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SUMMARY. - We consider a system of 2 (or more) coupled Schridin-
ger equations in the difficult situation where the equations have
first-order, lower-order terms, as well as first-order coupling in
all space variables. By using a general differential multiplier we
giwe a “friendly” proof of Carleman estimates. Under more re-
strictive intrinsic conditions mostly on the coupling operators, we
obtain exact controllability results for the coupled system, under
various combinations of boundary controls: Dirichlet/Dirichlet;
Dirichlet/Neumann; Neumann/Neumann. The controls are ac-
tive on a suitable portion of the boundary. These results cannot
be obtained by standard multipliers.
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1. Introduction

Problem formulation. Consider the following coupled system of
two Schrodinger equations in the unknown w(t, z) and z(t, z):

iwg = Aw+ Fi(w)+ Pi(z) in (0,7] x Q= Q; (1.1)
izg = Az+ Fy(z)+ Py(w) inQ, (1.2)

defined on a bounded domain 2 C R" with smooth boundary I, say
of class C!. Here, F; and F, are (linear) differential operators of
order one in the space variables z1, ..., z,, with (possibly complex)

L (Q)-coefficients, thus satisfying the pointwise bounds:

|Fi(w)]? < Cr[|Vwl® + [w]*); - [Fa(2)]? < Cr[|Va” + 2], (1.3)
VitzeQ.

Assumption (1.3) on F; and Fy will remain in force throughout the
paper. For our first main result, the Carleman estimates of Theorem
1.1 below, we similarly assume that P;(z) and P»(w) are, like F; (w)
and Fy(z), first-order (linear) differential operators in the space vari-

ables z1,...,%,, with (possibly complex) L., (Q)-coefficients, thus
satisfying pointwise bounds as in (1.3):

|PL(2)” < Or[[Vz] + 2] |Pa(w)? < Op[|Vwl® + [wl?],  (1.4)
Vit reQ.

Main results. No boundary conditions need to be imposed at
this stage. For the purposes of this paper, the operator (—A) in
(1.1) and (1.2) may be replaced by two, possibly different, uniformly
elliptic operators of order two, with constant coefficients, without
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held at Delft University, The Netherlands, September 1989; at the International
Workshop held at Han-sur-Lesse, Belgium,October 1991), as well as of the private
correspondence, which he shared with Pierre Grisvard on these topics.
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effecting the proofs and results below. Under the above assumptions
we shall prove Carleman estimates for (1.1), (1.2): To state them,
we let

By /|Vw\dQ By /|Vz|dQ
(1.5)
E(t) = Ew(t) + Ez(t)a

2
and we let ¢(z,t) = |z — zo|2 — ¢ ‘t — %| , o € R™, be the pseudo-
convex function discussed in (2.1.4) below in Section 2.

THEOREM 1.1. (Carleman estimates) Assume (1.3) and (1.4). Let
w, z be solutions of (1.1), (1.2) in the following class

w,z € C([0,T]; H'()) (1.6)
0 0
we, 5o 2 g € La(0,T5 Ly(T), (L.7)

v being a unit outward vector on I'. Let T" > 0 be arbitrary. Then,
for all 7 sufficiently large, the following one-parameter family of es-
timates hold true:
3C 1
(2 _3r —> [ elIvul? + |valaQ
T T/) Jg

67(57

[E(T) + E(0)] <
< BT(w)|s + BT(2)|x
+ Crgr [Hw”%’([O,T];LQ(Q)) + Hz“%’([O,T];LQ(Q))] ,  (1.8)
where the boundary terms BT (w)|y are defined by
BT(w)ls = Re (/ e7¢8—wv¢ - Vi dE)
» ov

- %/ e\ Vw|?V¢ - vdx

/ —W d1v T¢V¢) d%

2 / TV - vds), (1.9)
2 /s
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and similarly for BT (z)|x. Finally, § > 0 is the constant associated
with the pseudo-convex function ¢(z,t) as in (2.1.4c). O

As discussed in detail in the Comments below, a main source of
difficulty in proving estimate (1.8) is due to the presence of arbitrary
first-order terms Fi, F5 in the original variable as well as P; and P,
in the coupled variable, in each of the two equations (1.1) and (1.2).
The proof of Theorem 1.1 will be given in Section 3, in Theorem 3.1,
and will be critically based on Theorem 2.1.1 for a single equation.
However, in order to deduce from estimate (1.8) further significant
inequalities, we need to slightly specialize the operators Fi, Fs, and,
more seriously, restrict the coupling operators Pi(z) and P(w) to
be of zero order. Such latter restriction is intrinsic to the issue of
describing E,, and E, as a function of #; it rests on the fact that the
multiplier w;, needed to obtain such description, does not (unlike
the generalized wave equation case) yield [, |w:|[>dQ2 as an energy-
term (see Section 2.3). More precisely, we henceforth require that
the coefficients of F; and Fy be real so that F;(w) and Fy(z) are of
the form

([ Fi(w) = Vri(t,z) - Vu(t,z) + p1 (¢, z)w(t, z) (1.10a)
Fy(z) = Vry(t,z) - Vz(t,z) + p2(t, z)2(t, x), (1.10b)
under the following assumptions

} rittw) = Pa),. ()]

= real n-vector field, with (1.10c)
|Vri(t,z)| € Lo(Q), i = 1,2

pi(t,r) = real function in L., (Q),

\ with p; +(t,7) € Loo(Q)- (1.10d)

A fortiori, (1.10) implies (1.3). Moreover, as to P;(z) and Ps(w), we
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require that they are of zero order

(Pi(z) = a(t,z)z; Py(w) = B(t,z)w; (1.11a)
a(t,z), B(t,z) € Loo(Q);
Vot 2)|, [VA(t2)| € Loo(Q), (1.115)

V = gradient in z, so that
the following estimates hold true:

|Py(2)| < Orlzl;  |Pa(w)| < Crlw|, ¥tz € Q; (1.11c)

I1PL(2) | 1) < C7ll2l 513
[ 1P2(w) || 1 )SCT||w||H1 . (1.11d)

Our goal in the present paper is twofold:

(i) To establish the energy estimate of our main Theorem 1.2 be-
low, which reconstructs the energy from the boundary mea-
surements modulo lower-order terms;

(ii) to provide a “friendly” and explicit proof of Theorem 1.2.

THEOREM 1.2. Assume (1.10) and (1.11). Let w, z be solutions of
(1.1), (1.2) in the class (1.6), (1.7). Let 7" > 0 be arbitrary. Then,

(i) there exists a constant k7 > 0 such that the following inequal-
ity holds true for all ¢y > 0:

kr[E(T) + E(0)] <

//[|wt|2+|zt\2 dwf* | |02 ]drdt
V
2 2
{101 a1 by 12

(ii) Assume further that

wly, = 0 and/or, respectively, z|x, =0, 3¢ = (0,7] x Ty,
(1.13)
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where [y is the portion of the boundary I' = T'g U T'y, defined
by Eqn. (2.1.16) in Section 2 in terms of V¢. Then, the right-
hand side of (1.12) is refined, in the sense that integration
over I' of the w-terms, and/or, respectively, of the z-terms, is
replaced by a corresponding integration over I'y; only, so that
the right-hand side of (1.12) contains instead

IR

and /or, respectively, (1.14)

B e

according to whichever of the conditions in (1.13) holds true
(possibly both). O

] dl'idt,

2
hd ] dry dt,

Once (1.12) (or (1.13)) is established, one may further refine it
by absorbing the interior lower-order terms in w and z by a com-
pactness/uniqueness argument, and thus obtain the desired final es-
timate.

THEOREM 1.3. Assume (1.10) and (1.11). Let w, z be solutions of
Egns. (1.1) and (1.2) in the class (1.6), (1.7). Let both w and z
satisfy the boundary conditions in (1.13) on ¥jy. Assume, further,
the following uniqueness property: that the only solution of (1.1),
(1.2) subject to the overdetermined homogeneous B.C.

wly = 0 zly = 0
a,w _ and az _ 0 (115)
31/ N - ’ 81/ M o ’

is the trivial solution w = z = 0. Then, there exists a positive
constant k7 > 0 such that the following energy estimate holds true:

bl @)+ B0 < [ [ a2 [

61/ ] dr'y dt.

(1.16)
a
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REMARK 1.1. The uniqueness result always holds true with suffi-
ciently smooth coefficients [I.1].
a

Consequences on Exact Controllability. We now supple-
ment Egns. (1.1), (1.2) with boundary conditions. We need to con-
sider essentially three cases, where ¥; = (0,7] x I';, ¢ = 0,1, T
defined by (2.1.16), (2.1.17) of Section 2.

Case 1. (Dirichlet/Dirichlet)

wly, = 0 zlm = 0
and (1.17)
’w|21 = Ui, Z|El = Uu9.

Case 2. (Neumann/Neumann)

wls, = 0 zlgg = 0
aw and (92: (118)
% = = ui, % 5, = U2.
Case 1. (Dirichlet/Neumann)
w|20 = 0; Z|§]0 = O;
and . (1.19)
'U)|Zl = Ui, % 5 = U2.

The well-posedness result in each of the three cases is standard.
As a consequence of the basic energy estimate in (1.16), we obtain
exact controllability at ¢ = T for problem (1.1), (1.2) in each of the
three foregoing cases, within the class of L2(0,T"; L2(T'1))-controls u;
and uy in the (optimal) space (of regularity) H~1(f) in the case of
Dirichlet B.C., and in the space H%O (Q) in the case of Neumann B.C.

THEOREM 1.4. Let the hypotheses of Theorem 1.3 hold true.

