Gaussian Estimates and Invariance of the L^p -Spectrum for Elliptic Operators of Higher Order

MATTHIAS HIEBER (*)

In memoriam Pierre Grisvard

1. Introduction

Let $\Omega \subset \mathbb{R}^n$ be an open set and let $T_p = (T_p(t))_{t \geq 0}$ be consistent semigroups on $L^p(\Omega)$, $1 \leq p < \infty$, with generators A_p . It is natural to ask whether interesting properties of the semigroup, the generator or the solution of the associated inhomogeneous initial value problem on $L^p(\Omega)$ depend on p. Upper Gaussian estimates play an important role in this context; indeed, they are essential in questions concerning for example L^1 -holomorphy, maximal L^p -regularity, bounded H^∞ -calculus or characterization of certain interpolation spaces (see [Ou], [Hi2], [H-P], [D-R], [H-K-M]).

In this note we prove an upper Gaussian estimate of order $m\alpha$ for the semigroup generated by $-e^{i\pi\alpha}A^{\alpha}$, $\alpha \geq 1$, provided the holomorphic semigroup generated by A satisfies an upper Gaussian estimate of order m. Besides the application cited above, estimates of this type are in particular important for the question whether the spectrum $\sigma(A_p)$ of A_p is independent of p. Notice that this is not the case in general (see [H-V], [Da1, 4.3], [Ar, Sec. 3], [D-S-T]). However, it was shown in 1994 by Arendt [Ar] and Davies [Da2] that $\sigma(A_p)$ is independent of $p \in [1, \infty)$ provided that A_2 is self-adjoint and T_2

^(*) Indirizzo dell'Autore: Equipe de Mathématiques, Université de Franche-Comté, F-25000 Besançon (France).

satisfies an upper Gaussian estimate of order 2. Their result applies in particular to Schrödinger operators [Si] and to second order uniformly elliptic operators in divergence form with L^{∞} coefficients acting on $L^2(\mathbb{R}^n)$ (see [Da1], [Au]) or on $L^2(\Omega)$ subject to certain boundary conditions (see [Da1], [A-tE]).

Less information is known for general elliptic operators of higher order. We refer to [Da3] for spectral properties of self-adjoint uniformly elliptic operators of order 2m satisfying certain quadratic form estimates. In the following, we generalize the result given by Arendt [Ar] to Gaussian estimates of higher order, i.e. we show that the connected component of the resolvent set containing a right halfplane of large class of elliptic operators of higher order is independent of p. In particular, we show that for $\alpha \geq 1$, $\sigma(A_p^{\alpha})$ is independent of p provided that T_2 satisfies an upper Gaussian estimate of order m and A_2 is self-adjoint or that Ω is bounded.

We finally mention that the spectra of the $L^p(\mathbb{R}^n)$ realization of certain classes of hypoelliptic (pseudo)differential operators are independent of p only in an interval around p=2 (see [Hi1], [L-S]).

2. Main results and examples

Let $n \in \mathbb{N}$, $\Omega \subset \mathbb{R}^n$ be an open set, $p_0 \in [1, \infty)$ and let T be a C_0 semigroup on $L^{p_0}(\Omega)$ with generator A. We always identify $L^{p_0}(\Omega)$ with a subspace of $L^{p_0}(\mathbb{R}^n)$ by extending functions by zero. Given $m \in (1, \infty)$ we define a constant $c_{mn} > 0$ by

$$\frac{1}{c_{mn}} \int_{\mathbb{R}^n} \exp\left(\frac{-|x|^{m/(m-1)}}{4}\right) dx = 1.$$

Moreover, define the family $(G_{p_0}(t))_{t\geq 0}$ of operators on $L^{p_0}(\mathbb{R}^n)$ by $G_{p_0}(t)f := k_t * f$, where

$$k_t(x) := \frac{1}{c_{mn}} \frac{1}{t^{m/n}} \exp\left(\frac{-|x|^{m/(m-1)}}{4t^{1/(m-1)}}\right) \qquad (t > 0, \ x \in \mathbb{R}^n).$$

Since $k_t \in L^1(\mathbb{R}^n)$ for all t > 0 it follows from Young's inequality that $||G_{p_0}(t)f||_{p_0} \leq ||k_t||_1 ||f||_{p_0}$. We say that the semigroup T satisfies an

upper Gaussian estimate of order m if there exist constants $a \ge 0$, M > 0, b > 0 such that

$$|T(t)f| \le Me^{at}G_{p_0}(bt)|f| \qquad (t \ge 0)$$

for all $f \in L^{P_0}(\Omega)$.

