
Rend. Istit. Mat. Univ. Trieste
Vol. XXX, 81{90 (1998)

On a Family of Topological Invariants

Similar to Homotopy Groups

A. P. Caetano and R. F. Picken
(�)

Summary. - The intimacy relation between smooth loops, which is

a strong homotopy relation, is generalized to smooth maps de�ned

on the n-cube, leading to a family of groups similar to the clas-

sical homotopy groups. The formal resemblance between the two

families of groups is explored. Special attention is devoted to the
role of these groups as topological invariants for manifolds and

as tools for describing geometrical structures de�ned on manifolds

such as bundles and connections.

1. Introduction

In [5] the intimacy relation between smooth based loops on a man-
ifold was introduced. For two loops to be related in this way it
is required that they may be linked by a smooth homotopy whose
di�erential has rank � 1 throughout its domain. The chief prop-
erty of this relation is that it preserves parallel transport whatever
the connection that is present. As a side product this relation pro-
duces a new topological invariant for di�erentiable manifolds which
is similar to the fundamental group. In this article we carry out a
full comparison between these two groups and generalize intimacy
to smooth maps de�ned on the n-cube along the lines of higher ho-
motopy groups. It turns out that we still get topological invariants
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similar to the classical homotopy groups but having additional prop-
erties. A few words are devoted to the usefulness of the �rst intimacy
group in bundle and connection theory in particular through the ker-
nel theorem. Several routes for further developments are outlined in
the last section

2. Smooth singular cubes and boundaries

Let In = [0; 1]n = f(t1; :::; tn) : 0 � ti � 1 ^ 1 � i � ng be the
standard n-dimensional cube and let I0 = f0g to suit the operations
de�ned later on. For n = 1; 2; ::: an (n � 1)-face of In is either
f(t1; :::; tn) 2 I

n : ti = 0g or f(t1; :::; tn) 2 I
n : ti = 1g. The initial-

(n � 1)-face is chosen to be f(t1; :::; tn) 2 In : tn = 0g and will be
identi�ed with In�1 in the obvious way. The union of all (n � 1)-
faces of the n-cube, numbering 2n, is just the boundary @In. Jn�1 is
de�ned to be the union of all (n�1)-faces with the single exception
of the initial-(n� 1)-face. Some obvious relations which follow are
@In = In�1

S
Jn�1, @In�1 = In�1

T
Jn�1 and @In�1 � Jn�1. These

concepts and this notation are standard in homotopy theory and a
nice summary can be found in [10]. For our purposes we need to
introduce the neighbourhood Kn�1

� = f(t1; :::; tn) 2 In : 0 � t1 <
� _ 1� � < t1 � 1g where 1 > � > 0.

Let M be a smooth paracompact and connected manifold, A �
M a connected topological subspace and � 2 A � M a �xed point.
For n = 0; 1; 2; ::: F n(M;A; �) shall denote the space of smooth
functions f : In ! M for which there is some 1 > � > 0 such
that f(Kn�1

� ) � f�g, f(Jn�1) � f�g and f(In�1) � A, conditions
which are taken for granted when n = 0. Notice that these func-
tions are smooth versions of the usual n-singular cubes appearing
in the construction of higher homotopy groups �n(M;A; �) as car-
ried out in [10], except for the requirement for them to \stop for
a while" in a neighbourhood of the faces `t1 = 0' and `t1 = 1'.
This technicality allows one to glue smooth singular cubes to get
cubes that are still smooth, which opens up the possibility of de�n-
ing the usual binary operation leading to the group strucure of
�n(M;A; �), without leaving the smooth category. Non-degenerate
examples of such cubes may be built using the same smooth functions
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that appear in the construction of partitions of unity [7][5][4][3].
F 0(M;A; �) can be identi�ed with the set M . It follows easily from
the de�nition that F 1(M;A; �) does not depend on A � M and
F 1(M;A; �) = F 1(M; f�g; �) = 
1(M) is the space of smooth loops
based at � 2M that was used in [5][4][3].

