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Global existence and blow-up
for a hyperbolic system

in three space dimensions
D. DEL SANTO )

SUMMARY. - Using the technique developed by F. John in [7], we
study the ezistence and the nonezistence of global classical solu-
tions to the Cauchy problem for

02u — Agu = |v]P,
02v — Ayv = |ul?,

in R3 x [0, +o0].

1. Introduction

In this paper we shall consider the following semilinear hyperbolic

system
O2u — Agu = |v|P
in R x [0, +o00f, (1)
02v — Agv = |ul?

with initial data
u(z,0) = fi(z),  Owu(z,0) = gi(z)

'U(:E’O) = f2($)a at’l)(.’E,O) = 92($)

S

in Ry, (2)
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where p, ¢ > 1 and fi1, f2, g1, g2 € C°(R}). A global classical solu-
tion to this Cauchy problem is a pair (u,v) of C? functions, defined
in R? x [0, +oo], satisfying (1), (2). We will use the term blow—up
to mean the nonexistence of global classical solutions.

The question concerned here is to find sufficient conditions on p
and ¢ such that the blow—up for (1), (2) takes place.

In a recent work (see [2]), V. Georgiev, E. Mitidieri and the
author have shown that if

max p+2+qg?t g+2+p! >n—1
pg—1 7 pg—1 2 7

(3)

and some conditions on initial data hold then the problem (1), (2)
has no global classical solutions. In particular, for n = 2 or 3, a
blow—up result is proved if (3) holds and the functions ¢g; and g
satisfy

/ngl(m)dx>0 and /ngg(m)d:c>0. (4)

This result has been obtained by the so called functional method
(see [1, Ch. 2]).

Here we shall prove that in three space dimensions no hypotheses
on initial data are needed to produce blow-—up when condition (3)
holds (Theorem 2.1). The proof of this theorem uses a technique
introduced by John (see [7, Th. 1]) and it is based on some partic-
ular properties of the solution of the linear nonhomogeneous wave
equation in three space dimensions.

It is still an open problem to prove a similar result when n # 3,
for both the semilinear wave equation and the system (1).

In [2] some global existence results for (1), (2) have been proved.
More precisely, if n = 3 and

2+4+q 1! 2+4p!
max{p+ ' gretp }<1, (5)

pg—1 7 pg—1

with 2 < p, ¢ < 3 then (1), (2) has a unique global solution provided
the initial data are small in a suitable norm.

In this paper we shall prove that the same result holds without
requiring p, ¢ < 3 (Theorem 2.3). Moreover if min{p,q} < 2 we
show that (5) implies the existence of a global continuous solution
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of the integral problem corresponding to (1), (2) (Theorem 2.2).
These improvements are due to a slightly more precise weighted L*°
estimate for the solution of the linear nonhomogeneous wave equation
in three space dimensions (Lemma 4.1), while the iteration technique
for the construction of the global solution is the same as in [2].

It is beyond our intentions to give here an exhaustive bibliogra-
phy on blow—up and global existence results for the solutions of the
semilinear wave equation

O*u — Agu = |ulP  in R? x [0, +ool. (6)

We recall only the cited fundamental article by John [7] in the case
n = 3, and the papers by Glassey [4], [5], for n = 2. The main results
in the case n > 4 are due to Sideris [10] and to Georgiev, Lindblad
and Sogge [3]; many other references can be found in [1].

The paper is organized as follows: in Section 1 we state the three
main results; the proofs are collected in Sections 2, 3, 4 respectively;
the Appendix contains the statements of two uniqueness theorems
we use in the proof of Theorem 2.1.

The author thanks with pleasure prof. Enzo Mitidieri and prof.
Vladimir Georgiev for many enlightening conversations on the sub-
ject of the present work.

2. Results

We begin stating the main blow-up result of the paper.
THEOREM 2.1. Let f1, fa, g1, g2 € C°(R3) with

0 # supp f1 Usupp f2 Usupp g1 Usupp g2 C {|z| < R}.

Let T €]0,+0c0] and let (u,v) € C3(R3 x [0,T[)? be the solution of
the Cauchy problem

0?u — Agu = |v|P

in Ry x [0, T, (7)
02v — Agv = |ul?

u(a:, 0) =fi (.’L‘), 8tu(xa 0) = gl(m)

in RS, (8)
U(.’E,O) = f2($)’ at’l)(.’E,O) = 92($)
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Suppose that p, g > 1 and

+2+q ' q+2+p!
max{p pq—lq ’qpq—f }>1. 9)

Then T < +00.