Furthermore, we assume that E and F are Banach spaces and that there exists a topological vector space G such that $E \hookrightarrow G$ and $F \hookrightarrow G$. Then two operators $S_E \in \mathcal{L}(E)$ and $S_F \in \mathcal{L}(F)$ are called consistent if $S_E x = S_F x$ for all $x \in E \cap F$. We call two semigroups T_E and T_F on E and F consistent if $T_E(t)$ and $T_F(t)$ are consistent for all t > 0. Assuming that T is a C_0 -semigroup on $L^{p_0}(\Omega)$ which satisfies an upper Gaussian estimate of order m it is not difficult to verify that there exist consistent semigroups T_p on $L^p(\Omega)$, $(1 \le p < \infty)$, such that $T = T_{p_0}$ and

$$(2.1) |T_p(t)f| \le Me^{at}G_p(bt)|f| (f \in L^p(\Omega), t \ge 0),$$

(see [Hi2, Lemma 3.1]). For $\theta \in [0, \pi)$ put

$$S_{\theta} := \{ z \in \mathbb{C} \setminus \{0\}; |\arg z| \le \theta \} \cup \{0\},$$

$$S_{\theta}^{0} := \{ z \in \mathbb{C} \setminus \{0\}; |\arg z|, \theta \}.$$

Moreover, we call an operator $S \in \mathcal{L}(L^p(\Omega), L^q(\Omega))$, $(1 \leq p, q \leq \infty)$, an *integral operator*, if there exists a measurable function $K : \Omega \times \Omega \to \mathbb{C}$ such that for all $f \in L^p(\Omega)$, $K(x, \cdot)f(\cdot) \in L^1(\Omega)$ x-a.e. and

$$(Sf)(x) = \int_{\Omega} K(x,y)f(y)dy$$
 x-a.e.

In that case S is represented by the kernel and we write $S \sim K$. If in addition |K| defines also an integral operator in $\mathcal{L}(L^p(\Omega), L^q(\Omega))$, then S is called a regular integral operator. It follows by standard arguments that $T_p(t)$ is an integral operator, say $T_p(t) \sim K(t, \cdot, \cdot)$. We denote by A_p the generator of T_p . Considering $e^{-\alpha t}T(t)$ instead of T(t), we may always assume that (2.1) is satisfied with a=0.

Suppose now that T is a bounded analytic C_0 -semigroup on $L^p(\Omega)$ of angle φ satisfying a Gaussian estimate of order m with a=0. Let $l\in \mathbb{N},\ \theta\in [0,\varphi+\pi/2)$ and $\lambda\in S^0_{\theta}$. Then by [Hi2, Thm. 2.2], $(\lambda-A_p)^-l$ is a regular integral operator with kernel

 $K_R^l(\lambda,\cdot,\cdot)$. Moreover, if $l>\frac{n}{m}$, then there exist constant M,c>0 such that

$$(2.2) |K_R^l(\lambda, x, y)| \le M e^{-c|\lambda|^{\frac{1}{m}}|x-y|} |\lambda|^{\frac{n}{m}-l}$$

for all $x, y \in \Omega$, all $\lambda \in S_{\theta}^{0}$.

Finally, let A be a closed, densely defined operator in a Banach space X and let $\omega \in [0, \pi)$. Denote by $\sigma(A)$ and $\rho(A)$ the spectrum and resolvent set of A, respectively. The operator A is called of type ω if $\sigma(A) \subset S_{\omega}$ and for $\theta \in (\omega, \pi)$ there exists a constant M such that

$$\|(\lambda I - A)^{-1}\| \le \frac{M}{|\lambda|}, \qquad (\lambda \in \mathbb{C} \setminus S_{\theta}).$$

Assume that $0 \in \rho(A)$. If A is of type ω and $\alpha > 0$, then A^{α} is defined by $A^{\alpha} := (A^{-\alpha})^{-1}$, where $A^{-\alpha}$ is given by

$$A^{-lpha} = rac{1}{2\pi i} \int_{\Gamma} \lambda^{-lpha} (\lambda - A)^{-1} d\lambda$$

and Γ is a suitable path of integration. We note that A^{α} is a closed operator with dense domain.

For the time being, assume that A is the generator of a bounded holomorphic C_0 -semigroup on X of angle φ . Let $\alpha \geq 1$ and $\varphi > \frac{\pi}{2}(1-\frac{1}{\alpha})$. We show in Proposition 3.1 that $-e^{-i\pi\alpha}A^{\alpha}$ generates an holomorphic semigroup S on X of angle θ , where $\theta < \frac{\pi}{2} - (\frac{\pi}{2} - \varphi)\alpha$. Our first result deals with upper Gaussian estimates for the semigroup S generated by $-e^{-i\pi\alpha}A^{\alpha}$.

THEOREM 2.1. Let $\Omega \subset \mathbb{R}^n$ be an open set, $m \in (1, \infty)$, $p_0, \alpha \in [1, \infty)$ and $\varphi > \frac{\pi}{2}(1 - \frac{1}{\alpha})$. Let T be a bounded holomorphic C_0 -semigroup on $L^{p_0}(\Omega)$ of angle φ with generator A and let S be the semigroup on $L^{p_0}(\Omega)$ generated by $-e^{-i\pi\alpha}A^{\alpha}$. If T satisfies an upper Gaussian estimate of order m with a = 0, then S satisfies an upper Gaussian estimate of order $m\alpha$.

