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White Noise Perturbation
of the Equations of

Linear Parabolic Viscoelasticity
PH. CLEMENT, G. DA PrATO and J. PRUss )

SUMMARY. - Fvolutionary integral equations as appearing in the the-
ory of linear parabolic viscoelasticity are studied in the presence
of white noise. It is shown that the stochastic convolution leads to
regular solutions, and that under suitable assumptions the sam-
ples are Holder-continuous. These results are put in a wider per-
spective by consideration of equations with fractional derivatives
which are also studied in this paper. This way, known results are
recovered and put into broader perspective.

1. Statement of the problem

Let H be a separable Hilbert space, A a closed linear densely defined
operator in H, and b € Ly jo.(R}) a scalar kernel. In this paper we
consider the integro-differential equations

t
u(t) + /0 b(t — 7)Au(r)dr = f(t), t >0, u(0) = ug, (1)

on the halfline, and

0(t) +/ b(t — 1) Av(r)dT = g(t), t € R, (2)

— 00
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on the whole real line. Here initial value ug € H and the forcing
functions f and g, loosely speaking, are of the form

F(8) = h(t) + VQW (1),

with deterministic part h € Ly jo.(Ry; H), covariance @, and a cylin-
drical H-valued Wiener process W with corresponding white noise
W,

In the recent papers [1], [2], the first two authors studied inte-
grated versions of (1) and (2) under assumptions arising from the
application of these equations in the theory of heat conduction in
materials with memory. It is the purpose of this note to extend this
study to (1) and (2) under hypotheses which are typical in the theory
of linear viscoelastic material behaviour.

In such applications, the Hilbert space H will be a space of square
integrable functions on a bounded domain O C R", and the operator
— A an elliptic differential operator like the Laplacian, the elasticity
operator, or the Stokes operator, together with appropriate bound-
ary conditions; see e.g. the monograph [6], Section 5. To formulate
this abstractly, we impose the following assumption on A.

Hypothesis (A) A is an unbounded, selfadjoint, positive definite
operator in H with compact resolvent. Consequently, the eigenvalues
ur of A form a nondecreasing sequence with limy_, ., pur = 00, the
corresponding eigenvectors ey form an orthonormal basis of H.

We are particularly interested in the case H = L9(O), where O
denotes a bounded open domain in RY | and A is the Lo-realization of
an elliptic boundary value problem of the second order, e.g. A = —A
with Dirichlet boundary conditions. In such a situation we require
that the following hypothesis about the eigenfunctions e € Lo(O)
of A for the eigenvalues py is met; see Da Prato and Zabczyk [4],
Section 5.5.

Hypothesis (E) There is a constant M > 0 such that

lex(€)] < M and |[Ver(&)| < Mu)/?, keN, £€o0.
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The kernel b(t) should be thought of as a stress relaxation kernel,
which means that b is at least nonnegative, nonincreasing, and of
positive type. Nevertheless, our assumptions on b are more stringent.

Hypothesis (b) b e Li(R}) is 8-monotone, i.e. b and —b are
nonnegative, nonincreasing, convez; in addition,
%fg sb(s)ds

lim L=——— < 0. (3)

t—0 f(f —sb(s)ds

For the following discussion we use as a general reference the third
authors monograph [6].

In case (A) and (b) are valid, problems (1) and (2) are well-
posed. There exists the resolvent family {S(¢)}+>0 C B(H) which is
strongly continuous, uniformly bounded by 1, with lim;, [S(%)|5(r)
= 0, and uniformly integrable on R, ; the latter means S € L;(Ry;
B(H)). Observe that (A) and (b) imply that the problems under
consideration are parabolic; define

0y := sup{| arg b(A)| : ReX > 0}; (4)

then parabolicity means 6, < 7/2. For 3-monotone kernels, condition
(3) is in fact equivalent to parabolicity. Typical examples of kernels
subject to (b) are the functions

p.n(t) =" " /T(B), t>0,

where 8 € (0,1) and 1 > 0. In this case we have 0,, = /2.
The unique mild solution of (1) is given by the variation of pa-
rameters formula