In order to state the global existence results we need to recall
some classical properties of the solutions of the linear wave equation
in three space dimensions.

Let F be a continuous function defined in R3 x [0, +oo[. We
denote by L the integral operator defined by

7

1 t
L(F)(z,t) = 4—/0 (t—s)ds . 1F(:I:-l—|t—s|7],s)dw,,. (10)
’n:

It is a well known fact that if F is a C? function then L(F) is the
unique C? solution of

O*u—Azu=F inR x[0,400], (11)

with zero initial data.
Let f € Ct, g € C be two functions defined in R3. We denote by
W the integral operator defined by

W@t = 4 [ glo+te)duc+on(y

[z +t€) dwe).
l¢/=1 =1

&=
(12)
If f € C? and g € C? then W (f, g) is the unique C? solution of

Otu—Agu=0 inR x[0,+o0], (13)

with
u(z,0) = f(z), owu(zr,0) = g(x) in ]Ri (14)

THEOREM 2.2. Let fi, g; € CSP(R3) with supp fi, supp g; C {|z| <
R}, fori=1, 2. Suppose that p, ¢ > 1 and

(15)

{p+2+q1 q+2+p1}
max , < 1.
pq—1 pq—1
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Then there ezists €9 > 0 such that for each € €10, e[ the problem
w=Wefe) +L0P)
in RS x [0, +o0], (16)
v =W(ef2,€92) + L(Jul?)

has a solution (u,v) € C(R3 x [0, 4+o00[)2.

THEOREM 2.3. Suppose that the hypotheses of Theorem 2.2 hold.
Suppose moreover that p, q > 2.

Then there exists ¢g > 0 such that for each € €10, o[ the Cauchy
problem

02u — Agu = |v|P
in RS x [0, +o0], (17)
02v — Agv = |ul?
u(z,0) = ef1(z), Ou(z,0) = eg1(x)
v(z,0) = efo(x) o (z,0) = ega(x)

has a unique global classical solution (u,v) € C2(R3 x [0, +o00[)2.

in®,  (18)

3. Proof of Theorem 2.1

In order to prove Theorem 2.1 we adapt to the present situation
the proof of John’s result [7, Th. 1] (see also [9, Ch. 2]). First of
all we remark that as a consequence of Theorem A.2 stated in the
Appendix, we have that

u(z,t) =v(z,t) =0 (19)

for all (z,t) € R® x [0,7] such that |z| > ¢t + R. Moreover, the
condition on the support of the initial data implies that there exists
7 € R? with |Z| < 2R such that

|u(z,t)| + |Owu(Z, t)| + |v(Z,t)| + |0 (Z, t)| # 0. (20)

For every continuous function ¢ defined in R?® we denote by @ its
average on the sphere of center in the origin, i. e.

1

=1 fgen

p(|r[€) dwe,
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and similarly, for a continuous function F defined in R? x [0, T we

set
_ 1
FT,t:—/ F(|r|&,t) dwe.
)= g5 [, Flrle.dog

From (7) and (8) we have

0F (ru)(r,t) — 02(ru)(r,t) = rlv|P(r,t) -
o in R® x [0,T] (21)

02 (rv)(r,t) — 02(rv)(r, t) = r|ulP(r,t)

la(r’ 0) = f_l (T)a 81512(7", O) =01 (T),

B in R3, (22)
’6(7'7 0) = f2(r)a atb(ra 0) = gg(’l“).
Consequently

1 B _ r+t

a(rt) = o 0+ 050+ 0+ = 0AC =0+ [ pm(p)d

1 o r—t

+o. . plvlP(p, ) dpdr,
1 B B r+t

o) = 5ol + DRl +0 + =0 = 0+ [ il
+% . plul?(p, ) dpdr,

(23)
where Z,; denotes the triangle with vertices in (r,t), (r +¢,0) and
(r —1t,0).