(a) (Continuous observability inequalities) The following inequal-
ities hold true for (1.1), (1.2); supplemented by the following
B.C.:
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Case 1. Problem (1.1), (1.2), (1.17) with u; = ugy = 0:

kTE(O)S/oT/rllg_f

Case 2. Problem (1.1), (1.2), (1.18) with Eqns. (1.18b) re-
placed by

2+%
ov

2
] drdt. (1.20)

[a—w—aw] = 0; [%— z] =0, a,f€Ly(X1):
o ov o1

T
kTE(o)g/ / [|wt|2+|zt|2]dl"1dt. (1.21)
0 T

Case 3. Problem (1.1), (1.2), (1.19) with u; = 0 and Equa-
tion (1.18b) for z replaced by [% — ﬂz]z =0:
1

krE(0) < /oT/rl Ug—f

(b) (Exact controllability at ¢ = T'). By duality, e.g., [L-T.2] and

Appendix, problem (1.1), (1.2) with Ar € Ly (Q) is exactly
controllable as specified in each of the following cases:

2
+ |z¢|* | dT'1dt. (1.22)

Case 1. Assume the following initial conditions,
wo € HYQ); 2 € HY(N). (1.23)
Then, there exist controls
{u1,u2} € Ly(0,T; Ly(T'1)) X La(0,T; Lo(T'y)), (1.24)

such that the corresponding solution of (1.1), (1.2), (1.17) sat-
isfies
w(T) = 2(T) = 0. (1.25)

Case 2. Assume the following initial conditions,

wo € Hp (Q); 20 € Hp, (). (1.26)
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Then, there exist controls {u;,us} as in (1.24) such that the
corresponding solution of (1.1), (1.2), (1.18) satisfies (1.25).

Case 3. Assume the following initial conditions,
wo € HHQ); 2z € HE (D). (1.27)

Then, there exist controls {ui,us} as in (1.24) such that the
corresponding solution of (1.1), (1.2), (1.19) satisfies (1.25).

Comments, literature. To put the above estimate (1.8) for
the coupled problem (1.1), (1.2) in perspective, let us consider at
first only the w-equation (1.1) with no coupling; i.e., the equation

iwy = Aw + Fi(w) on Q, (1.28)

with F) a first-order differential operator in z1,...,z, satisfying
(1.3). The energy (multiplier) method, based on the principal mul-
tiplier h(x) - Vi(z), h(z) a suitable coercive vector field over (),
permits to establish a number of key inequalities:

(i) the “regularity inequality” in the Dirichlet homogeneous case
wly = 0 (the Ly(X7)-norm of %—15 is bounded above by E,,(0), for
all T') [L-T.2, Thm. 1.1], indeed, even in the case of a (symmetric)
principal part with variable coefficients;

(ii) the reverse “continuous observability inequality,” when cou-
pled with the second multiplier w div h, however, only when F} is
actually a zero-order operator [L—T.2]. If F} is a bonafide first-order
operator, the method fails. To obtain “continuous observability”
reverse inequalities, more sophisticated methods were subsequently
introduced:

(a) methods of microlocal analysis, after a rescaling of time, de-
pending on the frequency [L]: the final statement, which as-
sumes analytic boundary and delivers a control acting on a
pair (I',T'), which geometrically controls 2, refers, however, to
the pure Schrodinger equation (1.28) with F = 0;

(b) pseudo-differential methods to extend Carleman estimates—
which were available in the literature for solutions with com-
pact support and, generally, isotropic operators—to the case of
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domains with boundary and to anisotropic operators, as car-
ried out in the general and umifying work of [Ta.1-3|, with
constant coefficient principal part (to assert the existence of a
pseudo-convex function).

Both works have “unfriendly” proofs, not readily accessible out-
side specialized circles. It would be a problem to just quote or dig
out the required estimates from either [L] or from [Ta.1-3] to prove
Theorem 1.1 for the coupled system (1.1), (1.2)—or how to dispense
with geometric conditions by appealing to the methods behind these
proofs. Moreover, [Ta.1-3], at least in this first effort, takes the
control over the entire boundary.

Finally, we quote references [Li-Ta|, [H-L] where an altogether
different approach is pursued, which aims at obtaining steering con-
trols directly through the principle local smoothing + reversibility +
uniqueness — exact controllability. This method allows for variable
C-coefficients of the (strongly elliptic and self-adjoint) principal
part, but delivers only controls which belong to C*°(99) for ¢ > 0.
For many purposes, we would instead need a precise relationship, in
terms of Sobolev spaces, between the space L2(0,T'; Lo(I")) of con-
trols on [0, 7], and the space Y of exact controllability at ¢ = T'; i.e.,
Y = H-(Q) (Dirichlet case), and Y = H'(£2) (Neumann case).

In this paper, we pursue the Carleman estimate approach pro-
posed by [Ta]. We thus provide—first, in Section 2, for the single
equation (1.28); next, in Section 3, for the coupled system (1.1),
(1.2)—explicit, direct, friendly-to-follow energy computations and
estimates, conducted throughout at the differential level with differ-
ential multipliers (rather than at the pseudo-differential level with
pseudo-differential multipliers as in the general work of [Ta]). In the
process, we dispense with geometric conditions (by virtue of our re-
sult Theorem 2.1.4) and, moreover, allow the control action to be
active only on a portion of the boundary (unlike [Ta.1-3]). Thus,
the method given explicitly here reveals itself as a differential mul-
tiplier method, with multipliers which generalize directly but in a
non-trivial way the original multipliers h - V@ and w div A men-
tioned above, and used for continuous observability inequalities and
in uniform stabilization inequalities, only for canonical models [L-
T.2]. The method provides a one-parameter family of (Carleman)
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estimates in terms of a parameter 7 > 0, and its virtue in absorbing
first-order terms is clearly displayed by using the additional flexibil-
ity of the parameter 7, once taken large enough (see Remark 2.2.1,
and proof of Theorem 2.2.4). The estimates refer to solutions of the
Schrodinger equation (1.28) above (Section 2) and respectively, of
the coupled system (1.1) and (1.2) above (Section 3), with no bound-
ary conditions. They are expressed explicitly in terms of boundary
traces as well. As a consequence, we derive exact controllability re-
sults in the Dirichlet and Neumann cases, i.e., in cases which rely on
H'(Q)-energy level estimates.

Finally, one can obtain results for the Euler-Bernoulli-type equa-
tion by factoring it as the product of two Schrodinger-type equations.
This will appear elsewhere.

2. A-priori P.D.E.’s Estimates for Schrodinger
Equations

2.1 Dynamical Model and Statement of Main Results

Dynamical model. Let 2 be an open bounded domain in R™ with
sufficiently smooth boundary T, say of class C'. Throughout this
section we shall consider the following Schrodinger equation in the
unknown w(t, x):

iwy = Aw+F(w) + f  in (0,7] x Q= Q, (2.1.1)

where (at least) f € L2(Q) is a forcing term and where F(w) is a lin-
ear first-order differential operator in the space variables {z1,...,zn}
on w with Ly (Q)-(possibly complex) coefficients, thus satisfying the
following pointwise estimate: There exists a constant Cr > 0 such
that

|F(w)|* < Op[|Vwl* + |w]?], VtzeQqQ. (2.1.2)

In this section, we introduce (no confusion is likely to arise with

(1.5))
B(t) = /Q Vw(t)|2dS. (2.1.3)
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REMARK 2.1.1. In the analysis below the operator (—A) in (2.1.1)
[Laplacian in the space variables] could be replaced by a second-order
uniformly elliptic operator with constant coefficients. O

Pseudo-convex function ¢(z,t). Let ¢ : @ x R — R be the
(pseudo-convex) function defined by

2

T
, (2.1.4a)

t——

Pz, t) = |z — 202 — ¢ 5

where zy € R", whereby there exists a subinterval [ty,%1] C (0,7T)
such that

¢(z,t) > 1for t € [to,t1]; z € Y (2.1.4b)

#(z,0) < =6 < 0; ¢(z,T) < =6 <0, uniformly in z € Q, (2.1.4c)

for a suitable constant § > 0. We set, for future use

Vé(z,t) = 2(x — z0) = h(z); V(e™®) = 7e"*Vé. (2.1.5)

REMARK 2.1.2. (Optimal choice of T') By choosing c large enough
we may obtain any 7" > 0 small. Henceforth, in all results to follow,
T > 0 may be taken arbitrarily small, since the proofs put no further
constraint on c. O

Main results. The main results of the present section are as
follow. They are listed in the order in which they are proved.

THEOREM 2.1.1. (Carleman estimates) Assume (2.1.2) and f €
Ly(Q). Let w be a solution of Eqn. (2.1.1) in the following class:

w e C([0,T]; H(2)); (2.1.6)
Wt, Z—Ilj € LQ(O,T,LQ(F)) (217)

Let ¢(z,t) be the pseudo-convex function defined by (2.1.4). Then,
for 7 > 0 sufficiently large, the following one-parameter family of
estimates holds true, with E(¢) as in (2.1.3):
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(i)
(2 -~ 1) /Q”WdeQ — ) + B <

T T T

2 T
< (BDfs+ = [ @17PdQ+ Cro vl omzam218)
(i)
—oT

(2 _Or 1) e [ Bdt — L [BE(T) + B(0)]
T T to T

2
< (BDfs+ = [ 17PdQ+ Cro vl oysaof219)

where the boundary terms (BT)|y over ¥ = [0,7] x I' are given by
(see (2.2.23) below)

(T)is =Re ([ #3094 Vo is) - 5 [ vl vas
by ov 2 /s

L [fow_ .. i o
+ ‘i/zaw div(e"?h)dE — E/Ewwte h-v dE‘. (2.1.10)
V¢ = h by (2.1.5). The constant § is defined by (2.1.4c). 0

REMARK 2.1.3. The presence of the factor % in front of the integral
term containing f in (2.1.8) is critical to extend Theorem 2.1.1 to
the coupled case as in Theorem 1.1 of Section 1. O

The proof of Theorem 2.1.1 will be given in Section 2.2, where ad-
ditional interesting results are contained. Henceforth, we specialized
the first-order differential operator F'(w) to have real (still, possibly
time dependent) coefficients, so that F'(w) is of the form

( F(w) = Vr(t,z) - Vw(t,z) + p(t, z)w(t, z)

under the following assumptions
§ v o= rtz)=[n),...,m ) (2.1.11)
= real vector field with |Vr(t,z)| € Leo(Q);

p(t,z) = real function in Le(Q)
( with py(t,2) € Loo(Q)-
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THEOREM 2.1.2.