Gaussian estimates are closely related to the problem of p-independence of $\sigma(A_p)$, the spectrum of A_p . We first give a result dealing with generators A_p of consistent semigroups defined on $L^p(\Omega)$, where Ω is a bounded open subset of \mathbb{R}^n .

PROPOSITION 2.2. Let $\Omega \subset \mathbb{R}^n$ be an open bounded set and let $m \in (1, \infty)$. Assume that A generates a C_0 -semigroup on $L^{p_0}(\Omega)$ which satisfies an upper Gaussian estimate of order m. Then $\sigma(A_p)$ is independent of $p \in [1, \infty)$.

For unbounded sets Ω , the situation is more complicated. Denote by $\rho_{\infty}(A_p)$ the connected component of the resolvent set of A_p which contains a right halfplane. Modifying the arguments given by Arendt [Ar, Thm. 4.2] we obtain the following result.

THEOREM 2.3. Let $\Omega \subset \mathbb{R}^n$ be an open set and $m \in (1, \infty)$. Assume that A generates a C_0 -semigroup on $L^{p_0}(\Omega)$ which satisfies an upper Gaussian estimate of order m. Then $\rho_{\infty}(A_p)$ is independent of $p \in [1, \infty)$.

COROLLARY 2.4. Assume that A_2 is self-adjoint and that T_2 admits an upper Gaussian estimate of order m > 1. Then $\sigma(A_p)$ is independent of $p \in [1, \infty)$.

COROLLARY 2.5. Assume that T_2 is a bounded analytic C_0 -semi-group on $L^2(\Omega)$ which satisfies an upper Gaussian estimate of order m > 1 with a = 0. Let $\alpha \ge 1$.

- a) Then $\rho_{\infty}(A_p^{\alpha})$ is independent of $p \in [1, \infty)$.
- b) If A_2 is self-adjoint, then $\rho_{\infty}(A_p^{\alpha})$ is independent of $p \in [1, \infty)$.

In the following we give two types of examples to which our theorems apply.

Examples 2.6.

A) Operators associated to elliptic boundary value problems on $L^p(\Omega)$, $1 \leq p < \infty$, where Ω is bounded

Let Ω be a bounded domain in \mathbb{R}^N such that $\partial \Omega \in C^{2+\rho}$ for some $\rho \in (0,1)$. Consider a differential operator A of the form

$$A(x,\partial) := -\sum_{1 \leq i,j \leq N} a_{ij}(x) \partial_i \partial_j + \sum_{1 \leq i \leq N} a_i(x) \partial_i + a_0(x)$$

where a_{ij} , a_i , $a_0 \in BUC^{\rho}(\Omega)$ and

$$\sum_{1 < i, j < N} a_{ij}(x)\xi_i \xi_j \ge c|\xi|^2$$

for all $x \in \mathbb{R}^N$, $\xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^N$ and some constant c > 0. Let $B(x, \partial) := b(x) \cdot \nabla + b_0(x)$ be the boundary operators such that $b = (b_1, \dots, b_n)$, $b_i, b_0 \in C^{\rho}(\Omega)$ and $b(x) \cdot \nu(x) \geq c_0 > 0$, where $\nu(x)$ is the unit outward normal vector to $\partial\Omega$ at the point $x \in \partial\Omega$. Given $p \in (1, \infty)$, the operator

$$D(\mathcal{A}_p) := \{ u \in W_p^2(\Omega); Bu = 0 \} \qquad \mathcal{A}_p u := Au$$

is called the L^p -realization of the boundary value problem (A, B). Set

$$arphi_A := \max_{x \in \overline{\Omega}, \, \xi \in S^{N-1}} rctan \, rac{|\, \Im m \, a_\pi(x, \xi)|}{\Re e \, a_\pi(x, \xi)} \, ,$$

where a_{π} denotes the symbol of the principal part of A. Let $\varphi \in (\varphi_A, \pi/2)$. Then $-\mathcal{A}_p$ generates an analytic semigroup T_p on $L^p(\Omega)$, $1 of angle <math>\pi/2 - \varphi$ (cf. [A-D-N] or [Am]). Furthermore, it is shown in [Iv] and [So] that the semigroup T_p generated by $-\mathcal{A}_p$ satisfies an upper Gaussian estimate of order 2. Let T_1 be the consistent semigroup on $L^1(\Omega)$ and denote by A_1 its generator. Then it follows from Theorem 2.2 that $\sigma(A_p)$ is independent of $p \in [1, \infty)$.

