i) := Zfig\L and Zfi+1g :=
ResL(Zfig). Set z(i) := h0(Z(i);OZ(i)). Notice that zfi + 1g +
z(i) = zfig and z(i + 1) � z(i) for every i � 1. We will call the
non{increasing sequence fz(1); z(2); : : : g (resp. fzf1g; zf2g; : : : g)
the �rst (resp. second) associated sequence of Z with respect to L.

Theorem 2.5. Fix integers d, k, x with d > k � 3. Fix P 2 P2 and
a zero{dimensional scheme Z suitable for the pair (k; d), say with
respect to the line L. Let z := h0(Z;OZ) be the length of Z and let
fz(1); z(2); : : : g be the �rst associated sequence of Z with respect to
L. Assume z(1) = d, z(i) � maxfd � i � 1; 0g for every i � 2 and
0 � 3x � d(d + 3)=2 � 3 � z. Then for x general points Q1; : : : ; Qx

of P2 there exists an integral degree d curve C � P
2 with P 2 C, C

unibranch at P , L intersecting C with multiplicity d, Z � C, Qi 2 C
for every i, Qi with ordinary nodes at each Qi and C smooth outside
fP;Q1; : : : ; Qxg. Furthermore, �xing Z and varying Q1; : : : ; Qx in
a Zariski open subset of symmetric product Sx(P2) we obtain an
irreducible family M(Z; x) of dimensiond d(d+3)=2 of plane curves
with geometric genus (d�1)(d�2)=2���x, where � is the arithmetic
genus of the singularity (C;P ).

Proof. Step 1) Here we will show that the union of Z and the �rst
in�nitesimal neighborhoods 2Qi, 1 � i � x, of x general points Qi

of P2 imposes z+3x independent conditions to the linear system of
degree d plane curves containing them. Since z(1) = d is the maximal
length of a subscheme of Z contained in a line through P , we have
Z � dP . Hence the case x = 0 is obvious. Hence we will assume
x > 0. Take a general Q 2 L and let t the length 2 zero{dimensional
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subscheme of L with tred = fQg; the scheme t is the second simple
residue of Q with respect to L in the sense of [2], De�nition 2. 2.
Take x� 1 general points Qi; 1 � i � x� 1, of P2 and let W be the
union of Zf2g, the schemes 2Qi; 1 � i � x�1, and t. By [2], Lemma
2. 3 it is su�cient to prove the vanishing of h1(P2; IW (d�1)). Notice
that length(W \ L) = z(2) + 2 � d � 2. Now we continue making
again an application of Horace Lemma with respect to the line L.
We specialize [(d � z(2) � 2)=2] of the points Qi, say Qi, 1 � i �
[(d � z(2) � 2)=2], to general points Q0

i, 1 � i � [(d � z(2) � 2)=2]
of L; if d � z(2) � 2 is even we call W 0 the union of Zf2g, 2Q0

i,
1 � i � [(d � z(2) � 2)=2] and 2Qj , [(d � z(2) � 2)=2] < j � x with
Q0
j general in P

2. Set W 00 := ResL(W
0). Since length(W 0 \ L) = d,

we have h1(P2; IW 0(d � 1) = h1(P2; IW 00(d � 2) and hence we may
continue the construction. If d� z(2)� 2 is odd instead of a general
pointQ�; � := [(d�z(2)�2)=2]+1, of P2 we specialize it to a general
Q0 2 L and call t0 the length 2 zero{dimensional subscheme of L with
t
0
red = fQ0g; set W (1) := (W 00 n 2Qx�1) [ t

