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1. Introduction

Let © C IR" be an open set and let T, = (T),(t));>0 be consistent
semigroups on LP(12), 1 < p < oo, with generators A,. It is natural
to ask whether interesting properties of the semigroup, the generator
or the solution of the associated inhomogeneous initial value problem
on LP(R2) depend on p. Upper Gaussian estimates play an important
role in this context; indeed, they are essential in questions concerning
for example L'-holomorphy, maximal LP-regularity, bounded H -
calculus or characterization of certain interpolation spaces (see [Ou,
[Hi2], [H-P], [D-R], [H-K-M]).

In this note we prove an upper Gaussian estimate of order ma: for
the semigroup generated by —e’™® A%, o > 1, provided the holomor-
phic semigroup generated by A satisfies an upper Gaussian estimate
of order m. Besides the application cited above, estimates of this
type are in particular important for the question whether the spec-
trum o(A4,) of A, is independent of p. Notice that this is not the
case in general (see [H-V], [Dal, 4.3], [Ar, Sec. 3], [D-S-T]). However,
it was shown in 1994 by Arendt [Ar| and Davies [Da2] that o(4p)
is independent of p € [1,00) provided that As is self-adjoint and T5
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satisfies an upper Gaussian estimate of order 2. Their result ap-
plies in particular to Schrodinger operators [Si] and to second order
uniformly elliptic operators in divergence form with L coefficients
acting on L2(IR") (see [Dal], [Au]) or on L?(Q) subject to certain
boundary conditions (see [Dal], [A-tE]).

Less information is known for general elliptic operators of higher
order. We refer to [Da3] for spectral properties of self-adjoint uni-
formly elliptic operators of order 2m satisfying certain quadratic
form estimates. In the following, we generalize the result given by
Arendt [Ar] to Gaussian estimates of higher order, i.e. we show that
the connected component of the resolvent set containing a right half-
plane of large class of elliptic operators of higher order is independent
of p. In particular, we show that for a > 1, o(Ay) is independent of
p provided that 75 satisfies an upper Gaussian estimate of order m
and Aj is self-adjoint or that € is bounded.

We finally mention that the spectra of the LP(IR") realization
of certain classes of hypoelliptic (pseudo)differential operators are
independent of p only in an interval around p = 2 (see [Hil], [L-S)).

2. Main results and examples

Let n € IN, © C IR" be an open set, pg € [1,00) and let T be a Cy-
semigroup on LPo(2) with generator A. We always identify LPo((2)
with a subspace of LPO(IR") by extending functions by zero. Given
m € (1,00) we define a constant ¢, > 0 by

—|g|m/(m—1)
L/ exp (L> dxr = 1.
Cmn JR® 4

Moreover, define the family (Gp,(t)):>0 of operators on LP°(IR"™) by
Gpo(t)f := k¢ * f, where

1 1 — ||/ (m=1)
P\ i /m—)

ki(z) := ) (t>0, z € R").

€X
Conn tm/n

Since k; € L' (IR™) for all £ > 0 it follows from Young’s inequality that
|Gpo () fllpo < Iktl1]|f|lpo- We say that the semigroup T satisfies an
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upper Gaussian estimate of order m if there exist constants a > 0,
M > 0, b > 0 such that

T(t)f| < Me"Gpo(B)|f] (£ 20)

for all f € LTo(0).

Furthermore, we assume that E and F are Banach spaces and
that there exists a topological vector space G such that £ — G
and F' < G. Then two operators S € L(E) and Sy € L(F') are
called consistent if Spx = Spz for all z € ENF. We call two
semigroups Tg and Tp on E and F consistent if Tg(t) and Tr(t)
are consistent for all ¢ > 0. Assuming that 7" is a C-semigroup on
LPo(Q)) which satisfies an upper Gaussian estimate of order m it is
not difficult to verify that there exist consistent semigroups 7}, on
LP(Q), (1 < p < 00), such that T' =T}, and

(21)  |TO)f] < MeGp(00)lfl  (f € LP(Q), t 2 0),
(see [Hi2, Lemma 3.1]). For 6 € [0, 7) put

So = {z€ C\{0};]argz| <6} U{0},
SY = {ze€C\{0};|argz|0}.