Suppose now that 0 < r <t — R. We have
_ 1 —
a(rt) = o [ o) dpdr
2r Ryt
. (24)
ort) =5 [ ol dpar,
2r Ryt

where R, = {(p,7) ER? 1 t—r<714+p<t+r, T—p, >0} (see
Fig. 1).
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! (r, )
t—r
Rr,t
R
t—r t4r )

Fig. 1
We claim that there exists ¢y € [R, 3R] such that
[u(0,t0)| + [0(0,%0)| > 0. (25)
Indeed if (25) is not satisfied then
a(0,t) = 9(0,t) =0 (26)

for all ¢ € [R,3R]. On the other hand we have

r—0 27

1 — —
a(0,1) = lim — /R pPoP(p,7) dpdr = /0 PP (p,t — 1) dp,
7t

and similarly
t —_
2(0, 1) = /0 plald(p,t — ) dp.
From (26) we deduce that
|W(p77)| = |W(p77)| =0, (27)

for all (p,7) € R? such that R < p+ 7 < 3R. This implies that
u(z,t) = v(z,t) = 0 for all (z,t) € R® x [0,7] such that R <t < 3R
and R < |z| +t < 3R, against (20).
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A consequence of (25) is that there exists ty € [R, 3R] such that
la(r,to +7)| >0 and |v(r,to+7)] >0, (28)

for all » € R. Indeed suppose that 4(0,%9) # 0. Since u(0,ty) =
u(0,tp), we have u(0,t9) # 0 and consequently |u|?(0,t0) = |u|2(0, to)
# 0. Then [u]?(r,t) > 0 in a neighborhood of (0, ;). Finally, noticing
that (0,%9) is a corner of R, ;,,, we deduce that

1

5o | o) dodr = (et +1) > 0.

Rr,t0+7‘

In particular this last inequality implies that ©(0,%p) > 0 and then,
by the same argument we obtain the first part of (28).
Let

S={(p,7)ER? : 6R<T+p, 3BR<T—p<4R}

T={(p,7) ER? : AR< T+ p<6R, R<T—p<3R},

be two subset of R? (see Fig. 2).

T4

6R

4R
3R

4R 6R P

Fig. 2
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By Holder’s inequality we know that

0 <fal?(r,t) <ful?(r,?),

_ (29)
0 < |o|P(r,t) < |v[P(r,t).
Hence from (28) and (29) we obtain
|ul?(r,tg +7) >0 and [v[P(r,tg+7) >0
for all r € R. Then
1 -
o =g / plv|P(p,T) dpdr > 0,
2Je (30)
Co = = / plul|9(p, ) dpdr > 0.
2 Jr
Let (r,t) € S. Since T' C R,; we deduce from (24) and (30) that
alr,t) > =
e (31)
- 2
U('ra t) Z —

Let ¥ = {(r,t) € R? : 0 < r < t—6R} be a subset of R?. For
(r,t) € ¥ we define S,y = SN R, ; and ¥, = X N R, ; (see Fig. 3).

T

(r; 1)

6R

4R
3R

6R p

Fig. 3
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Let (r,t) € X. From (29) and (31) we get

lwP(p,7) > |5P(p,7) >

R S

for all (p,7) € Syt Then

1 — 1
u(r,t) > — plv|P(p,7)dpdr > —cg/ p' P dpdr
2r Spt 2r Srt

. R »aR (32)
~ (t+r—-3RpPL = (t+r)pl’
Similarly, for (r,t) € ¥ we obtain that
3 2‘1_20?1%
v(r,t) = Gt (33)
It follows that, for (r,t) € ¥ we have
u(r,t) > Co(t+ 1),
(34)

B(r, ) > To(t +17) %,
where Cy = 2725 R, Ty = 297 2¢! R and
p—1if gp-1)>1
bo = .
1/g if 0<q(p—1)<1
g—1if p(g—1)>1
g0 =

1/p if 0<plg—1)<1.

We claim that if there exist [, A >0, a, b, a, 3> 0and C,T" >0
such that lg, Ap > 1 and

a(r,t) > C(t+ )7t —r — 6R)*(t —r)°,

(35)
o(r,t) > T(t +7) Nt —r — 6R)*(t — )P,
for all (r,t) € 2, then
a(r,t) > C*(t+r)"(t —r —6R)* (t — 1),
(36)

o(r,t) >T*(t 4+ 1)Lt —r —6R)Y (t —r)*,
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for all (r,t) € ¥ where

a*=ap+2
=B+ Np—
r» 1 1—21-p
*__ - D ith D - e 9l-pA
ot 2) N Wit A= mln{ 2o —1)’ 1,
and
a*=aq+2
B =(b+1)g—-1
., C1 ) 1 1—2l-4¢ 51—l
T WA[ with Al 4 mln{m }
Suppose that (35) is satisfied. By (24) and (29) we get
1
u(r,t) > —/ plof?(p,7) dpdr
2r St
I\
> | plr+p) (= p—6R)(r—p) Pdpdr.