(i)

Let f € Ly(0,T; H*(2)), and let w be a solution of Eqn. (2.1.1)
in the class (2.1.6), (2.1.7). Finally, let the coefficients Vr and
pof F beasin (2.1.11). Then, for 7 > 0 sufficiently large, there
exists a constant ¢y ; > 0 such that the following estimates hold
true:

(i1) ¢p,E(0) < Cr(BT1)|s +

2 2T 2
2 [ VPEaQ + Ol airan o

+ C¢,T,T||w||20([0,T];L2(Q))- (2.1.12)

(i2) With k > [|Rlz..(q), R the n x n matrix R = [§%], see
below (2.3.17), we have
efkT

2
2
< Or(BT)ls + [ |57

¢oa[B(0) + B(T)] <

+ Ol 12,0 @) + CorarllwlEo,m; () (2-1:13)
where the boundary terms (BT})|s over ¥ are given by

ow Ow

(BL)s = <BT)\E+/OT/P‘%8_V

T —
+/ /‘fa—w‘dfdt

o Jr|" Ov

T
)

o Jr

4 being a unit tangential vector on I', hence ai being a tan-
gential derivative, with (BT')|x. defined by (2.1.10).

dal’ dt

ow _
%wt dr dt, (2.1.14)

Assume, further, that f € Ly(0,T; H%O(Q)), H%O(Q) ={fe
HY(R) : f|r, = 0}, and that w satisfies the boundary condition

wlg, =0, o= (0,T]x Ty, (2.1.15)
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where we divide the boundary I" as I' = T'g U T';, with
I'y = {ze€l: V¢-v(z) <0} (2.1.16)

'y = {z€l: V¢-v(z) >0}, (2.1.17)

with v(z) = unit outward normal vector at z € T, and 2o € R"
the point entering into the definition of ¢ in (2.1.4) so that
2(z —z9) =h =V

Then, estimates (2.1.12), (2.1.13) hold true for 7 > 0 sufficiently
large, with the boundary terms (BT})|y, replaced by (BTh)|s,, ie.,
evaluated only on ¥; = [0,7] x I';. O

The proof of Theorem 2.1.2 will be given in Section 2.3. As
a consequence of Theorem 2.1.2 and of a uniqueness theorem, we
then obtain the desired “continuous observability inequality” for the
corresponding problem with homogeneous Dirichlet B.C.,

iy = A+ F(y) in (0,7] x Q= Q; (2.1.18a)
P(0,-) = o in Q; (2.1.18b)
Yl = 0 in (0,7 xT' =%, (2.1.18c)

where F' is as in (2.1.11). The reversed “trace regularity inequality”
was proved in [L-T.2] for any 7' > 0 (the presence of a first-order
operator F' in the space variables does not affect the trace regularity
inequality).

THEOREM 2.1.3. (Continuous observability, Dirichlet case) Let T' >
0 be arbitrary. Let F' be as in (2.1.11). Let the homogeneous, over-

determined problem defined by (2.1.18a-b-c), as well as %15 . =
1
0 on (0,7] x 'y = ¥; admit the unique solution ¢ = 0. Then,

with reference to problem (2.1.18), there exists a positive constant
constr > 0 such that

VA

2
oy drydt > constT||q/)0||§Ié(Q). (2.1.19)

O



468 R. TRIGGIANI

REMARK 2.1.4. The uniqueness result invoked in Theorem 2.1.3, as
well as in Theorem 2.1.7 below, always holds true with sufficiently
smooth coefficients [I.1]. O

The proof of Theorem 2.1.3 will be given in Section 2.4. The

next result ‘absorbs’ the tangential derivatives %—’;’ = V,w (tangential

gradient) by the normal derivative ‘?)—1“/’ and wy.

THEOREM 2.1.4. Let w be a solution of Eqn. (2.1.1) in the class
(2.1.6), (2.1.7).

(i) Given € > 0 and ¢y > 0 arbitrarily small, and given 7' > 0,
there exists a constant C¢ ., 7 > 0 such that

T—¢ T
/ / \V,w|2dT dt < Ceeyr / / ‘—3“’
€ T 0 T 81/

+ [Jw]|? .- ”f”25+50(QT)}' (2.1.20)

2
- |wt|2] dx

1
Ly(0,T;H2Fe0

(ii) If, moreover, w satisfies the boundary condition (2.1.15), then
(2.1.20) holds true with I' replaced by T';. O

The proof of Theorem 2.1.4 follows from the proof of a more
demanding, corresponding result for second-order hyperbolic equa-
tions, as given in [L-T.3, Section 7.2], and is sketched in Section
2.5.

The final estimate—the main result of the present section—is
given next.

THEOREM 2.1.5. Let f € Ly(0,T; H'(2)), left F be as in (2.1.11),
and let w be a solution of Eqn. (2.1.1) in the class (2.1.6) and (2.1.7).
Assume, moreover, that w satisfies the boundary condition (2.1.15).
Then, the following estimate holds true. There exists a constand
kg r > 0, ¢ the pseudo-convex function in (2.1.4) and 7 a sufficiently
large parameter, such that
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ow

(i1) korE(0) < /OT /F1 [ B

+ conste ¢ || FII7, 0.1 ()

2
+ C¢,T,T,eo||w||L2(0,T;H%+€O(Q)); (2.1.21)

2
+ |wt|2] dT'y dt

(iz) or, equivalently,

kom0 ) < [ [ 15

+ const¢,7- ||f||%2(0,T;H1(Q))

2
. (2.1.22
+ C¢’T’T’€°||w||L2(0,T;H%+50(Q)) ( )

2
+ |wt|2] dT'y dt

O

The proof of Theorem 2.1.5 combines Theorem 2.1.2 and 2.1.4,
and is similar to that given in Section 2.5 [L-T.3, p. 221]. A similar
proof for the coupled problem (1.1), (1.2) is given in Proposition 3.5
below.

Consequences on exact controllability. By the standard
duality between continuous observability and exact controllability
[the input-solution operator is surjective Lo(0,7;U) onto Y at time
T if and only if its adjoint is bounded below], see Appendix, we obtain
exact controllability of Eqn. (2.1.1) with f = 0 and L2(0,T"; L2(I'1))-
boundary control u either in the Dirichlet B.C. and on the space (of
optimal regularity) Y = H~1(Q) [L-T.2]; or else in the Neumann
B.C. and on the space Y = Hy, (Q). Details are omitted.

THEOREM 2.1.6. (Exact controllability, Dirichlet case) Assume the
hypotheses of Theorem 2.1.3, so that inequality (2.1.19) holds true
for the homogeneous problem (2.1.18). Equivalently, the mixed prob-
lem,

( iwy, = Aw+ F(w) in Q; (2.1.23a)
w(0, -) = wo in Q; (2.1.23b)
wly, = 0 in Xo; (2.1.23c)

[ wly, = u in ¥y, (2.1.23d)
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with F' as in (2.1.11) and T'; as in (2.1.17) for a fixed o € R",
is exactly controllable (to, or from, the origin) over the space ¥ =
H~1(9Q), within the class of Lo(0,T; Ly(T1))-controls, with 7" > 0
arbitrary. Specifically, given wg € Y and vy € Y, there exists
u € L9(0,T; Lo(T'1)) such that the corresponding solution of (2.1.23)
satisfies w € C([0,7];Y) and w(T; - ) = vo. O

Turning to the Neumann case, we have that exact controllability
of the non-homogeneous problem,

( iwy = Aw+ F(w) in (0,7] x Q =Q; (2.1.24a)
w0, ) = wo in O (2.1.24b)
] @z = 0 in (0,7] xTo=%o;  (2.1.24c)
i) in (0,7) xT; =%, (2.1.24d)

\ (91/ N

on the space Y = Hp, (Q), with u € Ly(X1), for any T > 0, is
equivalent (see Appendix) to the continuous observability inequality,
at any T > 0, for the following homogeneous problem

( iy = A+ F@p) in (0,7] x Q= Q; (2.1.25a)

P(0, 1) = o in Q; (2.1.25b)

\ Plsy, = 0 in (0,T] xTo=%0;  (2.1.25¢)
0 9 :

L {8_116 — 8_17;] EIE 0 in (0,7] xT'y =%, (2.1.25d)

with 1_—‘0 N Fl = @, and
F(yp) = —div(Vr) + pp = =Vop - Vr + {p — Ar}p,  (2.1.26)

which is a first-order operator of the same type as the original F'(¢)
when Ar € Lo (Q). In this case, Theorem 2.1.5 proves the ma-
jor estimate responsible for the continuous observability inequality
of (2.1.25). After absorption of the lower order terms by compact-
ness/uniquess, we arrive at the following result.
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THEOREM 2.1.7. (Continuous observability, exact controllability,
Neumann case) Let ' > 0. Let F be as in (2.1.11) with Ar € Ly (Q).
Let the homogeneous, over-determined problem (2.1.25a-b-c), along
with 9|x = 0 admit the unique solution ¢ = 0. Then, with reference
to problem (2.1.25), there exists a positive constant Cp > 0 such
that the following continuous observability inequality holds true