0. By [2], Lemma 2. 3,
to prove the vanishing of h1(P2; IW (d � 1)) it is su�cient to prove
the vanishing of h1(P2; IW (1)(d � 2)). Then we continue to reduce
the vanishing we need to the vanishing of some group H1(P2; IA(t))
for some integer t < d and some zero{dimensional scheme A whose
connected component, B, supported by P is Zfd � t + 1g. Hence
at each step we add at most one double point, t00, supported by a
general point of L and this length 2 zero{dimensional scheme gives
no contribution when we take the residual scheme with respect to
L. Since z(d� t) � t+ 1,we are sure that at every step we may add
on L a scheme,t0 of length 2 when t + 2 � z(d � t � 1) is odd, and
still have the vanishing of the cohomology group H1 for A\L. If we
�nish the x points before arriving to the case t = 0, we have won.
Since z + 3e � h0(P2;OP2(d)) � (h0(P2;OP2(1))), we are sure to
�nish the points Qi.
Step 2) The generalized associated scheme of an ordinary double
point at Q is just ideal sheaf of 2Q ([10], Ex. 2 after Def. 2. 3).
Hence by [10] we obtain that the family of plane curves with x + 1
prescribed singularities (one at P with Z as associated scheme plus x
nodes in general position) is smooth of the expected dimension and
its general member has only the expected singularities.
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Remark 2.6. Since in characteristic zero every smooth curve of genus
at least 2 has only �nitely many Weierstrass points, it is obvious that
the \parametrization" of smooth curves with a Weierstrass point with
�rst non{gaps k and d given by Theorem 2.5 is, up to an element of
Aut(P2), �nite { to { one.

Example 2.7. Here we will compute the associated scheme in the
particular case in which d and k are coprime. In this case the germ
at (0; 0) of the curve t! (td�k; td) is the germ of a unibranch curve
which has all the properties we want. We drop the condition d < 2k.
We apply the standard blowing{up procedure to this curve whose local
equation near (0; 0) is yd�k = xd. Set x0 = x, y0 = yx. In the �rst
in�nitesimal neighborhood we obtain an equation y

0d�k = x
0k. Since

k and d� k are coprime, we continue in the same way and �nd that
the tree of the resolution is a Dynkin diagram of type AW for some w.
With the notations of [19], p. 15, the characteristic of this branch are
the integers (d� k; d) and g = 1. This example is important because
any nearby germ with the same characteristic exponents is formally
equivalent to it and in particular it has the same �-invariant, i.e. the
conductor has the same colength.

Example 2.8. Now we will construct in some cases plane curves
with two associated schemes of type (k; d), but with 2k < d. More
generally, we �x two integers k, k0 with 2 � k � k0 � d � k, take
two distinct points P , P 0, of P2, lines L, L0, on P2 with P 2 L,
P 0 2 L0, P 62 L0, P 0 62 L and look at integral plane curves, C, of
degree d passing through Q (resp.Q0) with multiplicity d � k (resp.
d � k0), unibranch at P and P 0 and with L (resp. L0) with inter-
section multiplicity d with C at P (resp. P 0). Let Z (resp. Z 0) be
the associated scheme for the data (k; d; P; L) (resp. (k0; d; P 0; L0)).
We want to prove (under suitable assumptions on Z and Z 0) that
h1(P2; IZ[Z0(d)) = 0. Set W := ResL(Z) and W