E'r,t

Using the new variables y = 7 4+ p, z = 7 — p we deduce that

t—r t—|—r
/ dz/ (7 — 6R)¥2z7PP dy
t

t—r t—l—r —6R
>—t—r ﬁp/ dz/ (z )* dy
t

[P (t—r—6R)**! /H""(ap-i- 2)(y—t+r)+ (t—7r—6R)
~ 8 (ap+2)2(t — 1)) Yy

dy

—Tr
I? (t—r— 6R)P+2

2 T lap t D2ty )

1 t+r dy

where I(r,t) = o / . Now it is not difficult to show that (see
T Jt—r y

(7, p. 248))

1 —2l-pA

I(rt) > (t+r) @t —r) mln{m,

17p/\}'
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Hence the first inequality of (36) follows. The remaining statement
is proved similarly. From (34), using recursively the claim, it follows
that for all (r,t) € ¥ and n € N we have

a(r,t) > Cp(t+ 1)1t —r — 6R)™ (t — 1),

37
o(r,t) > Fn(t—i—r)_l(t—r—GR)a”(t—r)ﬂ”, (37)

with ag = by = a9 = By = 0 and, for m € N,

p+1
aom+1 = Qom+1 = 2(pg)™ + Z(E)((W)m - 1),

(pq)m-l-l -1
= =92 (=L -
a2m+2 = Q2m+2 (p+1)( g — 1 )

)m+1 - 11

boms1 = qop(Pq)™ — 1,  bamy2 = pop(pg

Bom+1 = pog(pq)™ — 1, Bomsa = qop(pg)™ — 1

C()a Cla 021 PO’ Fl; P? > 0’ and

7

14 p Pq q
o B Cry1D1A7 r B | R VAN
m+3 — ﬁa m+3 — ﬁ
am+3am—|—2 am+3am+2

In particular

Pq D Ap
Com+1 > Com—1 D121 )
(2(p + 1)(m + 1) (pg)™)?r+2

Pq p
02m+2 2 C2mD1A1 pra
(2(p + 1)(m + 1)(pg)™)?P

Consequently

log(Com+1) > (pg)™[log C1 + > _ hyl,
j=1

m
log(Com+2) > (pg)™[log Co + Y _ hj,
j=1
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where
_ log D1 +plog A1 — 2(p + 2)[log(2(p + 1) (j + 1)) + jlog(pg)]
(pq)’

Since the series Zj hj is convergent, we finally deduce that there
exists H € R such that

Comy1 > exp(H(pg)™) and Copya > exp(H(pg)™)

for all m € N.
By (37), for all n € N we have

h;

a(r,t) > o(r,t) exp((pg)"[H + 2222 Jog(t —r — 6R) +
— qoplog(t —r)])

and
5(r,) 2 (r,t) exp((pa)" [H + 227 log(t — r — 6R) +
— popq log(t —r)]).
where
t—r
p(rst) 2 2t

(t+r)(t—7r—6R) a1
It is now easy to verify that if (9) holds then there exists (7,1) € &
such that

) ) _
H+ (pqi-!—lp) log(t — 7 — 6R) — qoplog(t —7) >0
Pg—
or 9
) . _
Hi (pqi—l_fq)log(t — 7~ 6R) — popglog(f — 7) > 0.
pq—

This means that T' < t. The proof of Theorem 2.1 is complete.

4. Proof of Theorem 2.2

Let
S T T S P M
be defined in R® x [0, +o0o[. The principal tool in the proof of The-

orem 2.2 will be the inequality established in the following lemma
(see [7, Lemma IITJ).
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LEMMA 4.1. Let R > 1. Let a, 8, 7y, § be real parameters. Suppose
that one of the following conditions holds:

i) a=1,=v—-2,y>2and § > 1;
i) y—1>a>0,8=0,2>y>1and § > 1;
i) a=1,y+0—-3>p>0,y>3—-dand1>6>0.

Then there exists C > 0 such that

17878 L(F) || oo 8 x [0, +000) < CITITF || oo R3 x[0,4000)s  (38)

for allF € C(R3 x [0, +o0]) such that suppF C {(z,t) : |z| <t+ R}
and 7] F € L®(R3 x [0, +00]).