T
/O/F|z/)t|2dI‘1dt20TE(O). (2.1.27)

Equivalently, problem (2.1.24) is exactly controllable (to, from) the
origin on the space Y = H} () within the class of Ly(0,T’; Lo(T'1))-
controls, with T > 0 arbitrary. Specifically, given wy € Y and vg € Y
there exists u € Lo(0,T; Lo(T'1)) such that the corresponding solu-
tion of (2.1.24) satisfies w(T, - ) = vp.

a

2.2 Proof of Theorem 2.2.1: Carleman Estimates

In order to handle a general first-order operator F' in Eqn. (2.1.1)
[i.e., at the “energy level”], a major conceptual and technical jump is
called for over the energy method, which is used either for the reverse
regularity inequality [L—T.2], or else for the continuous observability
inequality with F' of order zero [L-T.2]. Such definitely non-trivial
extension is based on the more sophisticated main multiplier

@G P(z, ) - Vu(t, z), (2.2.1)

where ¢ is the pseudo-convex function introduced in (2.1.4), and
T is a positive free parameter of adjustment. Such parameter 7 is
eventually chosen sufficiently large, as to absorb an energy level term
with a large negative constant (—%) in front, which arises due to the
fact that F(w) is first order: see the key step described in Remark
2.2.1 below. A second multiplier is [w div(e™®V¢)], see (2.2.16).
Henceforth, we shall write freely and interchangeably h(z) = V¢ as
in (2.1.5).

Step 1. Theorem 2.2.1. Assume (2.1.2). Let w be a solution of
Eqn. (2.1.1) in the class (2.1.6), (2.1.7). Then, the following identity
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holds true, where ¥ = [0,7] xI'; Q@ = [0,T] x Q; h =V¢; and v =

an outward unit vector on I':

0 1
Re (/ 6T¢—wh-de2) - —/ ™| Vw|?h - vdS
» ov 2 /s
1 [ 0w 1
Z | =% div(e™® _ 2 SweeTh -
+ 3 ) a0 div(e™®h)dE 2/Ewwte h-vdx%

= 2/QeT¢|Vw|2dQ+T/QeT¢|h-Vw\ZdQ
_ 08 . Ui L [ oY - V(div(e™
Re(/Q[F(w) + fle"®h Vw) dQ + 2/QwVw V(div(e™h))dQ

_% /Q [F(w) + f] div(e™h)dQ

T

+3/u—)d(e b vwdg -t [/u‘)emh-deQ] . (2.2.2)
2 /g dt 2 /o 0

Proof. (a) We multiply both sides of Eqn. (2.1.1) by the multiplier
e™®V¢ - Vb in (2.2.1). We shall show that

(i)
1
ia = /eT¢a—wh-deZ——/ O\ w|h - v dS
P ov 2 J)s
—2/ eT¢|Vw|2dQ+1/ |Vw|? div(e™h)dQ
Q 2Jq
7 / b - Vw|2dQ + / [F(w) + fl"h-Vi dQ, (2.2.3)
Q Q

where we have set

T
az/ /wteT¢h-V1DdQ; (2.2.4)
0 Ja
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ia —ia=—2(Ima) = /wwt6T¢h vdX%

vif5

—i / D wy div(eT"’h)dQ
Q

T
—i [ / we™h - VwdQ| . (2.2.5)
Q 0

Proof of (i). On the right-hand side of Eqn. (2.1.1) we compute by
Green first theorem

T
RHS., = / /AweT¢V¢-deth
0 Q

T ow
= e Vi
/0 /F 7O (V- V)i
T
_ / / VW - V(Y- Vb)dQ
0o Jo
T
- / / Vu . V() (V- Va)dQ, (2.2.6)
0o Ja
where we recall from [L-T.1, Eqn. (2.2.16)] that
T
- / / TOVw - V(Y- Vib)dQ di
0 Ja
1
= —2/ eT¢|Vw|2dQ——/ ™| Vw|?h - v dZ
Q 2 /s
1 2 7 T
+§/ |[Vwl|” div(e™®h)dQ. (2.2.7)
Q
Indeed, with V¢ = h, we recall the identity

1
Vw-V(h-Vw) = HVw - Vw + Sh- V(|Vwl|?) (2.2.8)
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from [L-T.1, Appendix A], where in our present case the matrix
H = 2 (Identity) by h(z) = 2(z — zo) in (2.1.5). Once (2.2.8) is
inserted into the left-hand side of (2.2.7), we invoke the standard
identity

/Qk-wdsz:/ﬁpk-udr—/ny) div kdQ, (2.2.9)

with 4 = [Vw|?, k = h and we thus arrive at the expression on the
right-hand side of (2.2.7). Substituting (2.2.7) for the term before
the last in (2.2.6) yields

1
R.HS., = /eT¢6—wV¢-deZ——/ ™| Vw|?h - v dT
x 0 2 /s

14

—2/ eT¢|Vw\2dQ+%/ |Vw|? div(e™h)dQ
Q Q

7 / |V - Vul2dQ. (2.2.10)
Q
Setting
R.H.S., — /Q [F(w) + f]e™V - Vi dQ, (2.2.11)

we then see that multiplication by e"®V¢ - Vi of both sides of
Eqn. (2.1.1) and integration over @} has resulted into the identity:
L.H.S. = R.H.S.; + R.H.S.9, where L.H.S. = ia, a defined by (2.2.4),
and R.H.S.; and R.H.S.2 given by (2.2.10) and (2.2.11), respectively.
This identity becomes, explicitly, (2.2.3), as desired.

Proof of (ii). Using identity (2.2.9) with k = [we™®V¢|, Vo = h,
and ¥ = w, yields

T
LHS. = ia — z/ /wteT¢V¢-deth
0 Q

T T
= z/ /wwteT¢h-yd2—i// we™h - VwdQ
0 JI QJ0

T
—1 @ wy div(e™® 2.
i /0 /Q , div(e™h)dQ, (2.2.12)
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since div(w;e™h) = e™®h - Vw; + w; div(e”®h). Integrating by parts
in ¢t in the second integral on the right-hand side of (2.2.12), we
obtain

LIS. — ia = z/ wye™h - Vo dQ
Q

= /wwte *h . l/dE—z[/ weTh - deQ
0

+1ia +1

—i / o wy div(eT¢h)dQ. (2.2.13)
Q

Moving 7a on the left-hand side of identity (2.2.13) yields (2.2.5),
as desired. Thus (i) and (ii) are proved.

(b) We shall now refine identity (2.2.5) in (ii) above and obtain
(i)

—Ima = 1 a—w div(e™h)dT + 1/ wwie™h - vdY
2 Jx Ov 2 Js

2/ |Vw|? div(e™h)dQ + 2/

oL [ 090 Tlanemig

_ %/Q[F(w) + flw div(eT¢h)dQ

T
/ we™h- VwdQ| . (2.2.14)
Q 0

Proof of (iii). We return to (2.2.5) already proved and rewrite its
last integral term over Q. If m = m(z,t) is a real function in C1(Q),
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we may verify the identity
: _ ow _ _
z/ wwmdQ = /—wde+/[F(w)+f]wmdQ
Q s Ov Q

—/ |Vw|2mdQ—/ WV - Vim dQ. (2.2.15)
Q Q

Indeed, we multiply both sides of Eqn. (2.1.1) by wm, we use on
the right-hand side the Green’s first identity, and we obtain (2.2.15).
Specializing (2.2.15) to the choice m = div(e®h), we obtain

i / Bw, div(e™h)dQ — / O 5 div(e™h)ds:
Q =0

14

+ / [F(w) + flw div(e™h)dQ
Q

- / IV|? div(e™h)dQ
Q

- /Q oVw- V(div(e™h)dQ.  (2.2.16)

Substituting (2.2.16) for the last integral term over @ on the right-
hand side of (2.2.5) yields (2.2.14), as desired.

(c) We return to identity (2.2.3): we rewrite its left-hand side as
ia = i{Re a+1i Im a} = (—Im a)+i(Re a). Thus, equating (—Im a),
as given explicitly by (2.2.14), to the real part of Eqn. (2.2.3), yields
the desired identity (2.2.2), after a cancellation of the term

1
- / Vw|?div(e™h)dQ.
2Jq
The proof of Theorem 2.2.1 is complete. |

Step 2. Lemma 2.2.2. Let w be a solution of Eqn. (2.1.1) in
the class (2.1.6), (2.1.7).
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i) With reference to the first three [,-terms on the right-hand
Q
side of Eqn. (2.2.2), we have for any € > 0:

2/QeT¢|Vw|2dQ-I-T/QeT‘/’|h-Vw|2dQ
_Re(/Q[F(w) +f]eT¢h-Vu‘)dQ)‘
> (2—¢€Cr) /QeT‘P|V'w\2dQ+ (7‘— 2%) /Qew\h - Vuw|*dQ

— eCyrllwl ooy — 6/@6T¢|f|2dQ. (2.2.17)

(ii) Regarding the last three [y -terms in (2.2.2), we have for any
e>0:

% /Q @ Vw - V(div(e™h))dQ

. 7-¢
- % /Q [F(w) + f]@ div(e™®h)dQ + % /Q u—)d(fh )h-deQ
> —e/Q|Vw|QeT¢dQ
_ Cor 2,7600) _ 2,76
: /Q|w| e%dQ E/Q|f| e9dQ. (2.2.18)

Proof. (i) We compute, recalling (2.1.2),

1
[F(w)+ fleh- V| > —2|F(w)+ fI?e? — o€ |h- Vol

(by (2.1.2)) —eCr|Vw|?e™ — eCr|w|?e™

Y

1
—e| f|%e™® — 2—66T¢|h Vw2 (2.2.19)

Using (2.2.19) on the left-hand side of (2.2.17) yields the right-hand
side of (2.2.17).