B) Elliptic operators on $L^p(\mathbb{R}^n)$ with Hölder continuous coefficients

Let $A = \sum_{|\alpha \leq m|} a_{\alpha}(x) D^{\alpha}$, $\rho \in (0,1)$, $a_{\alpha} \in BUC^{\rho}(\mathbb{R}^{n}, \mathbb{C})$ for $|\alpha| = m$ and $a_{\alpha} \in L^{\infty}(\mathbb{R}^{n}, \mathbb{C})$ for $|\alpha| \leq m$. Suppose that there exists a constant $\delta > 0$ such that

$$\sup_{|\xi|=1} \Re e \sum_{|\alpha|=m} a_{\alpha}(x) (i\xi)^{\alpha} < -\delta \quad \text{for all} \quad x \in \mathbb{R}^{n}.$$

Given $p \in (1, \infty)$, we define the L^p -realization \mathcal{A}_p of A by

(2.3)
$$D(\mathcal{A}_p) := W_p^m(\mathbb{R}^n)$$

$$\mathcal{A}_p := Af \quad \text{for all} \quad f \in D(\mathcal{A}_p).$$

Then it is well-known that \mathcal{A}_p generates an analytic C_0 -semigroup T_p on $L^p(\mathbb{R}^n)$ $(1 of some angle <math>\varphi \in (0, \pi/2]$ (cf. [Am]). Furthermore, it was shown by Friedman [Fr, Thm. 9.4.2] that T_p satisfies an upper Gaussian estimate of order m. Denote by T_1 the consistent semigroup on $L^1(\mathbb{R}^n)$ and by A_1 its generator. Theorem 2.3 implies now implies now that $\rho_{\infty}(A_p)$ is independent of $p \in [1, \infty)$.

3. Proofs

We start this section with an auxiliary result. Here and in the following we use the convention that M denotes a positive constant whose value may vary from line to line.

PROPOSITION 3.1. Let $\alpha \geq 1$. Let A be the generator of a bounded analytic C_0 -semigroup on a Banach space X of angle φ . If $\varphi > \frac{\pi}{2}(1-\frac{1}{\alpha})$, then $-e^{-i\pi\alpha}A^{\alpha}$ generates an holomorphic C_0 -semigroup on X of angle θ , where $\theta < \frac{\pi}{2} - (\frac{\pi}{2} - \varphi)\alpha$.

Proof. Let $\theta \in (0, \frac{\pi}{2} - (\frac{\pi}{2} - \varphi)\alpha)$ and choose $z \in S^0_{\theta}$. We define

$$S(z) := rac{1}{2\pi i} \int_{\Gamma} e^{e^{-i\pi(lpha-1)}\lambda^{lpha}z} (\lambda-A)^{-1} d\lambda\,,$$

where $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$; $\Gamma_{1,3} = \{re^{\pm i\beta}; r \geq 1\}$, $\Gamma_2 = \{e^{i\theta}; |\theta| \leq \beta\}$ and β is chosen such that

$$\frac{\pi}{2} + \pi(\alpha - 1) + \theta < \alpha\beta < \pi.$$

Then

$$\left\| \frac{1}{2\pi i} \int_{\Gamma_1} e^{e^{-i\pi(\alpha-1)}\lambda^{\alpha}z} (\lambda - A)^{-1} d\lambda \right\| \leq$$

$$\leq M \int_1^{\infty} e^{r^{\alpha} \Re e(ze^{i(\alpha\beta - \pi(\alpha-1))})} \frac{1}{r} dr \leq M$$

for some constant M>0 and all $z\in S^0_\theta$. In the same way one shows that the terms corresponding to Γ_2 and Γ_3 define bounded operators on X. The proof of the fact that $S(z)_{z\in S^0_\theta}$ is strongly continuous on X is straightforward and therefore omitted.

Next let $\lambda > 1$. Then

$$\begin{split} \int_0^\infty e^{-\lambda t} S(t) dt &= \frac{1}{2\pi i} \int_0^\infty e^{-\lambda t} \int_\Gamma e^{e^{-i\pi(\alpha-1)}\mu^\alpha t} (\mu - A)^{-1} d\mu \, dt \\ &= \frac{1}{2\pi i} \int_\Gamma \int_0^\infty e^{t(-\lambda + e^{-i\pi(\alpha-1)}\mu^\alpha)} dt (\mu - A)^{-1} d\mu \\ &= \frac{1}{2\pi i} \int_\Gamma (\lambda - e^{-i\pi(\alpha-1)}\mu^\alpha)^{-1} (\mu - A)^{-1} d\mu \\ &= (\lambda - e^{-i\pi(\alpha-1)}A^\alpha)^{-1} \, . \end{split}$$

Hence $(S(t))_{t\geq 0}$ is a C_0 -semigroup on X with generator $-e^{-i\pi\alpha}A^{\alpha}$. Since $(S(t))_{t\geq 0}$ admits a bounded analytic extension to the sector S^0_{θ} which is strongly continuous, it follows that S is a holomorphic semigroup on X of angle θ , where $\theta < \frac{\pi}{2} - (\frac{\pi}{2} - \varphi)\alpha$.