0 := ResL0(Z 0). We
have length(W ) = length(Z)�d and length(W 0) = length(W 0)�d.
We apply �rst Horace Lemma with respect to L (loosing one con-
dition) and then Horace Lemma with respect to L0 (without loosing
anything because L0 is in the base locus of H0(P2; IW[W 0(d � 1))).
Hence to prove the vanishing of h1(P2; IZ[Z0(d)) = 0 it is su�cient
to prove the vanishing of h1(P2; IW[W 0(d� 2)). Let fz(1); z(2); : : : g
( resp. fz0(1); z0(2); : : : g) be the �rst associated sequence of Z (resp.
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Z 0). The proof of Theorem 2.5 works verbatim exploiting alterna-
tively L and L0 if for every integer i � 2 we have z(i) � d � 2i
and z0(i) � d� 2i� 1. However, if for some integers k, k0 we want
to construct such integral curves with a few nodes, say at general
point Q1; : : : ; Qy with y very small, it is better to use the following
trick to check the vanishing of h1(P2); IW[W 0[2Q1[:::[2Qy(d � 2)).
We apply Horace Lemma [(d � 2)=2] times using a smooth conic
passing through P , P 0 and perhaps some of the points Qi. Call
D a general conic through P and P 0 and de�ne the schemes W (i)
(resp. W 0(i)), i � 1, and the �rst associated D{sequence to W
(resp. W 0) exploiting D instead of the line L (resp. L0) and de-
note it with fw(1); : : : g (resp. fw0(1); : : : g). Hence w(1) = w0(1) =
d� 2. Suppose that after i� 1 applications of Horace Lemma using
a smooth conic through P and P 0 one need to check the vanishing
h1(P2; IW (i�1)[W 0(i�1)[2Q1[:::[2QW (d � 2i)) for some non{negative
integers w, z. By the generality of the points Q1; : : : ; Qy it is suf-
�cient to have h1(P2; IW (i�1)[W 0(i�1)[2Q1[:::[2QW (d � 2i)) = 0 and
length(W (i�1))+length(W 0(i�1))+3w+z � (d�2i+2)(d�2i+1)=2.
Fix an integer m with 0 � m � minfw; 5g and take a general smooth
conic A through P , P 0 and m of the points Q1; : : : ; QW . To ap-
ply another time Horace Lemma exploiting A it is su�cient to have
2m+ w(i� 1) + w0(i� 1) � 2(d� 2i).

3. Curves on Hirzebruch surfaces

In this section we �x an integer e � 0 and set S := Fe, where
Fe = P(OP 1 �OP 1) is a Hirzeburch surface. Let � : S ! P

1 be the
associated ruling. We take as a basis of Pic(S) �= Z

2 a �ber, f , of �
and a section h of � with minimal self{intersection. Hence we have
h2 = �e, h � l = 1 and f2 = 0. For the cohomological properties of
the line bundles on S, see [11], pp. 379{381. We will use both the
additive and multiplicative notation for line bundles, divisors and
linear systems on S. We just observe that (as in [11], pp. 379{381)
everything follows from the projection formula ��(OS(ah + bf)) �=
�0�t�aOP 1(b � te) for all integers a, b with a � 0. We have !S =
�2h+ (e� 2)f . We are interested in integral curves C 2 jkh + xf j,
some k � 2, x � ke, x > 0, such that there are some points, say
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P1; : : : ; Pz 2 Creg, z � 1, such that the �ber of f at each point Pi
has intersection multiplicity k at Pi, i.e. such that every point Pi is
a total rami�cation point of �. By the adjunction formula we have
pa(C) = kx�ek(k�1)=2�x�k+1. Since the case k = 2 corresponds
to hyperelliptic curves, we will assume k � 3.

Theorem 3.1. Fix integers k, x with k � 3, x > 0, x � ke, an
integral curve C 2 jkh + xf j and P 2 Creg which is a total ram-
i�cation point of �. If e > 0 assume that P is not contained in
the section h of � with minimal self{intersection. If e = 0 we
have h0(C;OC(akP )) = a + 1 if 0 � 0 � x, h0(C;OC(tP )) =
[t=k] + 1 if bk < t < (b + 1)k for some b with b = 1 � x, while
h0(C;OC(tP )) = t + 1 � g (i.e. h1(C;OC(tP )) = 0) if t > xk, i.e.
the semigroup N(P;C) is the minimal one compatible with its �rst
positive value, k, and the constraint card (N n N(P;C)) = g. As-
sume e > 0; we have h1(C;OC(�kP )) = 0, i.e. h0(C;OC(�kP )) =
�k � kx + ek(k � 1)=2 + x + k if and only if � � x � e � 1; �x
an integer � � x � e � 2; let u be the minimal non{negative inte-
ger with e(k � 2 � u) � x � e � 2 � �; we have h0(C;OC(�kP )) =
� � kx + ek(k � 1)=2 + x + k +

P
0�i�k�2�u(x � e � 1 � � � ie);

the non{gaps of P in the interval k� < t � k� + k are at last
h0(C;OC((� + 1)kP )) � h0(C;OC(�kP )) integers in this interval.