(ii) Similarly, we use the inequality 2ab < ea® + 1b?, as well as
(2.1.2), where a denotes “energy level” terms: Vw, F(w), as well as
f, and b denotes lower-order terms, i.e., w. O
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REMARK 2.2.1. In the third integral over () on the left-hand side
of (2.2.17), both factors F(w) and h - Vw are energy level, with F'
a general first-order operator. The virtue of the free parameter 7 is
seen in the second term on the right-hand side of (2.2.17), in making
the coefficient 7 — 2% > 0, after € has been fixed, and dropping that
term, see next Theorem 2.2.4. In part (ii), Eqn. (2.2.23) and (iii)
Eqn. (2.2.24) of Theorem 2.2.4 below, we obtain the desired estimates
(2.1.8) and (2.1.9) of Theorem 2.1.1. O

LEMMA 2.2.3. Let w be a solution of Eqn. (2.1.1) in the class (2.1.6),
(2.1.7). With reference to the last term on the right-hand side of

(2.2.2),
T

Bor = —= [ / we™h - Vw dQ] : (2.2.20)

we have for any € > 0,

Box| > —ee /Q V()P +[Vw(0)] do

_%6—5T/Q[|w(T)|2+|w(0)\2] Q. (2.2.21)

Proof. We use property (2.1.4c) for ¢(z,0) and ¢(z,T). O

Step 4. Theorem 2.2.4. Assume (2.1.2). Let w be a solution
of Egn. (2.1.1) in the class (2.1.6), (2.1.7). Then

1

(i) the following inequality holds true, with 7 = £, € > 0 as in

Lemma 2.2.2,

2
(BT)ls +— [ fPe7Q + TCorlwliomyzacon

> (2 _Or_ 1) / ™| Vw|2dQ
T/ JQ

T

+ % /Q e |h - Vw|*dQ + Bo T, (2.2.22)



CARLEMAN ESTIMATES 479

where Cr is the constant in (2.1.2), and where we have set (in
agreement with (2.1.10)),

(BT)|z = Re(/E “7"3 V- vwd2>

—% e\ Vw|?h - vdS

/—w div(e™h)dX
/wwtemh l/dz‘ (2.2.23)
- 2)s

(ii) Inequality (2.2.22) may be made more explicit in the following
form: for 7 sufficiently large,

2 T
(BT)|= + /Q |£17€7dQ + TCypx 1w E(q0,17:15(0)

> (2 _Or 1) / ™| Vw|2dQ
Q

T T

6767

(T) + E(0)], (2.2.24)

with E(t) as in (2.1.3).

(iii) Recalling (2.1.4b) for ¢, estimate (2.2.24) implies: for 7 suffi-
ciently large

2 T
(BT)|z + — /Q |f17e7%dQ + TCyp W& 071,100

t
> (2— Cr _ 1) e [ E@dt

T T to

6—67'

[E(T) + E(0)). (2.2.25)

T

Proof. (i) On the right-hand side of the fundamental identity (2.2.2),
we use (2.2.17), (2.2.18), and thus obtain inequality (2.2.22) at once,
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1

with 7 chosen as 7 = ¢, € > 0 as in Lemma 2.2.2, and BT s as in

(2.2.23).

(ii), (iii) On the right-hand side of (2.2.22) we drop the last (posi-
tive) [o-term [the beneft of having chosen 7 large enoughl; we invoke
estimate (2.2.21) for |fBo,r|, and thus get (2.2.24). Moreover, to ob-
tain (2.2.25) from (2.2.24), we recall property (2.1.4b) for ¢.

O

2.3 Proof of Theorem 2.1.2

Here we shall refine the basic estimate (2.1.8) = (2.2.24) of Theorem
2.1.1 in terms of only E(T'), or only E(0), by examining the behavior
of E(t) in (2.1.3). To this end, we shall need the additional assump-
tion that the coefficients (in Lo (Q)) of F(w) be real, and as assumed
n (2.1.11). Moreover, we shall require that f € Lo(0,T; H'(9)).

Step 1. Lemma 2.3.1. Assume (2.1.11). Let w be a solution of

Eqn. (2.1.1) in the class (2.1.6), (2.1.7), and let f € Ly(0,T; H(Q)).
Then, with reference to E(t) defined by (2.1.3), we have

(i) for all ¢,s:

E(t) = E(s)+2Re (/ / —wtdI‘da>

+2Re ( / /Q [F(w) + f]u‘)tdeo); (2.3.1)

(ii) with x4 a unit tangential vector on I':

Re (/St/QF(w)u_)tdea) Re( / / (Vr-p) (9_11; a—de‘da>
— Re (i/:/QRVU_)-deQdG)

+ Re (i/:/Q(VT-Vw)(pu_)+f)dea)

1 to t
+—[/ p|w|2dn] 5 [ [ nlwae: (23.2)
2 [ s 2 QJs
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oz Ozn,
R= (2.3.3)
L 3{171 axn i

(iii)
Re(/:/ffu}tdﬂdo) -
- Re(//f—dI‘da)
—Re(z’/s /QVf-Vu‘)dea)

+ Re (7, / t /Q FIVr - Vi + pi]dQ da) (2.3.4)

Proof. (i) We multiply Eqn. (2.1.1) by @, and integrate over (s, t)x {2,
obtaining by virtue of Green’s first identity

0=Re (z/t/ |wt|2dea> _
= Re (/ /—wtdFda)
—Re(/s /QVw-thdeo>

+Re ( / t /Q [F(w) + f]wtdﬂdo>. (2.3.5)

E(t) - E(s) = /Q/:a%(wwﬁ)dadn
~ 2Re (/:/QVw-thdea). (2.3.6)

Inserting (2.3.6) for the second term on the right-hand side of (2.3.5)
yields (2.3.1), as desired.
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(ii) Recalling F'(w) = Vr - Vw + pw, r,p real, from (2.1.11), we
have

t t t
/ /F(w)wtdeoz/ /pw'u_)t dea+/ /(Vr-Vw)'u_)tdeo.
s JQ s JQ s JQ
(2.3.7)
As to the first term on the right-hand side of (2.3.7), we compute
after integration by parts in o

t 1 t 1 rt
Re (/ / pwu_)tdﬂda) = [/ p|w|2dﬂ] — —/ /pt|w\2de0.
s J0 2 /o s 2Js Ja
(2.3.8)
As to the second term on the right-hand side of (2.3.7), we compute

with w; = iAw + iF (w) 4 if, by use of Green’s first identity:
t
/ / (Vr - V)i, ddo =
s JQ
t _ _
= / / (Vr - Vw)[iA®D + iF(w) + if]dQ do
s JQ

t 73 t
= z/ /(Vr-Vw)a—wdl"da—i/ /V(Vr-Vw)-deQda
s JT ov s JQ

t _
+ z/ / (Vr-Vw)[Vr - Vw + pw + f|dQ do, (2.3.9)
s JQ
recalling (2.1.11) in the last step. But, invoking (2.2.8), we have
1
V(Vr.-Vw)-Vo = RVw - Vw + 9T V(|Vwl|?), (2.3.10)

where R is the n X n matrix defined by (2.3.3). Proceeding as in the
argument from (2.2.8) to (2.2.10), i.e., using (2.2.9) with ¢ = |[Vw|?,
we obtain via (2.3.10),

t
—'L'/ /V(VT'V’U))'V’II)deO’ =
s JQ

[

t
(by (2.2.9) = —i / / RV - VwdQdo
s JQ

1
RV®-Vw + 5r-V(|Vol’) | ddo
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.t
— 3/ /|Vw|2r-udI‘da
2/s Jr

.t
+ 3/ / IVwl? div rdQ do. (2.3.11)
2/s Ja
Substituting (2.3.11) for the second term on the right-hand side of

(2.3.9), we obtain, since the last two terms in (2.3.11), as well as one
term in (2.3.9), have Re part equal to zero:

t
Re (/ / (Vr - Vw)w,dQ da) =
s JQ
[t ow
= Re (z/s /F(Vr-Vw)%dea)
t
~Re (z/ /va-vwdgda>
s JQ

+ Re (7, /:/Q(Vr - Vw)(pw + f) d do) . (2.3.12)

Finally, with reference to the first (boundary) term on the right-
hand side of (2.3.12), we have, with p a tangential unit vector on
L,

Vr=(Vr-v)v+ (Vr-pu, Vr-Vw = (Vr-v)—

and hence

(//Vr Vw—dFda) -
S
—I—Re(//Vr ua—wa—de‘da)

aw ow

since the first term has real part zero. Substituting (2.3.14) for the
first term on the right-hand side of (2.3.12), we obtain
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Re (/:/(Vr-Vw)wtdea) _
= Re(//VT ua—wa—de‘da>
_Re (z/ /QRVu‘)-deQda)

+Re (z /St/Q(VT-V’w)(p’U_)—I-f) dea) . (2.3.15)

In conclusion, taking the Real part of (2.3.7) and invoking (2.3.8)
and (2.3.15) yields (2.3.2), as desired.
(iii) As in (ii), we compute via Green’s first identity and (2.1.11):

/:/Qf’u_)tdea = /:/Qf[iAU_)-I-iF(w)+if]deg

_ //f—dl"do—z/t/QVf-V'u‘)dea

+i//f[vr-Vm+pw]dea
s JQ

t
—I—z'/ / 1f2d9 do. (2.3.16)
s JQ
Taking the Real part of (2.3.16) yields (2.3.4). O

Step 2. Lemma 2.3.2. Let f € Ly(0,T; H'(Q)) and assume
(2.1.11). Let w be a solution of Eqn. (2.1.1) in the class (2.1.6),
(2.1.7). Then

(i) for any e >0 and t > s >0,
Re(// w) + f]5,dQ do

< (IRl + ) /:E(a)da

dF do

3w 6w‘
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2 Crp 412
+ Oreprlwlegs o) + =" 1 1o um @) (2:3-17)
where ||R||oo is the Loo-norm over @ of R in (2.3.3).