Moreover, we call an operator S € L(LP(2),L1(Q)), (1 < p,q < c0),
an integral operator, if there exists a measurable function K : Q0 x
Q — C such that for all f € LP(Q), K(x,-)f(:) € L'(Q) z-a.e. and

(Sf)(z) = /Q Ko f)dy — s-ae.

In that case S is represented by the kernel and we write S ~ K. If
in addition |K| defines also an integral operator in L(LP(Q2), L1(f2)),
then S is called a regular integral operator. It follows by standard
arguments that T),(¢) is an integral operator, say T,(t) ~ K(t,-,").
We denote by A, the generator of 7},. Considering e~**T'(t) instead
of T'(t), we may always assume that (2.1) is satisfied with a = 0.
Suppose now that 7' is a bounded analytic Cp-semigroup on
LP(Q) of angle ¢ satisfying a Gaussian estimate of order m with
a=0 Letl €N, 8 €[0,po+n/2) and A € S) . Then by [Hi2,
Thm. 2.2], (A — A,)71 is a regular integral operator with kernel
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Kﬁz(/\, -,-). Moreover, if [ > I then there exist constant M,c > 0
such that

L n
(2.2) (KRN @, y)| < Mem @A™ 20 X[

forall z,y € Q, all A € SJ .

Finally, let A be a closed, densely defined operator in a Banach
space X and let w € [0, 7). Denote by o(A) and p(A) the spectrum
and resolvent set of A, respectively. The operator A is called of type
wif o(A) C S, and for 6 € (w,n) there exists a constant M such
that

_ M
(AL — A) IIISW, (A e €\ Sp).
Assume that 0 € p(A). If A is of type w and @ > 0, then A® is
defined by A% := (A=®)~!, where A~? is given by

Ao = %M/FA_‘“(/\ _A)"lax

and T is a suitable path of integration. We note that A® is a closed
operator with dense domain.

For the time being, assume that A is the generator of a bounded
holomorphic Cp-semigroup on X of angle . Let o > 1 and ¢ >

Z(1—1). We show in Proposition 3.1 that —e "®A® generates an

holomorphic semigroup S on X of angle 6, where § < § — (5 —
@)a. Our first result deals with upper Gaussian estimates for the

semigroup S generated by —e "T* A,

THEOREM 2.1. Let Q C IR™ be an open set, m € (1,00), pp,a €
[1,00) and ¢ > Z(1 — 1), Let T be a bounded holomorphic Cp-
semigroup on LP°(Q)) of angle ¢ with generator A and let S be the
semigroup on LP°(Q) generated by —e™""® A, If T satisfies an upper
Gaussian estimate of order m with a = 0, then S satisfies an upper
Gaussian estimate of order ma.

Gaussian estimates are closely related to the problem of p-inde-
pendence of 0(Ap), the spectrum of A,. We first give a result dealing
with generators A, of consistent semigroups defined on LP(£2), where
Q2 is a bounded open subset of IR".
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PROPOSITION 2.2. Let 2 C IR"™ be an open bounded set and let
m € (1,00). Assume that A generates a Cy-semigroup on LPo()
which satisfies an upper Gaussian estimate of order m. Then o(A,)
is independent of p € [1,00).

For unbounded sets €2, the situation is more complicated. Denote
by poo(Ap) the connected component of the resolvent set of A, which
contains a right halfplane. Modifying the arguments given by Arendt
[Ar, Thm. 4.2] we obtain the following result.

THEOREM 2.3. Let Q2 C IR" be an open set and m € (1,00). Assume
that A generates a Cy-semigroup on LP°(Q2) which satisfies an upper
Gaussian estimate of order m. Then py(Ap) is independent of p €
[1,00).

COROLLARY 2.4. Assume that Ay is self-adjoint and that T, admits
an upper Gaussian estimate of order m > 1. Then o(Ap) is indepen-
dent of p € [1,00).

COROLLARY 2.5. Assume that Ty is a bounded analytic Cy-semi-
group on L?()) which satisfies an upper Gaussian estimate of order
m >1 witha =0. Let « > 1.

a) Then po.(Ay) is independent of p € [1,00).

b) If Az is self-adjoint, then p(Ajy) is independent of p € [1, 00).

In the following we give two types of examples to which our theorems
apply.

EXAMPLES 2.6.