Proof. It is su�cient to compute the value of h0(C;!C(�tP )) for
every integer t > 0. For every integer t > 0, call D(t) the zero{
dimensional subscheme of S corresponding to the positive Cartier
divisor tP on C. Since h0(S;KS) = h1(S;KS) = 0, the restriction
map H0(S;OS((k � 2)h + (x � e � 2)f)) ! H0(C;!C) is bijective.
Hence it is su�cient to compute h0(S;OS((k� 2)h+(x+ e� 2)f)�
ID(t)) for every integer t > 0. Set w := [t=k] and z := t� kw. Hence
0 � z � k and h0(SOS((k�2)h+(x+e�2)f)�ID(t)) = h0(S;OS((k�
2)h+(x+e�2�w)f)�ID(z)). By the cohomology exact sequence of
the restriction of KS to � �bers, � � 0 we obtain h1(S;KS(��f)) =
0 for every positive integer �. Since h0(S;KS(��f)) = 0 for every
positive integer �, by Serre duality on C we obtain h1(C;O(�tP )) =
0 if and only if � � x� e� 1 and h1(C;OC(�tP )) = h0(S;OS((k �
2)h + (x � e � 2 � �)f)) for every positive integer �; let u be the
multiplicity of h as base component of j(k�2)h+(x�e�2��)j, i.e. let
u be the minimal non{negative integer with e(k�2�u) � x�e�2��;
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by the projection formula we obtain h0(S;OS((k�2)h+(x� e�2�
�)f)) = h0(S;OS((k�2�u)h+(x�e�2��)f)) =

P
0�i�k�2�u(x�

e�1��� ie). Hence we know h0(C;OC(wkP )) and h
0(C;OC((w+

1)kP )) and we have 1 � h0(C;OC((w+1)kP ))�h0(C;OC(wkP )) �
k � 1, until OC((w + 1)kP ) is a special line bundle, i.e. for w �
x � e � 2. Furthermore since OC((w + 1)kP ) is spanned, we know
that h0(C;OC((wk + k � 1)kP )) = h0(C;OC((w + 1)kP )) � 1. For
every integer q we have h0(C;OC(qP )) � h0(C;OC((q + 1)P )) �
h0(C;OC(qP )) + 1: To prove the theorem it is su�cient to check
that the h0(C;OC((w + 1)kP )) � h0(C;OC(wkP )) jumps for the
values of h0(C;OC(qP )) in the interval wk � q < (w+1)k occur for
q = wk and the last h0(C;OC((w + 1)kP )) � h0(C;OC(wkP )) � 1
values of q. First we assume e > 0. Call m � 0 the multiplicity of h
as base component of j(k�2)h+(x�e�2�w�1)f j, i.e. set m := 0
if x� e� 2 � w � ek and set m := k � 2 � [(x� e � 2 � w � 1)=e],
otherwise. By Serre duality on C it is su�cient to note that the
restriction of j(k � 2�m)h + (x� e� 2 � w � 1)j to any �ber of �
(even to ��1(�(P ))) is a complete linear system of degree (k�2�m),
that h0(C;OC((w+1)kP ))�h0(C;OC(wkP )) = k�1�m and that
for every integer z with 0 � z � t the zero{dimensional scheme D(z)
is contained in the �ber ��1(�(P )). The case e = 0 is similar and
easier.