(ii) With reference to E(t) in (2.1.3), the following inequalities hold
true for T' >t > O:

e M E0) — A(T) < E(t) < [E(0) + A(T)]eM, (2.3.18)
where k = 2(||R||c + €) and

ow Bw‘

r
8# e d do

AT) =

dl'do + Cr p, r”'wHC( [0,7];L2(£2))

Cr
;p ||f||%2(O,T;H1(Q))' (2.3.19)

Proof. (i) Identities (2.3.2) and (2.3.4) are estimated by 2|ab| <
€la® + %|b\2, with |a| being an energy term, i.e., |Vw|. One readily
obtains (2.3.17).

(ii) We return to identity (2.3.1) and use estimate (2.3.17) to
obtain for ¢ > s > 0 via (2.3.19):

E(t) < [E(s)+AD)]+k tE(a)da; (2.3.20)

E(s) < [E() +k/ B(o (2.3.21)

We next apply the classical argument of the Gronwall’s inequality
0 (2.3.20) and (2.3.21), where we note that the terms in the brackets
are independent of ¢ in (2.3.20), and independent of s in (2.3.21). We
thus obtain for t > s > 0:

E(t) < [E(s)+A(T)]e*E2);  E(s) < [E@)+A(T)]eF%). (2.3.22)

Setting s = 0 and thus taking ¢ > 0 in (2.3.22) yields (2.3.18). O
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Step 3. Theorem 2.3.3. Let f € Lo(0,7; H*()), and let w
be a solution of Eqn. (2.1.1) in the class (2.1.6), (2.1.7). Finally, let
the coefficients Vr and p of F be as in (2.1.11). Then, the following
inequality holds true, with 7 sufficiently large:

{(2 — ﬁ — %) Cio 1€ — 1e_‘sT(l + ekT)} E(0)

-
< er(BT 2 26794Q + | 12
< ecr(BTy)ls + 7 Jo |f]7e"?dQ + . ||f||L2(0,T;H1(Q))

+TC¢,T,T,6||w||20([o,T];L2(Q)) ) (2.3.23)

where the coefficient { } of E(0) may be made positive for 7 large,

(BTy)|s = (BT)|E+/T/ ‘3_“’ ow

dl’ dt
0 81/

w| dl' dt

(2.3.24a)

(by (2.2.23)) = Re (/ oW, vwdz) 1/eT¢|Vw\2h-yd2
x  Ov 2 Js

+‘—/ g—ww div(e Td’h)dz——/ wwtewh udZ‘

ow 9w

dl’ dt dl’do

/ / ‘ 7221 ar do. (2.3.24b)

Proof. We return to inequality (2.2.25): on the right-hand side we
use the estimates of E(+) in (2.3.18). We thus obtain by the left-hand
inequality in (2.3.18),

t1 t1
B(t)dt > / [ B(0) ~ A(T)] dt = iy, B(0) — (11 — to) A(T).

to to
(2.3.25)
Moreover, by the right-hand inequality in (2.3.18) we have

E(T)+ E(0) < 1+ *TE(0) + *TA(T). (2.3.26)
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Inserting (2.3.25) and (2.3.26) on the right-hand side of (2.2.25)
yields (2.3.23) by virtue of (2.3.19) on A(T) via (2.3.24). O

Estimate (2.3.23) of Theorem 2.3.3 proves Theorem 2.1.2, Equa-
tion (2.1.12). Using E(0) > e *TE(T) — A(T) from (2.3.18) once
more, yields
E(0)  E(0) S e *T A(T)

5 T g 25 [BEO) + E(T)] - ——,  (2:3.27)

E(0) = :

which inserted on the left-hand side of (2.3.23) produces estimate

(2.1.13) in Theorem 2.1.2. Thus, Theorem 2.1.2, part (i), is fully
proved. O

COROLLARY 2.3.4. Let f € Ly(0,T; Hllo (©2)). Let w be a solution
of Eqn. (2.1.1) in the class (2.1.6), (2.1.7), which, moreover, satisfies
the boundary condition

wly, =0, where 'y ={z €I': V¢-v <0}, (2.3.28)

see (2.1.16). Let the coefficients Vr and p of F be as in (2.1.11).
Then the following inequality holds true for 7 sufficiently large: there
is a positive constant k4 ; > 0 such that, if (BT})|yx, are the boundary
terms (BT}) in (2.3.24) evaluated, however, on ¥; = (0, 7] xI';, 'y =
I'\ Ty, then

2
borBO) < er(BT)lw, + [ 17%7%4Q

C
+ ?Hf”%,Q(O,T;Hl(Q)) + TCpm | wl[E(0,77; 1.0 (52)) (2-3-29)

Proof. We split the boundary terms (B71) in (2.3.24b) on ¥, and
on ¥;. On ¥, the boundary condition (2.3.28) and the assumption
flro = 0 make all terms vanish, except the first two of them. (w|s, =
0= g—Z’|EO = 0 since p is tangential). Moreover, we have on X :

h-Vuo = %h v; |[Vw| = ‘3—15 , where h = V¢ by (2.1.5), and thus

(BTl = (BT1)|x, + (BTY)Is,
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ov ov

_ / WO, s,
3o

1
— —/ €T¢|V’U)|2h -vdXg + (BT1)|21
2 Js,

1 ow|?

= [ 2 hovdso+ (BT,  (2.3.30)
2 Jx, v

< (BI)s,, (2331)

recalling h-v < 0onI'y via (2.1.16) = (2.3.28). Inserting (2.3.31) into
the right-hand side of (2.1.12) = (2.3.23) yields (2.3.29), as desired.
a

Theorem 2.3.3 and Corollary 2.3.4 prove part (i) and part (ii),
respectively, of Theorem 2.1.2.

2.4 Proof of Theorem 2.1.3: Continuous Observability
Inequality, Dirichlet case

Step 1. Proposition 2.4.1. For the solution of the problem

Wy = AyY+ F(v) in (0,7] x €; (2.4.1a)
P(0,-) = in €; (2.4.1b)
Yz = 0 in (0,7] x T, (2.4.1¢)

where F' is the first-order differential operator as in (2.1.11), and
T > 0 arbitrary, the following estimate holds true: for 7 sufficiently
large, there is a positive constant Cy » > 0 such that

CorE(0) < /OT /Fl

Proof. As in the proof of Corollary 2.3.4, Eqn. (2.3.30), we obtain
by the B.C. (2.4.1c) used in (2.3.24Db),

o

2
o dF]_dt + ConStT||¢||%’([0,T];L2(Q))' (242)

(BT1)ls = Re (/ eT¢a—‘/’h-wdz> —1/ e™?|\Vp|2h - v dX
x O 2Js

14
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_ L[ | 2f
= 2/26 ey h-vdy
T 31/)2
< —| dI’ 2.4.
< Cor | [ |Gy] et (243

where in the last step we have recalled the definition (2.1.16)
(2.3.28) of I'y. Setting then f = 0 in (2.3.23) yields (2.4.2) by (2.4.3

~—

a

Step 2. (Absorption of the lower-order term)

LEMMA 2.4.2. Let 9 be a solution of problem (2.4.1) with F' as in
(2.1.11) and with 1y € H}(£2), so that inequality (2.4.2) holds true.
Let the homogeneous, over-determined problem defined by (2.4.1a—

c), as well as g—:f = 0on (0,7] x I'1 = ¥; admits the unique
b

1
solution 1 = 0. Then, there exists a constant ¢y > 0 such that

T |Gy
191G o7 0(2)) < CT/O /r

2
£y dl'ydt.