3. Intimacy

Given two cubes �; � 2 F n(M;A; �), n = 0; 1; 2; :::, we say that

they are intimate, and write �
�
� �, if there exist 1 > � > 0 and a

homotopy H : [0; 1] � In �!M such that:

1. H([0; 1] �Kn�1
� ) � f�g

2. H([0; 1] � Jn�1) � f�g

3. H([0; 1] � In�1) � A

4. H(s; t1; :::; tn) = �(t1; :::; tn); 8s 2 [0; �[

5. H(s; t1; :::; tn) = �(t1; :::; tn); 8s 2]1� �; 1]

6. H is smooth throughout [0; 1] � In

7. rank(DH(s;t1;:::;tn)) � n; 8(s; t1; :::; tn) 2 [0; 1] � In

8. rank(DHj[0;1]�In�1(s;t1;:::;tn�1;0)) � n � 1; 8(s; t1; :::; tn�1; 0) 2

[0; 1] � In�1

For n = 0 conditions 1,2,3 are taken for granted. Such a homotopy
is called a rank-n-homotopy. Reparametrizing and glueing rank-
n-homotopies one can easily check that intimacy is an equivalence
relation in F n(M;A; �). Rank-one-homotopies along with intimacy
for loops evolved from the concept of thin homotopy introduced by
Barrett in [1] and have been used in [5][4][3][11].

4. The intimacy group

The usual operations with cubes �; � 2 F n(M;A; �); n � 1; leading
to higher homotopy groups consist of a composition ��(t1; :::; tn) =
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�(2t1; :::; tn) for 0 � t1 �
1
2 , ��(t1; :::; tn) = �(2t1 � 1; :::; tn) for

1
2 < t1 � 1 and an inversion ��1(t1; :::; tn) = �(1 � t1; :::; tn). Both

operations go over to the quotient by intimacy F n(M;A; �)=
�
� to

produce an intimacy group which will be denoted by �nn(M;A; �)
(where the upper index serves as a reminder of the upper bound
imposed on the ranks of the homotopies). The proof of this state-
ment is merely a repetition of the proof given for �11(M;A; �) =
�11(M; f�g; �) in [5] where it was denoted by GL1(M). If we drop
conditions 7 and 8 in the de�nition of rank-n-homotopy the whole
group construction that follows still works and the group emerging
will be the classical homotopy group �n(M;A; �). To check this
we just have to go through some technical results about approxi-
mations of continuous cubes and homotopies by means of smooth
ones. Since rank-n-homotopy is stronger than usual homotopy, a
surjective group morphism C : �nn(M;A; �) �! �n(M;A; �) arises
in a canonical way. Therefore when the manifold is n-dimensional
M = nM we get �kk(

nM;A; �) = �k(
nM;A; �) for k � n+1 and

�kk(
nM; f�g; �) = �k(

nM) for k � n. Apart from the trivial cases
�00(M;A; �) ' M (which is not a group), �11(R; A; �) = GL1(R) =
f1g and �11(S

1; A; �) = GL1(S1) = Z, a few concrete examples are
�nn(S

n; f�g; �) = �n(S
n) = Z for n � 1, �33(S

2; A; �) = �3(S
2) = Z

(Hopf), �44(S
3; A; �) = �4(S

3) = Z2. For an n-dimensional mani-
fold M = nM and 0 � k < n the intimacy group �kk(

nM;A; �) is
not countable.

The group �nn(M; f�g; �) is abelian for n � 2. A proof of this
statement consists of an exact repetition of the proof for the same
statement for the usual higher homotopy groups [2] since all homo-
topies involved are in fact rank-n-homotopies.

By construction, the intimacy group �nn(M;A; �) is an invariant

with respect to di�eomorphisms. Invariants are expected to provide
some help in distinguishing between \topologically di�erent spaces",
in this case non-di�eomorphic ones. An example of the usefulness of
intimacy groups in this sense is the following: while the fundamen-
tal group doesn't separate the cilinder from the circle (despite their
having di�erent dimensions), �1(S

1� [0; 1]) = Z = �1(S
1), with the

intimacy group we get �11(S
1; f�g; �) = Z which is clearly di�erent

from the non-countable �11(S
1 � [0; 1]; f�g; �). This example also
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points out that a major characteristic of homotopy groups is lost
by intimacy groups: homotopy groups behave well with respect to
cartesian products while intimacy groups do not.

Another role for these new groups will emerge in the description
of di�erential geometric structures on M (such as bundles and con-
nections) and this will help to reinforce their value as topological
invariants (see the results in section 6).