¢
u(t) = S(t)ug +/0 S(t—s)f(s)ds, t>0, (5)

whenever ug € H and f € Ly jo.(Ry; H). Similarly, since S is uni-
formly integrable, we have the representation

o(t) = /_ S(t—s)g(s)ds, teR, (6)
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for the unique mild solution of (2), for each g € L1(R; H)+ Lo (R; H).
The relation between these solutions is

lim |u(t) —v(t)|g =0, whenever tl_i)m |f(t) —g(t)|m =0.

t—o0

The resolvent family S(¢) can be written explicitly by means of
the spectral decomposition of A as

Sz = sp(t)(zler)er, t>0, (7)
k=0

where the scalar functions si(t) are the solutions of the scalar prob-
lems

S:k(t)wk/otb(t—f)sk(f):o, £>0, sp0)=1  (8)

Next we consider the assumptions on the white noise and the covari-
ance; see Da Prato and Zabczyk [4].

Hypothesis (W): Q is selfadjoint positive semi-definite; there
exists a sequence -y, > 0 such that

Qer, = ek, k €Ng.

W (t) is of the form

o

(W(t)lz) =Y wi(t)(zlex), teR z€H,
k=0

where wi(t) are mutually independent real Wiener processes on the
(@, F,P).

Our plan for this paper is as follows. In Section 2 we state the
main results about white noise perturbations of equations in linear
viscoelasticity, i.e. equations (1) and (2), assuming the hyptheses
(A), (E), (b), and (W) explained above. These results are proved in
Section 3 by means of the methods introduced in the monograph by
Da Prato and Zabczyk [4], adapted to evolutionary integral equations
in Clément and Da Prato [1], [2]. The required estimates are already
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available and are taken from Monniaux and Priiss [5]. Section 4 is
devoted to a study of the equation

U+ go * Au :gg*W

on the halfline, where g,(t) = t7"1/I'(y) , > 0 for v > 0 denotes
the Riemann-Liouville kernel of fractional integration. The results
for this problem are compared with those above and with results
available in the literature.

2. Main results

Concentrating on the stochastic case we let h(t) = 0, ie. f(t) =
W (t). This means that we have to investigate the stochastic convo-
lutions

t
W) = [ S(t-nVQaw(r), t>0, (9
0
on the halfline, and

t
Ws(t) = /_ S(t—1)\/QdW (1), teR, (10)

on the real line, where by means of a second independent Wiener
process Wi (t), W (t) is extended to R by the definition

W@ t>0
wit) = { Wi(—t) t<0.

In virtue of the spectral decompositions of A and () we may rewrite
o0 ¢

W) = Vi | st = Desdun(r), ¢20, (11
k=1 0

and

0 t
Ws(t) = \/77/ si(t — T)erdwy(r), t>0. (12)
k=1 -

Our main result on (1) reads as follows.
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THEOREM 2.1. Assume that Hypotheses (A), (b), (W) are valid,
and suppose

TrQA™7] =Y /!’ < oo, (13)
k=1
where 5
p=1+ - sup{|argb(A)| : ReA > 0} (14)

Then the series (11) and (12) converges in Lo(2; H), uniformly in
t on bounded subsets of Ry resp. R. Wg’(t) 1s a Gaussian random
variable with mean zero and covariance operator @ given by

t
Qi - /0 S(rQS*(r), >0,

and we have Tr[Q;] < Tr[QA~/?). Ws(t) is a stationary Gaussian
process with mean zero and covariance

Qeo = Jim Qv = /0 S()QS* (t)dt

If in addition, there is 6 € (0,1) such that

Tr[QAU-1/7] = Zv /0P < oo, (15)
k=1

then for each o € (0,0/2), the trajectories of W4 (t) and Ws(t) are
almost surely a-Holder-continuous.
In case H = Ly(O) and Hypothesis (E) as well as

[QA“-1/7)] Zv Jud 0 < oo, (16)

are met, the trajectories of W4 (t,€) and Wg(t,€) are almost surely
Holder-continuous in &, for each exponent o € (0,0).