In proving this lemma we shall follow some ideas contained in [7,
Lemma ITT] . We present the proof in detail.
Proof. Let F be defined by

F(z,t) = sup |F(z,t)|. (39)

|z|=r

By using the identity for iterated spherical means ([6, p. 81]), it is
not difficult to show that if |z| = r then

r+t—s P
|L(F)(z,t)| </ ds/ —F A, 8)dA = / —F(\, 8)dsdA,
|r— t+s| Ryt 2r
(40)

where R.; = {(\,8) ER? : t—r < s+A<t+r, s—A<t—r, s> 0}
In order to prove (38) it is sufficient to show that if for all (), s) €
[0, +00[x[0, +00[ we have

K

0< F(\s)< 41
= (’3)—(1+s+>\)'r(1+|s—>\|)6 (41)
then \ Ok
ZF(\ s)drds < 42
o, 2t M S e s (4

for all (r,t) € [0, +o00[x[0,4+00[. case i). Suppose that t — R < r <
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t+R. Then1 <1+ |t—r| <1+ R and consequently

(1+|t—r|)ﬂ
- < 1. 43
(1+R)P — (43)
Moreover we have
1+42t—R<1+4+t+r<14+2t+ R<2R(1+1). (44)

From (41) we deduce that

and recalling that F(),s) = 0 for A > R+ s we obtain

/‘iﬁQ)dﬁ</lJL%Ud (45)
R, 20 = e

where

k(s)

1 max {r+t+s,R+s}
/ AdA.
\

2r r—t+s|

A simple computation shows that k(s) < 12R?(s+1)/(t+1) (see [7,
p. 255]). Hence

12R?’K (** ds  12R’K

t+1 Jo (@481 (y=2)t+1)
(46)

/ iﬁ(,\,s) dsd) <
Reyt 2r

Finally from (43), (44) and (46) we obtain

24R3*(1+ R)# K
v —2 A+t+r)(1+|t—7])8
(47)

/ iﬁ(x,s) dsd\ <
Rr,t 27'

and (42) follows.
Suppose on the contrary that 0 < r < ¢t — R. We introduce the
new variables y = s + A\, z = s — A. We have

/ iﬁ(x,s) dsd\ < A; + A,
R

7r,t r
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t+r
dy,
/ /t 1+y 1—z)5 4
tr

t+r
A dy,
27 /t 1+y +z)‘5 y

where

(48)

and

t+r KR2 t+r d
A1 < — / / 1 < / 7?/,17 (49)
1 + y 8r t—r (1 + y)’y

KR [T dz t+r dy K t+r dy
N A
8r t—r (L+9)771 7 8(6 = D)7 fyr (1 + )7

(50)
If1+t—r<(1+t+r)/2 then
1 4
O —
r— 14+t+r
On the other hand
/‘t-I-T dy 1 1
< 7
tmr (LYt =y =20+t —1)r72
hence
1 K
A+ Ay < —— (R? . (51
1+ 2—2(7—2)( +5—1)(1+t+r)(1+t—r)’7*2 (51)

If1+t—r>(1+t+r)/2, by using the mean value theorem we
deduce that
1 [ dy < 1 < 2
2r i, L4yt~ QA4+t—r)r 1~ Q+t+r)1+t—r)—2’

hence (51) and consequently (42) follow. case 7i). Suppose that

t — R <r <t+ R. Proceeding as in the case i) we get

12R%2K [? ds
t+ 1 0 (]. + 8)7_1

/ iﬁ(x,s) dsd) <
Rr,t 2r
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Using (44) and the fact that & <y — 1 we deduce that

1 /t ds 1 /t ds
<
t+1 /)y T+~ t+1 /)y (1+9)

1 1 2R 1
< < 5
l—a(t+1)* " 1—a(l+t+7r)e

and consequently

. 24 R? K
/ iF()\,s) dsdX < R .
Rpy 2T l—a(l+t+r)e

Suppose then 0 < r <t — R. As in the previous case i) we have

A -
/ —F()\, s)dsd\ < A; + Ag,
Rr,t 2

r

with A; and As defined in (48). Hence inequalities (49) and (50)
hold.