In the following proposition we collect some well known facts on integral operators which will be used later on (see [Sch, Ch. IV] and [A-B] for proofs and references). For $1 \le p < \infty$, $\frac{1}{p} + \frac{1}{p'} = 1$, we put

$$\begin{array}{lcl} L^{\infty}[L^{p'}] &:= & \left\{ K: \Omega \times \Omega \to \mathbb{C} & \text{measurable} \ ; \\ & & \quad \text{ess} \sup_{y \in \Omega} \Big(\int_{\Omega} |K(x,y)|^{p'} dx \Big)^{\frac{1}{p'}} < \infty \right\}. \end{array}$$

PROPOSITION 3.2. a) Let $1 \leq p, q \leq \infty$ and let $S \in \mathcal{L}(L^p, L^q)$ be an integral operator represented by K. Let $S_0 \in \mathcal{L}(L^p, L^q)$ be such that

$$|S_0 f| \le S|f| \qquad (f \in L^p(\Omega)).$$

Then S_0 is a regular integral operator and $|K_0(x,y)| \leq K(x,y)$ x-a.e., where $K_0 \sim S_0$.

b) Let $1 \le p < \infty$ and consider the mapping

$$(S_K f)(x) = \int_{\Omega} K(x, y) f(y) dy \qquad (f \in L^p(\Omega)).$$

Then the mapping $K \mapsto S_K$ establishes an isometric isomorphism of $L^{\infty}(\Omega \times \Omega)$ onto $\mathcal{L}(L^1(\Omega), L^{\infty}(\Omega))$, and of $L^{\infty}[L^{p'}]$ onto $\mathcal{L}(L^p(\Omega), L^{\infty}(\Omega))$ for 1 .

LEMMA 3.3. There exists a constant M>0 such that for all $s\geq 1$ we have

$$\int_0^{2\pi} e^{s\cos\theta} d\theta \le M \frac{e^s}{s^{1/2}}.$$

Proof. Observe that

$$\int_0^{2\pi} e^{s\cos\theta} d\theta = \int_0^{2\pi} \sum_{n=0}^{\infty} \frac{s^n}{n!} (\cos\theta)^n d\theta =$$

$$= \sum_{n=0}^{\infty} \frac{s^n}{n!} \int_0^{2\pi} (\cos\theta)^n d\theta = \sum_{n=0}^{\infty} \frac{s^2n}{2^{2n} (n!)^2} 2\pi.$$

In order to prove the claim we verify that

$$\frac{s^{(2n+1)/2}}{2^{2n}(n!)^2} \le \frac{s^{2n}}{(2n)!} + \frac{s^{2n+1}}{(2n+1)!}$$

for all $n \in \mathbb{N} \cup \{0\}$ and all $s \ge 1$.

Proof of Theorem 2.1 Fix $l \in \mathbb{N}$ such that l > n/m + 1. Let $\theta \in [0, \varphi + \pi/2)$. For $\lambda \in S^0_\theta$ and t > 0 define

$$F_{l,t,\alpha}(\lambda) := \int_0^{\lambda} \frac{(\lambda - s)^{l-2}}{(l-2)!} e^{e^{-i\pi(\alpha-1)}s^{\alpha}t} ds.$$

The theorem of the residues implies that

$$S(t) = rac{(l-1)!}{2\pi i} \int_{\Gamma} F_{l,t,lpha}(\lambda) (\lambda-A)^{-1} d\lambda \,,$$

where $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3$; $\Gamma_{1,3} = \{re^{\pm i\beta}; r \geq 1\}$, $\Gamma_2 = \{Re^{i\theta}; |\theta| \leq \beta\}$ for suitable R > 0 and $\beta \in (\frac{1}{\alpha}(\frac{\pi}{2} + \pi(\alpha - 1)), \pi)$. By (2.2), $(\lambda - A)^{-l}$ is a regular integral operator whose kernel $K_R^l(\lambda, \cdot, \cdot)$ satisfies

$$|K_R^l(\lambda,x,y)| \le M e^{-c|\lambda|\frac{1}{m}|x-y|} |\lambda|^{\frac{n}{m}-l} \qquad (x,y \in \Omega, \lambda \in S_\theta^0)$$

for suitable M, c > 0. For $x, y \in \Omega$ and t > 0 we set

$$|K_S(t,x,y)| := rac{(l-1)!}{2\pi i} \int_{\Gamma} F_{l,t,lpha}(\lambda) (K_R(\lambda,x,y))^l d\lambda \,.$$

In the sequel we show that there exist constants $M, \gamma > 0$ such that

$$(3.1) |K_S(t,x,y)| \le \frac{M}{t^{N/m\alpha}} \exp\left(-\frac{(\gamma|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{t^{\frac{1}{m\alpha-1}}}\right)$$

for $x, y \in \Omega$ and t > 0. It then follows from Proposition 3.2a and Fubini's theorem that S(t) is a regular integral operator whose kernel satisfies (3.1).