Observe that in case H = Ly(0,1), i.e. N = 1, and A = —d?/d¢?
with Dirichlet boundary conditions we have pj = m2k?. Therefore
in case @ = I (15) is satisfied whenever 0 < 6 < 1 — p/2, and (16)
holds provided 0 < 6 < (1 — p/2)/p. Note that by Hypothesis (b)
we have p € [1,2).
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3. Proofs of the main results

To a large extent the proofs of our main results follow the arguments
for the Cauchy problem presented in Da Prato and Zabczyk [4],
and those of Clément and Da Prato [1], [2] for a different class of
evolutionary integral equations. We first collect some properties of
the functions s,(t) introduced above.

LEMMA 3.1. Suppose the kernel b(t) is subject to Hypothesis (b),
and let p € (1,2) be defined by (14). Then

(1) [su®)] <1 forallt,p>0;

(i) [$u)1 < C  for all p>0;

(iii) [tsul1 < Cp~YP for all p > 0;
(iv) |suli < Cu=?  for all p >0,

where C > 0 denotes a constant which is independent of u > 0, and
|- |1 denotes the norm in Li(Ry).

Proof. Assertion (i) follows from the proof of Corollary 1.2 in Priiss
[6], while (ii) and (iii) are contained in Proposition 6 of Monniaux
and Priss [5]. (Observe the relation §,(t) = —puru(t), to connect the
notations.) To prove (iv), observe that

R
sult) = su<ze)——J£’ su(r)dr

and (ii) imply that the limit of s,(R) for R — oo exists and satisfies
A

i = 1 S = lim ——— =0.
Aim () A0+ A8u() A0 A+ ub(\) 0
Therefore o
%@:—/ 5, (r)dr
¢
yields

oo
0

(o] o0
s < [ [ lsurlarat = [ rlsu(mlar = Jes < ot
0 t
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by assertion (iii). O

Observe that for the case b = gg, we have p = 1+ . It has been
shown in Monniaux and Priiss [5] that the exponent 1/p in (iii) and
(iv) of Lemma 3.1 is optimal.

Now, let the hypotheses of Theorem 2.1 be fulfilled. Then by (i)
and (iv) of Lemma 3.1, e.g. u(t) = WJ (¢) satisfies

00 t 00 00
-1
Elu(t)|? = nyk/o sik(r)d'r < Z'Vk|3uk|1 < CZ'}%/Ak /P < 0.
k=1 k=1 k=1

Therefore we may argue as in the proof of Theorem 2.2 of Clément

and Da Prato [1] to obtain the first statements of Theorem 2.1.
Concerning Holder-continuity, we derive two estimates which are

similar to those in Hypothesis 2 of Clément and Da Prato [1].

LEMMA 3.2. Suppose that the kernel b(t) is subject to Hypothesis
(b). Then for each 6 € (0,1) there is a constant Cyp > 0 such that

t
/ $2(r)dr < Cou0=Vlolt — ) 0<7<t, (17)

and

/ [5,(r — 1) — su(t — r)Pdr < Cou® D2l — 710, r <t (18)

—0o0

Proof. From Lemma 3.1 (i), we obtain

t t
/si(r)drg/ I8, () [dr < |3,
T T

as well as ]
/ si(T)dT <l|t—rl,
-

hence by interpolation, employing Lemma 1 (iv)

t
9 _ _
[ st <= 175,170 < OO~ 7700,
:

which proves (17).
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To prove (18) we employ once more Lemma 3.1, this time (i), (ii)
and (iii).