Ifl14+¢t—r <(1+t+r)/2 we deduce that 1 + ¢+ r < 4r and

then
t+r dy t+r dy
-1 S a
t—r (1 + y),y t—r (1 + y)

l1—a
B o P 1
- 11—« T l-a(l+t+r)e

This last inequality implies that

A

. 1 K
/ —F(\,8)dsd\ <
Rr,t

s B T i D A e

o (52)

Ifl14+t—r>(1+t+r)/2, the mean value theorem implies

/H'T dy 4r

< 7
t—r (L+y)7=t = (L+t47)"
and (52) i.e. (42) follows.

case #i). If t — R < r < t+ R the computation is exactly the
same as in the case i).
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Suppose that 0 < r <t — R. As before
A -
/ —F(X\, 8)dsd\ < Ay + A,
Ry ¢ r

with A; and A, defined in (48). Let 8* be a real number such that
B<B*<y+d—3. Since f*+1<vy+6d—2<+vy—1, we have

KR? t+r dy KR? t+r dy
A < )
"= ey /CT Tty 1~ 8r }CT (T+y)P+

Moreover if 6* =y+§ —2—* > 1> ¢ then

IN

(53)

tr t+r
A <
2= /t 1+y'71(1—|-z)

t r t—}—r
< / * * 9
B e (14y)P +1(1+z)5

and thus we obtain

N

K t+r dy
A S . — 54
2_8W—DﬂL¢ﬂ+ww“ (54)

By (53) and (54) we get

A - K 1 brr dy
ZF(\ s)dsd\ < —(R? / ——. (Hd
[ s Gt oty [T 6

If1+t—r < (1+t+7)/2 we have that 1/r <1/(1+t+r), hence

1 [t dy < 1 1
or i (LH9)7 4 = 28 + (L4 ¢ —1)F
2 1
<

(56)

B+ A+t+r)1+t—1r)8

If on the contrary 14+¢—r > (14+¢+r)/2, again by using the mean
value theorem we obtain

1 [t dy 1 2

— < < :
2r Ji_, (49t = 14+t—r)F+1 = Q1 +t+r)(1+t—1)8
(57)
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(55), (56) and (57) give (42) in this case. The proof of Lemma 4.1
is complete.

Proof of Theorem 2.2. In view of the symmetry of the problem, we
suppose that 1 < p < ¢q. We set

U_1 =Wi(efi,eq1), V-1 =Wl(ef2,e92), (58)
and, for all j € N,
Uj = W(efr,eg1) + L(IVj-1]), (59)
Vj = W(efz eg2) + L(|Uj-1|7).
A consequence of strong Huygen’s principle is that (see [7, p. 253])
for all o > 0 there exists C, > 0, C, independent of ¢, such that
[T+ W (e f1,€91) ||z < €Cy, (60)

for all € > 0.
First suppose that

pg—2qg—1>0. (61)

Since 1 < p < ¢, (61) implies that p > 2. From (60) we deduce that
there exists C; > 1, C1 not depending on € such that

|77 2U_1 || oo + ||7472 2V 1L < €Ch. (62)

We claim that there exists ¢y € |0, 1 such that for all ¢ € [0, o[ and
j € N we have

I 7272 Ujll o + 4782Vl 100 < 26Ch1. (63)

In order to prove (63) we shall use the induction principle. Sup-
pose that (63) holds for j = jo. Then

—92 —2
772?20 lgee + 17272 2|V Plee < 2041CTP. (64)

Since p, ¢ > 2, pg —2q > 1 and pg — 2p > 1, the hypotheses of
Lemma 4.1, case i) are satisfied. As a consequence, (38) implies

7?2 L(Uo |9 |z + Ima ™ LV )|z < 27H'CCTe?,  (65)
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and from (62) and (65) we have
47 2 Ujgsallzes + lme ™ *Vigrallpe < eCi(1+ 207 CCf1eP ™).
(66)
To prove (63) it is enough to to choose £y such that
14207 0Ci™ b <2, (67)
Now we consider the case
2<p<q, p’q—pg—3p—1>0 and pg—2¢—1<0. (68)
By choosing i1 < 1 such that
pp*q —pg —3p—1>0, (69)
and using (60) it follows that there exists C7 > 1 satisfying
772720 || + |Te 7PV || Lo < €C. (70)

We claim that there exists 9 €]0, 1[ such that for all € € [0, o[ and
j € N we have

I 7?2 Ul e + my 71712V | 1o < 26Ch. (71)
Suppose that (71) holds for j = jyo. Then
Irr 2 Uil e + [V P < 21HICHP. - (72)
By Lemma 4.1 case iii) we have
I 2P LUy | )| e+ < 277 COTeP, (73)
and by Lemma 4.1 case i) we obtain
I+ 2LV ") e < 29F7 CCYeP. (74)
From (70), (73) and (74) we get (71) for j = jo + 1 taking €y as in
(67).
Let us finally consider the case

p<2, p’q—pg—3p—1>0 and pg—2¢—1<0.  (75)
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We choose 0 < p, v < 1 such that
v<p—1 and vupq—3p>1. (76)
From (60) we deduce that there exists C; > 1 satisfying
7Y U_1||poo + || 74 773V || o < €01 (77)