Remark 3.2. The proof of Theorem 3.1 works verbatim if C is any
integral curve such that P 2 Creg and such that the �ber of �jC is
just P with multiplicity k. Of course, here we use the notation of
gap sequence at a smooth point of any Gorestein curve. The power
of this tool will be shown by the proof of Theorem 3.3 we assume
Sing(C) = fQ1; : : : ; Qyg, i.e. even in the case in which we are
studing Weierstrass points on a smooth curve (the normalization of
C).

Now we consider the case of the normalization of nodal or cusp-
idal curves. The case e = 0 was considered (at least for the nodes)
in [5] and [7]. Again, the aim is to show that when we have very few
nodes and cusps and/or their position is su�ciently general, then the
situation is the best possible one with the numerical constraints we
have and in particular the Weierstrass point has the a priori possible
minimal weight. Since it comes for free, we will consider a more gen-



WEIERSTRASS POINTS, INFLENCTION POINTS etc. 151

eral statement allowing the partial normalization of a very singular
curve.

Theorem 3.3. Fix integers k, x, y with k � 3, x > 0, x � ke
and y � 0. Fix y general points Q1; : : : ; Qy of S := Fe. Assume
the existence of an integral curve C with C 2 jkh + xf j such that
each Qi is an ordinary node or an ordinary cusp of C and such
that there is P 2 Creg which is a total rami�cation point of �. If
e > 0 assume that P is not contained in the section h of � with
minimal self{intersection. Let X be the partial normalization of C
at Q1; : : : ; Qy. Set g := kx � ek(k � 1)=2 � k � x + 1 � y. Let
C 0 2 jkh + xf j be a smooth curve with P 2 C and such that P is
a total rami�cation point for �jC 0. Then for every integer t > 0 we
have h0(C;!C(�tP )) = maxfh0(C 0; !C0(�tP ))� y; 0g.

Proof. The adjoint linear system to X is given by the curves in j(x�
2)k+(x+e+2)f j passing through the points Q1; : : : ; Qy. Since these
points are in general points of S, they impose the maximal possible
number of conditions (i.e. minfy; dim(V )g) to any complete linear
system V on S. Hence the proof of Theorem 3.1 and the claim that
the same proof works for a singular curve (Remark 3.2) give the
result.

For the existence of a curve C as in the statement of Theorem
3.3 and with Sing(C) = fQ1; : : : ; Qy, see Remark 3.4.

Remark 3.4. Modifying the proof of [3], Prop. 3.7 and Prop. 4.1,
Theorem 3.3 may be applied to several cases in which C has an ordi-
nary node at each point Q1; : : : ; Qy as unique singularities and hence
in which X is smooth; the only di�erence in each cohomological com-
putation comes from the condition \ �jC with total rami�cation at
P"; for some case for e = 0, see [5] or [7], Proof of Theorem 0.1;
for similar cases in the plane, see [9] and [8]; anyway if y is very
small with respect to x�ke, the existence of such curve C is an easy
exercise. Now we will consider the case in which in the statement of
Theorem 3.1 we have e > 0 and P 2 h.

Theorem 3.5. Fix integers e, k, x with e > 0, k � 3, x > 0,
x � ke, an integral curve C 2 jkh + xf j, p 2 h and P 2 Creg which
is a total rami�cation point of �. We have h1(C;OC(�kP )) = 0,
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i.e. h0(C;OC(�kP )) = �k � kx + ek(k � 1)=2 + x + k if and only
if � � x � e � 1; �x an integer � � x� e � 2; let u be the minimal
non{negative integer with e(k � 2 � u) � x � e � 2 � �; we have
h0(C;OC(�kP )) = � � kx+ ek(k � 1)=2 + x+ k+

P
0�i�k�2�u(x�

e � 1 � � � ie); the non{gaps in the interval k� < t � k� + k are
in the �rst h0(C;OC((� + 1)kP ))� h0(C;OC(�kP ))� 1 values of t
and the integer k� + k.