A) Operators associated to elliptic boundary value problems on LP (),
1 < p < o0, where 2 is bounded

Let © be a bounded domain in RN such that 9Q € C2** for some
p € (0,1). Consider a differential operator A of the form

A(z,0) = — Z a;j(x)0;0; + Z a;(x)0; + ap(z)

1<i,j<N 1<i<N
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where a;;, a;, ag € BUCP(2) and

> ai(@)&g; > €l

1<i,j<N

for all z € RN, ¢ = (&,...,&n) € RY and some constant ¢ > 0.
Let B(z,0) := b(z) - V + by(z) be the boundary operators such that
b= (b1,...,bn), bj,by € CP() and b(x) - v(z) > ¢o > 0, where v(x)
is the unit outward normal vector to 9€2 at the point x € 0. Given
p € (1,00), the operator

D(Ap) :={ue€ W;(Q);Bu =0} Apu = Au

is called the LP-realization of the boundary value problem (A, B).
Set

p4:= _max arctan [Sman(@, )|

zeQ, LeSN-1 Re ar(z,§) ’

where a, denotes the symbol of the principal part of A. Let ¢ €
(pa,m/2). Then —A, generates an analytic semigroup Tj, on LP(2),
1 < p < oo of angle 7/2 — ¢ (cf. [A-D-N] or [Am]). Furthermore, it
is shown in [Iv] and [So] that the semigroup 7}, generated by —A,
satisfies an upper Gaussian estimate of order 2. Let 77 be the con-
sistent semigroup on L!(Q) and denote by A; its generator. Then it
follows from Theorem 2.2 that 0(A,) is independent of p € [1, 00).

B) Elliptic operators on LP(IR") with Holder continuous coefficients

Let A =3 o< aa(z)D?, p € (0,1), ag € BUCP(R", C) for |af =m
and a, € L®(IR",C) for |a] < m. Suppose that there exists a
constant § > 0 such that

sup Re Z aq(z)(1€)* < =6 for all z € R".

=1 jal=m
Given p € (1,00), we define the LP-realization A, of A by

- D(A,) = WP(R?)
' A, = Af forall fe D(A).
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Then it is well-known that A, generates an analytic Cy-semigroup 7,
on LP(R"™) (1 < p < 00) of some angle ¢ € (0,7/2] (cf. [Am]). Fur-
thermore, it was shown by Friedman [Fr, Thm. 9.4.2] that T}, satisfies
an upper Gaussian estimate of order m. Denote by T} the consistent
semigroup on L'(IR") and by A; its generator. Theorem 2.3 implies
now implies now that p(Ap) is independent of p € [1, 00).

3. Proofs

We start this section with an auxiliary result. Here and in the fol-
lowing we use the convention that M denotes a positive constant
whose value may vary from line to line.

PROPOSITION 3.1. Let @ > 1. Let A be the generator of a bounded
analytic Cy-semigroup on a Banach space X of angle . If ¢ >

(1 - —) then —e @ A% generates an holomorphic Cy-semigroup
on X of angle 6, where 0 < T — (5 — p)a.

Proof. Let 6 € (0,5 — (5 — ¢)a) and choose z € Sj. We define

1 e—iw(a—l)Aaz -1
— A—A)"d)
o e (A= A)ax,

S(z) :=

where ' =T U, UTs; 'y 3 = {retB.r > 1}, Ty = {;|0] < 5}
and ( is chosen such that

g+7r(a—1)+9<aﬁ<7r.

Then
ol
i
< M/ era%(zei(aﬂ—ﬂ(a—l)))ldr < M
1 T

for some constant M > 0 and all z € Sg . In the same way one shows
that the terms corresponding to I'e and I's define bounded operators
on X. The proof of the fact that S(z),¢ S9 is strongly continuous on
X is straightforward and therefore omitted.
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Next let A > 1. Then
Y L [ eimar ey —1
e MSt)dt = — e e (u—A)""dudt
0 2mi Jo r
(o] .

i// et(i)\_keim(ail)ua)dt(lu,—A)ild/l
21 JrJo
1

= 5 /F(A — e ) T — A)Hdp

— ()\ o efiw(afl)Aa)fl )

Hence (S(t))1>0 is a Co-semigroup on X with generator —e =" A4,
Since (S(t))¢>0 admits a bounded analytic extension to the sector
S9 which is strongly continuous, it follows that S is a holomorphic

™

semigroup on X of angle 6, where 6 < 5 — (5 — ¢)ov. O

In the following proposition we collect some well known facts
on integral operators which will be used later on (see [Sch, Ch. IV]
and [A-B] for proofs and references). For 1 < p < oo, % + ]% =1, we
put

L°°[Lp’] = {K : 2 x Q - C measurable ;

esysesslllp (/Q |K(x,y)|p’dx) v < oo} )

PROPOSITION 3.2. a) Let 1 < p,q < oo and let S € L(LP,LY) be
an integral operator represented by K. Let Sy € L(LP,L?) be such
that

1SofI < SIFI (f € LP(Q)).