Proof. This follows by a compactness/uniqueness argument, e.g.,
[L-T.2, Lemma 3.3 or Lemma 4.1]. O

2.5 Proof of Theorem 2.1.4: Absorption of Tangential
Derivatives

The proof of Theorem 2.1.4 for the Schrédinger equation (2.1.1) is
a minor modification of the proof of a similar result for second-
order hyperbolic equations [L-T.3, Section 7.2]. Assuming [L-T.3]
at hand, we shall limit ourselves here to note the necessary modifi-
cations. The proof is given for the corresponding half-space problem
Q= R}ﬁ X R; with T' = R;‘fl = Q|z—0 its boundary. Equation
(2.1.11) is then rewritten as

Pw=f (0,00) X 2 = Qo (2.5.1)
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via partition of unity, where the characteristic polynomial of P is

n—1
p(way;T,&Ti) = —aT+ Z ;57075 +2§Z anjn]+£2
6,j=1 Jj=1

2
n—1
= —et+ (§+ > anﬁj)

i=1
n—1 n—1 2
+ ) agming— | Y anjnj
ij=1 j=1

d(z,y;n)

_ )
= —ar+£&+ (@)

(2.5.2)

in the notation of [L-T.3, Section 7.2].
Here the quadratic form in 7, as in [L-T.3, Eqn. (5.5)],

2
n—1 —
d(ma%n) = a2($’y) Z a’t] z y mn; — <Z Qnj CC y )
ij=1
> cln|?, c>0, (2.5.3)
is positive definite uniformly in (z,y) € Q. With 7 = o — iy, v >
0, o € R', the Laplace variable corresponding to t : D; — 7, and

n € R™ ! the Fourier variable corresponding to ¥ : Dy — n, we
define the cones [L-T.3, Eqn. (5.15)—(5.17)],

3
Ri = {(@ o) € B4+ minl <o, (2.5.4)
2n m 3
R = {((@y;om) € R™(+): o |nl <o < Zminl(,(2:5.5)

Re = {(@yioin) € R(+) 0 < 3 lnl}. (2.5.6)
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Then, a fortiori over the hyperbolic case in [L-T.3, Eqn. (5.18),
(6.17)],

Rir UR2 C elliptic cone = {(z,y;0,1) € R*(+): o < mln|},
(2.5.7)
and

[p(z,y; 75 €, m)| 2 c[€ + |nl® + 0%] in Rex U Ry, (2.5.8)
so that p is elliptic of order 2 in all variables in Ry U Ro. Defining
we(t, +) = P(t)w(t, -) where ¢ € C§°(R) is identically equal to 1 on
[e,T — €] and vanishes outside (0,7"), we obtain from (2.5.1),

Puwe = [Plw +9f, [Pyl =iap'w (2.5.9)

counterpart of [L-T.3, Eqn. (7.8)]. We then obtain the counterpart
of [L-T.3, Lemma 7.2].

THEOREM 2.5.1. Let w be a solution of (2.5.1). Let 6% be the
tangential derivative on I' = Q|;—¢. Then, the following estimate
holds true: given € > 0 and ¢y > 0 arbitrarily small, and given
T > 0, there exists a constant C¢ o 7 > 0 such that

|5 < CE,GO,T{HDIwan) + ol ooy

Lo([e,T—€]xT)

10l g ko 1110y )}

(2.5.10)

where D, is the operator corresponding to the symbol fx, so that
D, restricted on I', coincides with the co-normal operator. O

Proof. The proof follows as in [L-T.3, Section 7.2]. In synthesis:
if x = x(z,y;0,n) is the symbol of order zero of localizaiton on
R1 and X the corresponding pseudo-differential operator, then Xw,
obeys elliptic estimates in all variables. Instead, (1 — X)w, has its
tangential derivative 6%(1 — X)w,. dominated in the Ls(3)-norm by
its time derivative (1 — X’)(w,)¢, since in the region Ry U Ry;, where
supp(1 — x) lies, we have o > |n|. Details are as in [L-T.3, Section
7.2.]. O
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Theorem 2.1.4 is the version of Theorem 2.5.1 just proved corre-
sponding to a bounded smooth domain.

3. Proof of Theorems 1.1 and 1.2

We shall heavily rely on the results in the preceding Section 2 for
the simple Eqn. (2.1.1). Theorem 1.1 is here restated as Theorem
3.1. The counterpart of Theorem 2.1.1 is:

Step 1. Theorem 3.1. (Carleman estimates) Assume (1.3) and
(1.4). Let w, z be solutions of Eqns. (1.1) and (1.2) in the class (1.6),
(1.7). Let ¢(z,t) be the pseudo-convex function defined by (2.1.4).
Then, for all 7 sufficiently large, the following one-parameter family
of estimates hold true:

e—5'r

(2- 222 [B(T) + EO)

g 30T _ ;) /Qe“f’nvm2 +V2[2dQ -

< BT(w)|s + BT(2)|s

T

+ Crgr [HwH%’([O,T];LQ(Q)) + ||z||%’([0,T];L2(Q))] , (3.1)

where the boundary terms BT (w)|x. are defined by (1.9) [or (2.1.10)],
and similarly for BT'(z)|x with respect to z. Finally, E(t) is defined
by (1.5).

Proof. We apply the Carleman estimates Eqn. (2.1.8) of Theorem
2.1.1 to the w-equation (1.1) with f = Pi(z) and, respectively, to
the z-equation (1.2) with f = P>(w). We thus obtain, respectively,

T T

—or
(2-Z-1) [ 170 a@ - S 1Bu(T) + B (0)
< BT(w)|s +§/Qef¢|P1(z)|2dQ

+ CT,d),T||w||20([o,T};L2(Q)); (3.2)

T

(2% 2) [ orvspaq - ma) + B0
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< BT@N -+~ [ tIPa()iQ

+ CT:¢,7'||z||%‘([0,T];L2(Q))a (3.3)

for 7 sufficiently large. We next recall the pointwise bounds (1.4) for
Py(z) and Py(w) in, respectively, (3.2) and (3.3), to obtain

T T

(2 _COr 1) /Q 7 VwdQ — e_:T [Bo(T) + Ey(0)]

2Cr

< BT(w)s + T/Qemnvzp +122d0

+C1,¢,r {”w||20([0,T];L2(Q)) + ||Z||%'([0,T];L2(Q))} ;o (34)

(2- e - | eeIvaraq - 7 BT) 4 B (0)

T T T

20
< BT(Z)'E-FTT/QeT‘bHVw'Z_l_'w‘Q]dQ

+Crpr {||Z||2C([0,T];L2(Q)) + ||w||20([o,T];L2(Q))} . (35)

Next, we sum up (3.4) and (3.5) and move from the right to
the left-hand side the energy terms involving |Vz|? and |Vw|?, with
coefficient @, and we readily obtain (3.1), as desired. O

We next specialize Fy, F», P, P, as in (1.10), (1.11). The
counterpart of Lemma 2.3.2(ii) is:

Step 2. Proposition 3.2. Assume (1.10) and (1.11). Let
w, z be solutions of Eqns. (1.1) and (1.2) in the class (1.6), (1.7).
Then, with reference to (1.5), the following inequalities hold true for
T>t>0:

e M E(0) — M(T) < E(t) < [E(0) + A(T)e™, (3.6)
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where k = 2max{||R1||oo + ¢, ||R2llco + €, CE’T }, see below, and

92 Zldrdt
ow 0w dth+2C/ / 92 02| 0 gt
oy v
+CT/ /z—‘dl‘dt—l—CT ‘dth

+Cr,e [||w||20([o,T];L2(Q)) + Hz“%’([O,T];LQ(Q))] - (3.7)

Proof. We return to identity (2.3.1) which we write for the w-

equation (1.1) with f = P;(z) and, respectively, for the z-equation
(1.2) with f = P(w). We obtain, respectively, for all s, ¢

s)+2 Re (/ /—wtdI‘da)
+2 Re ( / t /Q (7 (w) + Py (2)]in dea); (3.8)
E.(t) = E.(s)+2Re (/:/F%ztdl"da>

+2 Re ( / t /Q [Fa(2) + Po(w)]7 dea>. (3.9)

Summing up (3.8) and (3.9) yields by (1.5),

+2Re(//—wtdfda>
+2Re(//—ztd1“da)

Ey ()

E(t) =
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+2Re (/St/Q[Fl(w) + Pu(2)] @ dO da)
+2Re (/St/ﬂ[FQ(z) + Py(w)]7 d9 do) . (3.10)

On the other hand, recalling (2.3.17) as applied to the w-equation
(1.1), we have for any € > 0, and t > s > 0:

Re( / t /Q [ (w) + Py (2)]w: dQ do
w 0w dI‘dt+/ /

C
+ CT,e||w||%([o,T];L2(Q))+;||P1(z)||%2(s,t;H1(Q)), (3.11)

< (IR1]loo +€) /:Ew(a)da

P1 ‘ dl' do

where R; is defined by (2.3.3) with r replaced by r;. Similarly,
(2.3.17), as applied to the z-equation (1.2), gives for ¢ > 0 and
t>s>0,

Re (/:/Q[FQ(z)JFPQ(w)]ztdeo) < (I Rsllos + € /:Ez(a)da
C/OT/ 0z 0z dth+/ /

8,u o
C
+ OrellzlEqomya) + ?HP?(U))“%Q(S,T;Hl(Q))a (3.12)

Bz
Py(w 3 dl do

where p is a unit tangential vector on I'.
Using the assumptions (1.11d) on P;(z) and P(w), we obtain

1P 5,010y + 1P ()T (s 1 (0)) <

t
< CT//Q[|Vz|2+|V'w|2+|z|2+|w|2] d9do
S
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t
by (L5) < Cr [ Bloydo + er[laliE o myzaay

+ ||w||20([o,T};L2(Q))]- (3.13)

Summing up (3.11) and (3.12) and using (3.13) results in

Re< / t /Q 7 (w) +P1(z)]wtdea>
+ Re</t‘/Q[F2(Z) +P1(’U))]th9d0'>

g /: E(o)do

<

IN

Ow 0w dI‘dt+/ / Pi(z) 22\ dr do
dth—I—/ / Py(w deU
+Cre [“wH%’([O,T];Lg(Q)) + ||Z||20([0,T];L2(Q))] ; (3.14)

where k is a suitable constant defined below (3.6). Since inequalities
(1.11c) hold true also on X, we then obtain by substituting (3.14)
into (3.10),

B(t) < [E(s) + A(T)] + & / 'Blo)o, t>s>0,  (3.15)

where A(T) is defined by (3.7). Similarly, from (3.10),

B(s) < [E(t) +k/ o)do, t>s>0.  (3.16)

Thus, we obtain the counterpart of Eqns. (2.3.20) and (2.3.21) in the
case of one equation (2.1.1). We then obtain for ¢ > s > 0,

E(t) < [E(s) + A(T))");  E(s) < [B(t) + AT)), (3.17)
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i.e., the counterpart of (2.3.22). Setting s = 0 in (3.17) yields (3.6),
as desired. |

The counterpart of Theorem 2.3.3 is:

Step 3. Theorem 3.3. Assume (1.10) and (1.11). Let w,z
be solutions of Eqns. (1.1) and (1.2) in the class (1.6), (1.7). Then,
with reference to (1.5), the following inequality holds true, with 7
sufficiently large, and ¢y > 0 arbitrarily small > 0:

—oT -
{(2 — & — 1) Cto,tleT _ 6— <1 +€kT)} E(O)
T T

T

< (BT(w,2))]s + constry { [ w0100 +
el oy} (318)

where taking 7 sufficiently large makes the coefficient { } in front
of E(0) positive in (3.18). Moreover, we have set

e—t5'r

BT(’U),Z)lE = BT(’U))|E + BT(Z)lE + [(tl — t()) + TeiCT A(T),
(3.19)
where BT'(w) is defined by (1.9) (or (2.1.10)), and similarly for
BT'(z), while A(T) is defined by (3.7); [Estimate (3.18) is the coun-
terpart for system (1.1), (1.2) of Eqn. (2.3.23) of Theorem 2.3.3 for

the single equation (2.1.1).]