In order to prove assertion (3.1) we consider first the term corresponding to Γ_1 and Γ_3 , respectively. Then we have

$$|K_{S}(t,x,y)| \leq M \int_{R}^{\infty} \left| \int_{0}^{re^{i\beta}} (re^{i\beta} - s)^{l-2} e^{e^{-i\pi(\alpha-1)} s^{\alpha} t} ds \right|$$

$$r^{n/m-l} e^{-cr^{1/m}|x-y|} dr$$

$$\leq M e^{-cR^{1/m}|x-y|} \int_{R}^{\infty} r^{l-1} e^{r^{\alpha} t \cos(\alpha\beta - \pi(\alpha-1))} r^{n/m-l} dr$$

$$\leq M \frac{e^{-cR^{1/m}|x-y|}}{t^{n/m\alpha}} \int_{R^{\alpha} t}^{\infty} e^{u \cos(\alpha\beta - \pi(\alpha-1))} u^{\frac{n}{m\alpha} - 1} du .$$

Inspired by an argument due to Auscher [Au] we choose

(3.2)
$$R^{\alpha} := \max \left\{ \left(\frac{c|x-y|}{2t} \right)^{\frac{m\alpha}{m\alpha-1}}, \frac{1}{t} \right\}.$$

For the case $R^{\alpha} = 1/t$ we have

$$\int_{R^{\alpha}t}^{\infty}e^{u\cos(\alpha\beta-\pi(\alpha-1))}u^{\frac{n}{m\alpha}-1}du\leq M\,.$$

Hence

$$|K_{S}(t,x,y)| \leq \frac{M}{t^{\frac{n}{m\alpha}}} \exp\left(-\frac{c|x-y|}{t^{1/m\alpha}} \cdot \frac{t^{\frac{1}{m\alpha(m\alpha-1)}}}{t^{\frac{1}{m\alpha(m\alpha-1)}}}\right)$$

$$\leq \frac{M}{t^{\frac{n}{m\alpha}}} \exp\left(-\frac{c|x-y|}{t^{\frac{1}{m\alpha-1}}} \cdot \frac{(c|x-y|)^{\frac{1}{m\alpha-1}}}{2^{\frac{1}{m\alpha-1}}}\right)$$

$$\leq \frac{M}{t^{\frac{n}{m\alpha}}} \exp\left(-\frac{(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{(2t)^{\frac{1}{m\alpha-1}}}\right)$$

for all $x, y \in \Omega$ and t > 0. For the case $R^{\alpha} = \left(\frac{c|x-y|}{2t}\right)^{\frac{m\alpha}{m\alpha-1}}$ we have

$$|K_{S}(t,x,y)| \leq \frac{M}{t^{\frac{n}{m\alpha}}} \exp\left(-R^{1/m}c|x-y|\right)$$

$$\leq \frac{M}{t^{\frac{n}{m\alpha}}} \exp\left(-c|x-y|\left(\frac{c|x-y|}{2t}\right)^{\frac{1}{m\alpha-1}}\right)$$

$$\leq \frac{M}{t^{\frac{n}{m\alpha}}} \exp\left(-\frac{(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{(2t)^{\frac{1}{m\alpha-1}}}\right).$$

In the next step we consider the term corresponding to Γ_2 . Then

$$|K_{S}(t,x,y)| \leq$$

$$\leq M \int_{-\beta}^{\beta} \left| (Re^{i\theta} - s)^{l-2} e^{e^{-i\pi(\alpha-1)}s^{\alpha}t} \right|$$

$$R^{n/m-l} e^{-cR^{1/m}|x-y|} R ds d\theta$$

$$\leq M \int_{-\beta}^{\beta} R^{l-1} e^{R^{\alpha}t \cos(\alpha\theta - \pi(\alpha-1))} R^{n/m-l+1} e^{-cR^{1/m}|x-y|} d\theta$$

$$\leq M \frac{e^{-cR^{1/m}|x-y|}}{t^{\frac{n}{m\alpha}}} \int_{-\beta}^{\beta} e^{R^{\alpha}t \cos(\alpha\theta - \pi(\alpha-1))} (R^{\alpha}t)^{\frac{n}{m\alpha}} d\theta .$$

If $R^{\alpha}t \geq 1$, we obtain by Lemma 3.2

$$|K_{S}(t,x,y)| \leq M \frac{e^{-cR^{1/m}|x-y|}}{t^{\frac{n}{m\alpha}}} \frac{e^{R^{\alpha}t}(R^{\alpha}t)^{\frac{n}{m\alpha}}}{(R^{\alpha}t)^{1/2}}$$
$$\leq M \frac{e^{-cR^{1/m}|x-y|}}{t^{\frac{n}{m\alpha}}} e^{(1+\varepsilon)R^{\alpha}t}$$

for some $\varepsilon \in (0, 1/2)$. Choosing now R^{α} as in (3.2) we verify that for the case $R^{\alpha} = 1/t$ we have

$$|K_{S}(t,x,y)| \leq M \frac{e^{-cR^{1/m}|x-y|}}{t^{n/m\alpha}}$$

$$= \frac{M}{t^{n/m\alpha}} \exp\left(-\frac{c|x-y|}{t^{1/m\alpha}} \cdot \frac{t^{\frac{1}{m\alpha(m\alpha-1)}}}{t^{\frac{1}{m\alpha(m\alpha-1)}}}\right)$$

$$\leq \frac{M}{t^{n/m\alpha}} \exp\left(-\frac{(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{(2t)^{\frac{1}{m\alpha-1}}}\right)$$