Proof. We use the notations of the proof of 3.1. To prove 3.5 it is
su�cient to check that the h0(C;OC((w+1)kP ))�h1(C;OC(wkP ))
jumps for the values of h0(C;OC(qP )) in the interval wk � t < (w+
1)k occurs for the value t = wk (which is true because OC(wkP ) is
spanned) and for the next h0(C;OC((w+1)kP ))�h

1(C;OC(wkP ))�
1 values of t. The latter assertion is true because uh contains D(u).

Theorem 3.6. Fix integers k, x and z with z � 1, k � 2, x > 0, x �
ke. Let C 2 jkh+xf jbe an integral projective curve and P1; : : : PZ 2
Creg total rami�cation points of �. Thus g := pa(C) = kx+ke�k�
x + 1. Call M(P1; : : : ; Pz; k; x) the subset of jkh + xf j parametriz-
ing the curves, D, containing the e�ective divisor

P
1�i�z kPi of C,

i.e. containing each Pi and such that �jD has total rami�cation at
each Pi. Call M

0(P1; : : : ; PZ ; k; x) the subset of M(P1; : : : ; Pz ; k; x)
formed by the curves, D, with Pi 2 Dreg for every i. Let NC be
the normal bundle of C in S. Hence NC = OC(kh + xf) and
deg(NC ) = C2 = 2g� 2�KS �C = 2g� 2+ 2k+2x+ ke. Hence we
have the following remark.

Remark 3.7. If zk < 2k+2x+ke we have h1(C;NC (�
P

1�i�z kPi))
= 0.

Remark 3.8. By Remark 3.7 and [17], Th. 1.5 if zk < 2k + 2x +
ke the scheme M 0(P1; : : : ; PZ ; k; x) is smooth at P of dimension
h0(C;NC (�

P
1�i�z kPi)) = g � 1 + 2x+ 2k+ ke� zk = kx+2ke+

k(e�z�1). Furthermore, for every w with 1 � w � z the subscheme
of Hilb(S) parametrizing the curves near C containing the divisors
kPi for all integers i with 1 � i � w is smooth and of the expected
dimension. Hence we obtain the following result.
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Proposition 3.9. Fix integers k, x and z and w with z � 1, k � 2,
x � ke and zk < 2k + 2x + ke. Let C 2 jkh + xf j be an integral
projective curve and P1; : : : ; Pz 2 Creg total rami�cation points of
�. For every integer w with 1 � w � z there exists a generically
smooth irreducible open subset M 0(w) of M 0(P1; : : : ; Pw; k; x) such
that dim(M 0(w)) = kx = 2ke+ k(e�w� 1), M 0(w+1) is contained
in the closure of M 0(w) if w < z and C 2M 0(z).

Now we some integers e, k, x, and z we will construct the data
(C;P1; : : : ; PZ) we were looking for.

Proposition 3.10. Fix integers e, k, x, z, with e � 0, k � 3,
x > 0, x � ke + z. Fix z distinct points Q1; : : : ; Qz of P1 and
Pi 2 S with �(Pi) = Qi for every i. Then there exists a smooth
curve C 2 jkh + xf j such that every integer i Pi 2 C and Pi is a
total rami�cation point of �jC.

Proof. Call Z the zero{dimensional subscheme of S contained inS
1�i�z �

�1(QZ), with Dred = fP1; : : : ; PZg and such that each con-
nected component of Z has length k. By assumption the linea system
jkx+ (x� z)f j is a base point free. Hence the sheaf IZOS(kh+ bf)
is spanned outside

S
1�i�z �

�1(QZ). Since it is easy to check that

no line of
S

1�i�z �
�1(QZ) is in the base locus of IZ
OS(kh + bf),

by Bertini theorem a general curve C 2 jkh + bf j containing D
is smooth outside fP1; : : : ; PZg. Taking reducible curves union ofS

1�i�z �
�1(QZ) and of a curve C 0 2 jkh+(x� z)f j with Pi 62 C 0 for

every i, we obtain the smoothness of a general curve C 2 jkh + xf j
containing D.
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