[ tsutr =) = sute=r)ar

< Z/T |su(T — 1) — s,(t —7)|dr

:o t t T
< 2/ / |3,(0 —7)|dodr = 2/ / |$,(0 —7)|drdo
0 JT T J—00

< 2/:(0 !

[ e =lsuto =nlart =1 luto = r)iarar

—00 —00

t
< 200~/ / (0 = 7)'do = 2C/al[t — 7Pu@-D/e. O

T

Since

o] s t

Blu(t) —u(s)fy = Yol | Iselt—r)—su(r—r)Pdr+ [ lsulr)ar),
k=1 0 T

with Lemma 3.2 we may conclude Holder-continuity of u(t) = W4 (t)

or u(t) = Wg(t) as in the proofs given in Clément and Da Prato [1]

or [2]. Similarly, in case (E) holds, we obtain Holder-continuity in

space from the identity

oo ¢
Blu(t, &) — ult,n)? = 3 / 51 () [2drlex (€) — ex ()2
k=1 0

4. Fractional derivatives and white noise

In the remaining part of this paper we take up a different viewpoint
to equations with noise which will set the results of this paper and
those obtained in [1], [2] in another perspective. We consider the
problems

U+ gox Au = gg* W (19)
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in the Hilbert space H, where the operator A is subject to Hypothesis
(A) and also to (E) if appropriate, the Wiener process W is subject
to (W) and g, denotes the fractional integration kernel

gy =t"HT(y), t>0,

where v > 0. In case a = 3, applying the fractional derivative D¢
to (19) we obtain
D%+ Au=W (20)

which interpolates between the first order equation %+ Au = W and
the second order problem % + Au = W. If we set =1, a = g, for
a € (0,1] equation (19) is a special case of the problem studied in
[1]-

For a € (0,2), 8 > 0, define the scalar fundamental solution of
(19) by

Fa() = g\ 1 X

= = . ., Rex>0,u>0. (21
L+ pga(A) M A4y ‘ a 2D

Then with r;, = r,, , the solution of (19) can be written as

00 t
u(t) =3 \/%/ re(t—T)dwp(T)es, >0,  (22)
k=1 0
and therefore as above
00 t
Blut)h = Yo [ Inelr)ar (23)
k=1 0
as well as

00 t t
Elu(t)—u(s)|% = kz::l'y;c[/o |’r‘k(t—8+7')—’f‘k(7')|2d7'+/s |7 (t—7)|%d7]

(24)
and in case H = Lo(O) and (E) is valid

t
0

Elu(t,€) —u(t,n)]” = Z%[/ ri(r)drllex(€) —ex(m)>.  (25)
k=1



WHITE NOISE PERTURBATION etc. 217

Identities (23) and (24) show that the solution u(t) of (19) exists and
is continuous in Lo(2; H) iff

)
g1 = Z’yk|7"k|g < 0. (26)
k=1

Next observe that with the convention r,(t) = 0 for ¢ < 0 we have

S t
/0 it — s +7) — Tk(7)|2d7+/s Iri(t — )2

< /00 lri(t — s +7) — rp(7)?dr

—0o0

= It —s+2) = kOB < Irulhe _)lt - s,
where Bg,oo(]R) denotes a Besov space. Now we have the embedding
HJ(R) = Bj5(R) < Bf (R),

and so the condition
o
09 := Zyk|rk|g’2 < o0 (27)
k=1

implies Holder-continuity of u(¢) in time ¢ of the order €. Finally,
from (E) we obtain by interpolation

lek(€) — ex(m)] < C|€ —n|°ull?,
hence

o
o3 1= Z’)’kuzh‘k‘% < 00 (28)
k=1
yields Holder-continuity of u(t,¢) in space £ of order #. Therefore
the goal is to estimate the HY-norms of the fundamental solution
ru(t) of the scalar problems

Ty + fga * Ty = ga- (29)

This will be done in the following Lemma.
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LEMMA 4.1. Suppose o € (0,2), 8 > 0, 0 € [0,1], and let r,(t)
denote the solution of (29). Then

) 1-3(3-0)
|Tli|0,2 < Ca,ﬂ,ﬂlu @ ;>0

whenever 1/2 40 < < 1/2 4+ «, where | - |92 denotes the norm in
Hi(R).