Finally consider the case where $R^{\alpha} = \left(\frac{c|x-y|}{2t}\right)^{\frac{m\alpha}{m\alpha-1}}$. Then

$$\begin{split} &|K_{S}(t,x,y)| \leq \\ &\leq Mt^{n/m\alpha} \exp\left(-cR^{\frac{1}{m}}|x-y|\right) \exp\left((1+\varepsilon)R^{\alpha}t\right) \\ &\leq Mt^{n/m\alpha} \exp\left(-c|x-y|\left(\frac{c|x-y|}{2t}\right)^{\frac{1}{m\alpha-1}}\right) \exp\left((1+\varepsilon)R^{\alpha}t\right) \\ &\leq Mt^{n/m\alpha} \exp\left(-\frac{(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{(2t)^{\frac{1}{m\alpha-1}}} + \frac{(1+\varepsilon)(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{2^{\frac{m\alpha}{m\alpha-1}}t^{\frac{1}{m\alpha-1}}}\right) \\ &\leq Mt^{n/m\alpha} \exp\left(\frac{(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{t^{\frac{1}{m\alpha-1}}}[-\frac{1}{2^{\frac{1}{m\alpha-1}}} + \frac{(1+\varepsilon)}{2^{\frac{m\alpha}{m\alpha-1}}}]\right) \\ &\leq Mt^{n/m\alpha} \exp\left(\frac{\gamma(c|x-y|)^{\frac{m\alpha}{m\alpha-1}}}{t^{\frac{1}{m\alpha-1}}}\right), \end{split}$$

$$\text{where } \gamma = -\frac{1}{2^{\frac{1}{m\alpha-1}}} + \frac{(1+\varepsilon)}{2^{\frac{m\alpha}{m\alpha-1}}} < 0.$$

Proof of Proposition 2.2. Let $1 \leq p, q < \infty$ and $\mu \in \rho(A_p)$. We claim that $\mu \in \rho(A_q)$. By [Ar, Prop. 2.3] it suffices to show that $\|R(\mu, A_p)\|_{\mathcal{L}(L^q)} < \infty$. Since

$$R(\mu, A_p) = \int_0^1 e^{\mu t} T_p(t) dt + e^{\mu} T_p(1) R(\mu, A_p)$$

we only have to prove that

$$||T_p(1)R(\mu,A_p)||_{\mathcal{L}(L^q)} < \infty.$$

To this end note that

$$T_p(1)R(\mu, A_p) = T_p(1/2)R(\mu, A_p)T_p(1/2)$$
.

It then follows from Young's inequality that $||T_p(1/2)||_{\mathcal{L}(L^1,L^p)} < \infty$ and Proposition 3.2b implies that $||T_p(1/2)||_{\mathcal{L}(L^p,L^\infty)} < \infty$. Hence

$$||T_p(1)R(\mu,A_p)||_{\mathcal{L}(L^1,L^\infty)}<\infty.$$

It follows from Proposition 3.2b that $T_p(1)R(\mu, A_p)$ may be represented as an integral operator with bounded kernel. Since Ω is bounded, the proof is complete.

Proof of Theorem 3.3. The proof of Theorem 3.3 parallels the one given by Arendt [Ar, Theorem 4.2] for the case m=2. The only fact which needs comment is that $\tilde{T}_{\varepsilon,p}(t)$ given by

$$\tilde{T}_{\varepsilon,p}(t) = U_{\varepsilon,p}^{-1} T_p(t) U_{\varepsilon,p}$$

is bounded for the L^p norm.

Here we use the following notation. Let $\varepsilon \in \mathbb{R}^n$, $x \in \mathbb{R}^n$ and set $\varepsilon x = \sum_{j=1}^n \varepsilon_j x_j$. Define $L^p_{\varepsilon} := L^p_{\varepsilon}(\Omega)$ by

$$\begin{array}{lcl} L^p_\varepsilon(\Omega) &:= & L^p(\Omega, e^{-p\varepsilon x} dx) \\ &= & \left\{ f: \Omega \to \mathbb{C}; \int_\Omega |f(x)|^p e^{-p\varepsilon x} dx < \infty \right\}. \end{array}$$

Then $(U_{\varepsilon,p}f)(x) = e^{-\varepsilon x}f(x)$ defines an isometric isomorphism of L^p_{ε} onto L^p and $\tilde{T}_{\varepsilon,p}$ defines a C_0 -semigroup on L^p_{ε} . It follows that $\tilde{T}_{\varepsilon,p}$ is an integral operator whose kernel $K_{\varepsilon}(t,\cdot,\cdot)$ is given by

$$K_{\varepsilon}(t, x, y) = e^{\varepsilon(x-y)}K(t, x, y)$$
.