By the usual recursive argument we prove that there exists g9 €]0, 1]
such that for all € € [0,e0[ and j € N we have

174Ul oo + 174792V || oo < 26C, (78)
Indeed if (78) holds for j = jy then
v vug—3
179 1Ujo | oo + (|72 77D V0 Pl < 2071ePCE (79)

Consequently, by Lemma 4.1 case i73) and by Lemma 4.1 case i) we
have respectively

I LU | 9) 20 < 2771€PC, (80)

1TV L(| V3o P)llzee < 297 €PCH. (81)

As a consequence, from (80), (81) and (62), inequality (78) follows
for j = jo + 1.

The claims (63), (71) and (78) imply that the sequences (Uj),
(Vj) are bounded in some weighted L* space. Our goal is to show
that these sequences are indeed convergent in the same space if ¢ is
sufficiently small.

Let us suppose that (61) holds. From (63) we deduce that there
exists Cy > 1 such that

772U — U—1) || + 7478 (Vo — Vo) |z < eCa. (82)

We claim that there exists €1 €]0,¢o[ such that for all € € [0,¢;[ and
j € N we have

_ _ eC
lrr 22 U1 = Ul + 2 (Vi = Vi)l < 2. (83)
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Again we shall argue by induction. Suppose that (83) holds for
J = jo- By (63) we have that

7472 (Ujor2 — Ujor1) Lo
= 2 L(Vig 11 P — [ViolP) | e
< O a2 ([Vigaa P = [Vio )
< Ol 2 Vjgur )P — (782 Vi IP) oo (84)
< Cpllret (Vg1 — Vo) llpoe-
(I Vigrllfee + I 2 Vo 7))
and similarly

602

e (29971001, (85)

-2
I7+77 " (Vigt2 = Vigt1) | < Cq

Claim (83) for j = jo + 1 is a consequence of (84) and (85) provided
€1 is chosen such that

20:2¢0C TP < 1.

When (68) or (75) holds the argument is similar. It is immediate
to verify that the limit of ((U;,V})) is the solution of the problem
(16). The proof of Theorem 2.2 is complete.

5. Proof of Theorem 2.3

Let (U;), (V;) be the sequences defined in (58), (59). As seen in
the proof of the Theorem 2.2 these sequences are convergent in a
weighted L* space. Let u and v be respectively the limit of (U;)
and (V}). By the proof of Theorem 2.2 we know that (u,v) is the
solution of the integral equation associated to (17) and (18). We
prove now that if p, ¢ > 2 and ¢q is sufficiently small, then the z—
derivatives of order < 2 of u and v exist and are continuous. By [7,
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Lemma I, this fact implies that (u,v) is the unique C? solution of

(17), (18).
Since U_1, V_1 € C*° and p, ¢ > 2 we have U, V; € C? for all
j €N and
awk Uj = awk U1+ L(p|Vj_1|p_2Vj_13$ij_1),
szV] = szV_l + L(p‘Uj_1|p72Uj_18zk Uj_l),
axkaa:h U] :amkamh U—l + L(p(p - ]-)H/j—l|p_26$k ‘/j—laﬂ,‘h‘/}—l +
+p|Vj*1|p_2Vj*1awkathj*1)’
6%8%1/_,-:8%8%[1 + L(p(p — 1)|Uj_1|p‘28kuj_18$hUj_1 +
+ plUj1|P~2U;-104, 05, Uj—1).

Without loss of generality we suppose that 1 < p < ¢.

Let first consider the case (61). By using the explicit form of U_;
and V_; together with (60), we infer that there exists C3 > 0, Cs
not depending on ¢ such that

747205, U_t||zoo + 7472 205, Vot Lo < €Cs, (86)
and
74777204, 00, U 1|10 + 17478 200,00, V 1]l < €Cs.  (87)

We claim that there exists o €]0, €1 such that for all € € [0, 2] and
j € N we have

7P 2805, Uyl poo + |74 7828y, Vil 1o < 26C3, (88)
and
74 72204, 80, Ujll oo + |77 204,02, Villoo < 26C3. (89)

We argue by induction. Let (88) be true for j = jo. By Lemma 4.1
case i) we have

17477 2 L(p| Vo [P 2Vjy O Vo)l 0
< O P92 (p| Vi [P~ 8, Vi) | 1o (90)