Proof. We proceed as in the proof of Theorem 2.3.3. Using the
left-hand side inequality in (3.6), we compute

t1 t1 ~ - ~
B(t)dt > / [e #B(0) — A(T)] dt = Cio B(0) — (11 — t0)A(T).
to to

(3.20)
Moreover, recalling property (2.1.4c) for ¢ and (1.5), we estimate
with reference to (3.1)

/Q OVl + |V2[2dQ > ¢ / " Bt (3.21)

to
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Using now the right-hand side inequality in (3.6), we estimate as in
(2.3.26),

E(T) + E(0) < [1+ ] B(0) + TA(T). (3.22)
We now use (3.20) in (3.21) and substitute the result, along with

(3.22), into the left-hand side of (3.1). This way we obtain (3.18).
O

Step 4. We now absorb the tangential traces from the boundary
terms BT (w, z).

PROPOSITION 3.4. Assume (1.3) and (1.4). Let w, z be solutions of
Eqns. (1.1) and (1.2) in the class (1.6), (1.7). Then

(i) given € > 0 and ¢y > 0 arbitrary small, and given 7' > 0, there
exists a constant C¢ ¢, 7 > 0 such that

[ ]

T ow |? o, |0z|? )
< e
< Ce,eo,T{/O /Flay‘ + w] +‘8u‘ + |2¢|?| dT dt

2 2
ol o rmto@y T L orattomy G2

97

2
0z
—| |dTdt
o

where |%\ = |V,| = |tangential gradient|.

(i) If, moreover, w and/or z satisfy the boundary condition (1.13)
on Yy, then the corresponding integral term in (3.23) for w
and/or for z replaces I' with I';. [This result is the counterpart
for system (1.1), (1.2) of Eqn. (2.1.20) of Theorem 2.1.4 for the
single equation (2.1.1).]

Proof. (i) We apply (2.1.20) of Theorem 2.1.4 to the w-equation
(1.1) with f = Pi(z) and, respectively, to the z-equation (1.2) with
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f = Pa(w). We obtain

T—e ow|? T ow |?
— | dI’ <
[ ddt_ce,eo,T{/O/F[a

+ 2 FIPDI? g, )} (324)

+ |wt|2] ax

1
L2 (0,T;H2T°0(Q))

2 T 2
T dt < CE,GO,T{ / / [82
o Jr|lo

0z
riop

+ |Zt|2 ax

€

2 2
+lzll] a0 o) +”P2(w)”H—%+60(QT)}' (3.25)
Next, we sum up (3.24) and (3.25) and use
1PL A ymsco iy S CrlZllp, o pigdeogeyi  (3:26)
1P ()] - freo g,y S COrllwl (3.27)

1
L (0,75 H2<0())’

since P; and P, are, by (1.4), first-order operator in the space vari-
ables x1,...,Zy, with Ly,-coefficients in time. This way, we obtain
(3.23).
(ii) The proof of part (ii) is the same, recalling part (ii) of The-
orem 2.1.4.
O

We now complete the proof of Theorem 1.2.

Step 5. Proposition 3.5. Assume (1.10), (1.11). Let w,z be
solutions of Eqns. (1.1), (1.2) within the class (1.6), (1.7). Then

(i) the following inequality holds true for 7 sufficiently large: there
exists a constant consty » > 0 such that, with reference to (1.5),

0z
consty , F //U— + w2 + ‘81/‘ + |z

)l ”

dl' dt

+ constrreg [|| 12 ] (3.28)

La(0,T;H3+0(Q) 2(0,T;HE+0(Q))
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or equivalently,

consty [E(0) + E(T)] <
T 2 2

< / / ‘a—"” +|wt|2+‘%‘ +|z?| drat
o Jr|lov ov

2
+ conStT,T,eo |:||’U)||L2 (0 T-H%+€0 ()
Ly

2 : (3.29)

I oo

(ii) If, moreover, w and/or z satisfy the boundary condition (1.13)
on Yy, then the corresponding integral term for w and/or z
replaces I with I'y defined by (2.1.17). [This result is the coun-
terpart for system (1.1), (1.2) of Eqn. (2.1.21) and (2.1.22) of
Theorem 2.1.5 for the single equation (2.1.1).]

Proof. (i) We proceed as in the proof of Theorem 2.1.5 or as in
[L-T.3, p. 221]. For fixed € > 0 small we apply estimate (3.18) of
Theorem 3.3 over the interval [e,T — €], rather than over [0,7]. We
obtain for kg ;. > 0,

k¢:T,€E(6) < BT(waz)“e,Tfe}xF

+ constT,T,e{ ||w||%’([0,T];L2(Q))

+ ||Z||20([0,T];L2(Q))}- (3.30)

Using the left-hand side inequality in (3.6) with ¢ = € in the left-hand
side of (3.30), we obtain

k¢77,eefkeE(0) < BT(w,2)|jer—qgxr + A(T)

+ ConStT,T,e{ ”wH%’([O,T];LQ(Q))

+||z||20([o,T];L2(Q))}- (3.31)

But by virtue of estimate (3.23) of Proposition 3.4, we readily see
via the definition BT (w, z) over the domain [e,T — €] x I" in (3.19)
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[and the definition of BT (w) or BT'(2) in (1.9) (or (2.1.10)], except
on [6,T — €] x '] and via the definition of A(T') in (3.7) along with

2 2
o) ol .
2u”+ |32/ that:

trace theory and |[Vw|? =

BT(’U), z)‘[e,T—e]xF + A(T) <

r ow|? 5 |0z 9
< — — r
> Ce,eo,T{/O /I‘ U v + |’U)t| + ‘81/ + |Zt| dr' di
2 2
. .32
+||w||L2(0,T;H%+60(Q)) + ||Z||L2(0,T;H%+50(Q)) (3.32)

Inserting (3.32) into the right-hand side of (3.31) yields (3.28), as
desired.

To prove (3.29), we write as in (2.3.27),

E(0) = + > [E(0) + E(T)] — @ (3.33)

recalling E(0) > e *T E(T) — A(T) from the right-hand side inequal-
ity (3.6). We then insert (3.33) into (3.28) already proved, and we
then establish (3.29) again via (3.7) for A(T) as above. Part (i) of
Proposition 3.5 is proved.

For part (ii), we use part (ii) of Proposition 3.4 instead. O

Appendix: Duality maps

The appendix sketches the duality between continuous observabil-
ity inequalities and corresponding exact controllability results for a
single equation.
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Dirichlet case. The following two problems

( iw, = Aw+ F(w),
w(0, -) = w,
’w|20 = O,
\ 'LU|21 = U,
(A.1)
and

iy = AY+F@p) inQ,
Y(T, ) = o in £,
Pls

0 in X,
where F'(w) is given by (2.1.11), and where

F(y) = —div(yVr) + ppp = =Vip - Vr + (p — Ar)yp, Ar € Loo(Q),
(A.2)

are dual of each other in the following sense: the map

{ u e LQ(O,T; LQ(PI)) = Lou = w(T, ) c H’I(Q), (A.3)

w0:0

whose regularity always holds true [L-T.2, Thm. 1.1], is dual to the
map

Yo € HY(Q) = Lito = ~i00 € L0, T Lo(Tr)). (A4)

This is shown by multiplying the w-equation in (A.1) by % and in-
tegrating in ) by parts, thus arriving at the identity

z/ u—le /w V(T (A.5)

which proves the assertion in (A.3), (A.4).
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Neumann case. The two following problems,

( iwy = Aw+ F(w),
w(0, -) = wo,
! wlk, = 0,
ow
[ vy,
and (A.6)
' iy = AYp+F(y) inQ,
YT, ) = o in Q,
‘ Pls, = 0 inx,
\[g—f— %Ll =0 in ¥y,

F as in (A.2), are dual of each other in the following sense:

wy = 0 . - 1
{ w € (0, T; Ly(ry)) Sueh that Lru = w(T,) € Hy (), (A7)

is dual to the map
o € Hp ' (Q) = Litho = itpls, € La(0,T; La(T1)), (A.8)
equivalently,
o € HY (Q) = hi]s, € Lo(0,T; Lo(T1)). (A.9)

Indeed, multiplying the w-equation in (A.6) by 4 and integrating
over () by parts yields the identity

i / up dS — / w(T)p(T)d, (A.10)
Y1 Q

which proves the assertion in (A.7)—(A.9).
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