Let $\tilde{S}_{\varepsilon,p}(t) := U_{\varepsilon,p}^{-1}T_p(t)U_{\varepsilon,p}$. Then

$$\begin{split} |(\tilde{S}_{\varepsilon,p}(t)f)(x)| & \leq \int_{\mathbb{R}^n} e^{\varepsilon(x-y)} |K(t,x,y)| \, |f(y)| \, dy \\ & \leq \frac{M}{t^{n/m}} \int_{\mathbb{R}^n} e^{\varepsilon(x-y)} \exp\left(-\frac{c|x-y|^{\frac{m}{m-1}}}{t^{\frac{1}{m-1}}}\right) |f(y)| \, dy \, . \end{split}$$

Observe that there exists $w_1 \geq 0$ such that

$$\exp\left(-rac{c}{2}\left(rac{|x|^m}{t}
ight)^{rac{1}{m-1}}
ight)\exp(|arepsilon||x|)\leq \exp(w_1|arepsilon|^mt)$$

for all $x \in \Omega$. Hence it follows from Young's inequality that

$$\|\tilde{S}_{\varepsilon,p}(t)f\|_{L^{p}} \leq e^{w_{1}|\varepsilon|^{m}t} \int_{\mathbb{R}^{n}} \frac{e^{|\varepsilon||x|}}{t^{n/m}} e^{-\frac{c}{2}\left(\frac{|x|^{m}}{t}\right)^{\frac{1}{m-1}}} dx \, \|f\|_{L^{p}} \\ \leq Me^{w_{1}|\varepsilon|^{m}t} \, \|f\|_{L^{p}}.$$

References

- [A-D-N] AGMON S., DOUGLIS A. and NIRENBERG L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math., 12 (1959), 623–727.
- [Am] Amann H., Linear and Quasilinear Parabolic Problems. Birkhäuser Verlag, Basel, 1995.
- [Ar] ARENDT W., Gaussian estimates and interpolation of the spectrum in L^p , Differential Integral Equations, 7 (1994), 1153–1168.
- [A-B] ARENDT W. and BUKHVALOV A. V., Integral representations of resolvents and semigroups, Forum Math., 6 (1994), 111–135.
- [A-tE] ARENDT W. and TER ELST A. F. M., Gaussian estimates for second order elliptic operators with boundary conditions, preprint (1995).
- [Au] Auscher P., Regularity theorems and heat kernels for elliptic operators, J. London Math. Soc. (to appear).
- [Da1] DAVIES E. B., *Heat Kernels and Spectral Theory*. Cambridge University Press, Vol. 92, Cambridge, 1989.
- [Da2] DAVIES E. B., L^p spectral independence and L^1 analyticity, preprint (1993).
- [Da3] Davies E. B., Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. (to appear).
- [D-S-T] DAVIES E. B., SIMON B. and TAYLOR M., L^p spectral theory of Kleinian groups, J. Funct. Anal., 78 (1988), 116–136.
- [D-R] DUONG X. T. and ROBINSON D. W., Semigroup kernels, Poisson bounds and holomorphic functional calculus, preprint (1995).
- [Fr] Friedman A., Partial Differential Equations of Parabolic Type. Prentice Hall, New Jersey, 1964.
- [H-V] HEMPEL R. and VOIGT J., The spectrum of a Schrödinger operator in $L^p(\mathbb{R}^{\nu})$ is p-independent, Comm. Math. Phys., **104** (1986), 243–250.
- [Hi1] HIEBER M., L^p spectra of pseudodifferential operators generating integrated semigroups, Trans. Amer. Math. Soc., **347** (1995), 4023–4035.
- [Hi2] HIEBER M., Gaussian estimates and holomorphy of semigroups on L^p spaces, J. London Math. Soc. (to appear).
- [H-K-M] HIEBER M., KOCH P. and MERINO S., Linear and semilinear parabolic equations on $BUC(\mathbb{R}^n)$, Math. Nachr., 179 (1996), 107–118.
- [H-P] HIEBER M. and PRÜSS J., $L^p L^q$ estimates for solutions for parabolic evolution equations, preprint (1996).

- [Iv] IVASISIEN S. D., Green's matrices of boundary value problems for Petrovskii parabolic systems of general form, I. Math. USSR Sbornik, **42** (1982), 93–144.
- [L-S] LEOPOLD H. G. and SCHROHE E., Invariance of the L^p spectrum for hypoelliptic operators, preprint (1996).
- [Ou] OUHABAZ E., Propriétés d'ordre et de contractivité des demigroupes avec applications aux opérateurs elliptiques, Ph.D. Thesis, Besançon (1992).
- [Sch] Schaefer H. H., Banach Lattices and Positive Operators. Springer Verlag, Berlin, 1974.
- [Si] SIMON B., Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 447–526.
- [So] SOLONNIKOV V. A., On boundary value problems for linear parabolic systems of differential equations of general form, Trudy Mat. Inst. Steklov, 83 (1965); English transl., Proc. Steklov Inst. Math., 83 (1965).