5. The long intimacy sequence

The boundary operator between usual homotopy groups
@n : �n(M;A; �) �! �n�1(A; f�g; �), as found in [10], works with the
intimacy groups in precisely the same way: for n = 2; 3; :::

@n : �
n
n(M;A; �) �! �n�1

n�1(A; f�g; �)

[�] 7�! [�j
In�1

]

For [�] 2 �nn(M;A; �), � 2 F n(M;A; �) and since �j
In�1

(In�2) �

�(Jn�1) � f�g, �j
In�1

(Jn�2) � �(Jn�1) � f�g and �j
In�1

(Kn�2
� ) �

�(Kn�1
� ) � f�g it follows that �j

In�1
2 F n�1(A; f�g; �). If [�] = [�]

then � and � are linked by a rank-n-homotopy H and the restriction
Hj[0;1]�In�1

satis�es rank(DHj[0;1]�In�1(s;t1;:::;tn�1;0)) � n � 1 and

rank(DHj[0;1]�In�2(s;t1;:::;tn�2;0;0)) = 0 � n� 2 thus being the homo-

topy which ensures that [�j
In�1

] = [�j
In�1

]. We may conclude that
@n is well de�ned and a quick look at the way the group operations
are de�ned shows that this boundary operator is a group morphism:
@n([�][�]) = @n([�])@n([�]). There are also two natural inclusions
coming from higher homotopy group theory [10]:

�nn(A; f�g; �)
in�! �nn(M; f�g; �)

jn
�! �nn(M;A; �)

These three types of group morphism originate the long intimacy

sequence which is shown below when A =M :

: : :
j4
�! �44(M;M; �)

@4�! �33(M; f�g; �)
j3
�! �33(M;M; �)

@3�! �22(M; f�g; �)
j2
�! �22(M;M; �)

@2�! �11(M; f�g; �)

j1�id:
�! �11(M;M; �)

@1���! M
j0�id:
�! M
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The long intimacy sequence is exact. A proof of this statement
consists of an exact repetition of the proof for the same statement for
the usual higher homotopy groups [10] since all homotopies involved
are in fact rank-n-homotopies.

6. Intimacy, bundles, connections and topological

invariants

Theorem 6.1. Given two n-cubes �; � 2 F n(M;A; �) and an R

-valued n-form over M ! 2
Vn(M), if �; � are intimate �

�
� �,

then Z
�

! =

Z
�

!

Proof. Suppose �; � 2 F n(M;A; �) are linked by a rank-n-homotopy
H : [0; 1] � In �!M , as described in section 3. Then:Z

�

! �

Z
�

! =

Z
In
��! �

Z
In
��! =

=

Z
@([0;1]�In)

H�! �

Z
[0;1]�Jn�1

H�! � (�1)n+1
Z
[0;1]�In�1

H�! =

=

Z
@([0;1]�In)

H�! =

Z
[0;1]�In

d(H�!) =

Z
[0;1]�In

H�(d!) = 0

where
R
[0;1]�Jn�1 H

�! = 0 because H([0; 1] � Jn�1) � f�g andR
[0;1]�In�1 H

�! = 0 because rank(DHj[0;1]�In�1
) � n � 1 so that

this integral involves the evaluation of ! over n linearly dependent

vector �elds. In a similar way
R
[0;1]�In H

�(d!) = 0 since it involves
the evaluation of d! over n+1 linearly dependent vector �elds due
to rank(DH) � n

This theorem may be applied to (�nite dimensional) Lie-algebra
valued forms ! 2

Vn(M)
G. When G is associated with an abelian
Lie group G, the theorem means that the holonomy of abelian
connectionsmay be expressed as a function de�ned on �11(M; f�g; �)
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since the formula H!(l) = exp
R
l
! which describes the parallel

transport along a loop l 2 F 1(M; f�g; �), is shown not to depend on
the loop itself but only on its intimacy class. The properties of the
abelian exponential exp : G ! G indicate that

�11(M; f�g; �)
H!�! G

[l] 7�! exp

Z
l

!

is a group morphism.
In [5] it is shown that the holonomy Hr of every G-connection

r (abelian or otherwise) de�ned on some principal G-bundle � :
P �!M may be presented as a group morphism:

�11(M; f�g; �)
Hr�! G

If we require that a group morphism H : �11(M; f�g; �) �! G be
smooth in the sense that every smooth family of loops  : [0; 1] �!
F 1(M; f�g; �) (meaning that  0(s; t) =  (s)(t) is smooth throughout
[0; 1]� [0; 1]) be transformed by H into a smooth curve H([ (s)]) in
G, then from every such object it is possible to retrieve a G-bundle

together with a connection r whose holonomy is Hr = H and
these are unique up to isomorphism (see [5] for a proof).