Proof. We first consider the case § = 0. Then by the Paley-Wiener
theorem, r, € Ly(Ry.) iff 7, € Ho(Cy ), the Hardy space of exponent
2 and |rule = (1/v27)|fu|3,. Now we may compute

[ (0" 0o a—pf
a2 p 2 1-26 S 2
P2 =2 = Pdp=2u" ds,
Fubn =2 | == [T
and the last integral is finite iff 1/2 < < 1/2 + . In case 6 # 0,

observe that |r,|o+|D% |2 defines an equivalent norm on HY, hence
replacing 8 by 8 — 6 the result follows. O

Now we are in position to state our result on (19).

THEOREM 4.2. Let a € (0,2), 8> 0, 0 € [0,1] such that 1/2+ 6 <
B <1/2+ a. Assume that (A) and (W) are satisfied. Then

(i) If Tr(QAG—28)/a) = 3~ Vk,u,(cl_w)/a < oo then the solution u
of (19) exists and belongs to Cy(Ry; Lo(Q; H)).

(i) If Tr(QA(—25+20)/a) = y~oo o (1226420)/0 o thop o €
CP(Ry; Ly(; H)).

(iii) If H = Ly(0), (E) holds, and

TT(QA(1_2ﬂ+a0)/a) _ Z7kﬂ§gl_2ﬁ+a0)a < o0,
k=1

then u € Cy(Ry; C?(0O; La(Q)).
Proof. Use Lemma 4.1 to estimate the quantities o, 1 = 1,2,3. O
REMARK. From the proof of the Lemma, it is apparent that the upper

bound 1/2 + « for  is not needed if we only want local results, i.e.
on a finite time interval [0, T'].
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It is instructive to discuss the following one-dimensional example.

EXAMPLE. Let H = Ly(0,7), A = AT, where Ay = —(d/dx)?
with Dirichlet boundary conditions. Then u; = k%™ hence with pure
white noise v, = 1 we obtain

. 128 1«
Z’ykuk"‘ <o & ﬁ>§—l—ﬂ.

1-28+26 1 a
Z’Ykﬂ <o & >0+ =-+—.
k 2  4m

Z T o o ﬁ>g0+1+i

Vel 2" T

Observe that the condition on existence 8 > 1/2 + a/4m already
implies Holder-regularity in time and in space. Spatial regularity is
better than that in time, by the factor 2/a. Note also that § = 1
works for all @ € (0,2), m > 1.

We conclude with a brief discusson of the case « = 2. Then

FulX) = N8O + ),

hence there are poles +i,/u on the imaginary axis, and so Lemma 4.1
is not valid in this case. Therefore we proceed differently. For 8 >
1/2 we may employ the complex inversion formula for the Laplace
transform to the result

1 Yy+oo )\2—[3
rut) = — / L eMdr, t>0,
g oo A2 p

where v > (. Contracting the contour to the negative real half-axis
we obtain

ru(t) = u PP {sin(t + (2 — B)m/2) +

—mLsin((2 / \/_trl-l—TQ} t>0.

This formula is valid for 1/2 < § < 3 and it shows

T
/ rﬁ(t)dt ~ept™P as p— oo,
0
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for any fixed T' > 0. Therefore the condition for local existence in
the case o = 2 becomes

o0
> ey’ < oo
k=1

Note that this is not the limiting case of Theorem 4.2 (i) as a — 2.
This is an extension of the result of Da Prato and Zabczyk [4] on
i+ Au=W.
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