-2 -1 -2
< PO Vi e 174727700, Vil o,
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and )
||7—+7'g L(Q|Ujo|q72UjoawkUjo)||L°° (91)
2 2
< qC||r4 2| Ujo |9 77200, Uy || oo

From (90) and (91), by using (63) and (86), for all ¢ €]0,¢1[, we
have that

||T+T awkUjo+1||L°° + ||7_+7_q— aﬂﬁkVJ0+1HL°"
< eC3(1 + P 1202001 b,

hence (88) follows for j = jo + 1, by choosing e5 sufficiently small.
Suppose now that (89) holds for j = jo. We have

7472 L(p(p — 1)|Vjo [P 205, VioOu, Vio + PIVio [P VjoOr, Oy, Vi) Il oo
< |l P2 Lp(p — 1) Vo [P~* 0, Vio Oy Vi)l 1oe
H|Tp 7P 2L (p| Vo P 82y O, Vi) 2o
p(p — )OI D Vo [P =20,, Vo, Vo | oo

+pC | 27D |V P18, 84, Vil oo

< p(p = 1O 7 Vo[l N9 20 Vil oo 17477 20, Vo ll oo
2
+pC| a2V (e 1747920, B, Vil oo -
(92)
and

||T+TE_QL(Q(Q - 1)‘Uj0 |q72azk Ujoazh Ujo + q|Uj0‘q72Ujoaﬂfkaﬂfh Ujo) ||L°°

2 2
< qlq = 1)C|lr 722U |52\ m 727200, Ujg | oo [l 7472202, Ujo Il oo
2 2
+qC||T+Tp UJOH ||T+Tp 8$k8$hUJO||l(/°°)
93

Finally from (92) and (93), by using (63), (87) and (88) with j =
jo + 1, we get

7727200, B, Ujgrt | poo + || 7478 20, Oy Vgt || 2o

< eCy(1+ P71 (27 (g(g — 1)CY2C3 + qCFT1Y)),
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and by choosing a smaller value for g9, (89) follows for j = jo + 1.
In order to complete the proof of Theorem 2.3 when (61) holds, we
need only to check that the sequences (05, U;), (0z,Vj) (0g, 0z, Uj)
(Ox, Oz, Vj) are convergent. This will be a consequence of the fol-
lowing fact: there exists Cy > 0 and e3 €]0,e3[ such that for all
€ €]0,e3[ and j € N we have

7477705, Uj — 85, Uj1) || oo +

_ eC 94
+ 7800,V — 0, Vig1) o < 2—;1 %4
and
777205, (02, Uj — 02,0, Uji1) || oo +
eCy (95)

+ ||T+T372(a$kamh‘/j = 01,0, Vji1) Iz < 95

If (68) and (69) are satisfied, inequalities (88), (89), (94), (95)
follow, with the choice 7477 2 and 7, 74 73,

Finally if p = 2 and ¢ > 7/2 then (88), (89), (94) and (95) are
proved with the weights 7,7 ~? and 747177 replaced in by 7% and
7! vq=3 respectively.

The remaining part of the proof consists in a quite long and
straightforward computation. We omit the details.

A. Appendix

For completeness we state here two uniqueness results for a class of
hyperbolic systems. The interested reader may refer to [8, Th. 4,
Th. 4a] for the proofs of these results in the case of the scalar equa-
tion. The proofs in the vector valued case proceed similarly.

THEOREM A.1. Let 7 > 0 and o € R*. Let F and G be two real
valued C' functions such that

F(0) = F'(0) = G(0) = G'(0) = 0. (96)
Let (u,v) be a C? solution of
O2u — Agu = F(v)

7
0tv — Ayv = G(u) 7
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in the conic region Ry, » = {(z,t) € R" xR : t+|z—zo| < 7, t > 0}.

Suppose that

u(z,0) = dyu(x,0) = v(x,0) = 4w (z,0) =0 (98)

for all z € R™ such that |x — zo| < 7.

Then u(zg,7) = v(xg,7) = 0.

THEOREM A.2. Let o, 7 > 0. Let F and G be two real valued C'
functions satisfying (96). Let (u,v) be a C? solution of (97) in the
strip Sy = {(z,t) e R* xR : 0<t<7}.

[1]
[2]

[10]

Suppose that (98) holds in the set {z € R* : |z| > o}.

Then u(z,t) = v(z,t) = 0 for all (x,t) € S; such that |z| > o+t.
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