The strongest result about this relationship between holonomies
and bundles equipped with connections is the kernel theorem which
�rst appeared in [8] (see also [4]). This theorem states that whenever
Hr1 : �11(M; f�g; �) �! G1 and Hr2 : �11(M; f�g; �) �! G2

are surjective holonomies which share the same kernel then the Lie
groups G1 and G2 are isomorphic and the connections r1 and r2

are also isomorphic (there is a principal bundle isomorphism which
relates one to the other).

As promised in section 4, we now show that these considerations
concerning holonomies bring about a reinforcement of the role of
intimacy groups as topological invariants:

Theorem 6.2. If M and N are smooth, paracompact and connected

manifolds and � : �11(M; f�g; �) �! �11(N; f�g; �) is a group mor-

phism then � carries homotopic (intimacy classes of) loops into ho-

motopic (intimacy classes of) loops.
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Proof. Given a group morphism � : �11(M; f�g; �) �! �11(N; f�g; �),
let C : �11(N; f�g; �) �! �1(N) be the canonical morphism (see sec-
tion 4). Note that �1(N) is countable since the topology of N is sec-
ond countable and therefore �1(N) is a zero-dimensional Lie group.
It follows that the group morphism C �� : �11(M; f�g; �) �! �1(N)
is smooth in the sense de�ned above and therefore it is possible to
build a �1(N)-bundle � : C ! M together with a connection r
whose holonomy is Hr = C ��. Since the structure group is zero di-
mensional r is the unique connection available in this bundle and it
is at. Given [l]; [k] 2 �11(M; f�g; �) such that l; k 2 F 1(M; f�g; �)
are homotopic it follows that C(�([l])) = Hr([l]) = Hr([k]) =
C(�([k])) because r is at, therefore C(�([lk�1])) = 1, so that
�([lk�1]) 2 KerC and hence �(l) and �(k) are homotopic.

Theorem 6.3. If M and N are smooth, paracompact and connected

manifolds such that �11(M; f�g; �) and �11(N; f�g; �) are isomorphic
groups, then �1(M) and �1(N) are also isomorphic.

Proof. Given a group isomorphism�:�11(M; f�g; �)�! �11(N; f�g; �),
let CM : �11(M; f�g; �) �! �1(M) and CN : �11(N; f�g; �) �!
�1(N) be the canonical morphisms associated to each manifold (see
section 4). Applying the above theorem to � and ��1 one concludes
that KerCM = KerCN . Quotienting by these kernels we get iso-

morphisms eCM :
�1
1(M;f�g;�)
KerCM

�! �1(M), eCN :
�1
1(N;f�g;�)
KerCN

�! �1(N)

and e� :
�1
1(M;f�g;�)

CM
�!

�1
1(N;f�g;�)

CN
. Then � = eCN � e� � eC�1

M is an
isomorphism between �1(M) and �1(N).

In this proof, the kernel theorem could have been used at a cer-
tain stage to show the existence of a isomorphism between the fun-
damental groups. Notice that this last theorem settles the issue as
far as the topological abilities of �11(M; f�g; �) are concerned: it is a
more powerful invariant than �1(M) (see section 4 for a counterex-
ample for the reciprocal of theorem 3). One more remark: part of
the conclusions of the above theorems may be achieved reasoning
within covering spaces theory [9] since each connected component of
the �1(N)-bundle � : C ! M associated with CN � � is a cov-
ering space of M and the �1(M)-bundle associated with CM is the
universal covering space of M .
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7. Final remarks

The comparison between the fundamental group �1(M) and the �rst
intimacy group �11(M; f�g; �) achieved in theorem 3 (see also sec-
tion 4) answers the question concerning the topological abilities of
�11(M; f�g; �). Future work could be devoted to seeking similar re-
sults for intimacy groups �nn(M; f�g; �) of higher order n � 2. A
more `structural quest' would be to look for the geometrical struc-
ture `hidden' in a group morphism � : �nn(M; f�g; �) ! G with
values in a topological group and whether this can be related to
gauge theory, since for n = 1 there is a nice start for the whole idea
(see section 6). Also these groups might prove useful within theo-
retical physics whenever topological considerations are an issue as in
the case of monopoles in gauge theories or in loop space formulations
of physical theories [6][3][11].
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