Then Sy is a regular integral operator and |Ko(z,y)| < K(z,y) z-
a.e., where Kg ~ Sy.

b) Let 1 < p < oo and consider the mapping

(Skf)@) = [ K@)fwdy  (f € 17()).

Then the mapping K — Sk establishes an isometric isomorphism
of L®(Q x Q) onto L(L'(Q), L®(R)), and of L®[L”'] onto L(L*(S),
L>(Q)) for 1 < p < oo.
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LEMMA 3.3. There exists a constant M > 0 such that for all s > 1
we have
2m scos0d9 <M e’
/0 e <M.

Proof. Observe that

27 0 2 S'n
escostgg / 5 (cosO)"dd —
/ 3 (s

>, 8" 27 n 2 n
= T;)H/O (cos§)"dO = ;WZW.
In order to prove the claim we verify that
s(2n+1)/2 $2n g2n+1

22 = @2n)l T @n 1 1)

for all n € INU {0} and all s > 1. O

Proof of Theorem 2.1 Fix | € IN such that | > n/m + 1. Let
6 € [0, + 7/2). For A € Sj and ¢ > 0 define

A (A —3)l72 e—ir(a—1)gay
E’t,a(A) —/O We ds.

The theorem of the residues implies that

50 =" [ Fraoio - a7,

where T' =Ty UT9 UT3; Ty 3 = {ret®;r > 1}, Ty = {Re'; |0] < B}
for suitable R > 0 and 8 € (1(Z + n(a—1)),7). By (2.2), (A—A4) !
is a regular integral operator whose kernel K& (), -, ) satisfies

1 n
(KL (N z,y)| < MmNyl m=t (2,5 € Q1 € 89)
for suitable M, ¢ > 0. For z,y € Q and ¢t > 0 we set

(1 — 1)

|K5(t’$ay)| = i

[ PaaW(Kr(r2,9)'dr.
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In the sequel we show that there exist constants M,y > 0 such that

M YT —y a1
(3.1) |Ks(t,2,9)| < o7 exp 0%)

tma-1

for z,y € Q and ¢t > 0. It then follows from Proposition 3.2a and
Fubini’s theorem that S(¢) is a regular integral operator whose kernel
satisfies (3.1).

In order to prove assertion (3.1) we consider first the term corre-
sponding to I'; and I's, respectively. Then we have

i3
K < M o e i3 \l—2 efiw(afl)satd
| S(t,.’L‘,y)| = R 0 (7"6 3) € S
,rn/mflefcrl/m\wfy\dr

oo
Mefch/m\wng / ,rlflero‘t cos(aﬂfw(afl)),rn/mfld,r
R

IN

—cRY/™ | —
€ =l /oo ucos(aﬁ—ﬁ(a—l))u%—ldu .

€
— {n/ma Rot

Inspired by an argument due to Auscher [Au] we choose

o cle —y[\ ™1 1
(3.2) R ._max{( 5 ) ,t}.

For the case R® = 1/t we have

/oo eucos(aﬁfﬂ'(afl))u%fldu <M.
Ret N

Hence
M |z —y| tmetma T
< - .
|K5(t’x’y)| - % exp ( tl/ma tma(’nﬁa—l))
1
M - — y|)ma=1
oM (_c|a: ~y| _ (clz ~y) )
ma tm 2m
M — y|)maT
< - exp <_ (elz y|)1 )
tma (2t) ma—1
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for all z,y € 2 and ¢ > 0. For the case R* = (C‘g—;y‘) ™! we have

|K5(t,.’L‘,’y)| <

My (-t

mao

1
M c|:1:—y|>ma—1
< 7 € —clT —
T tma Xp( ol y|< 2t

M _ yl)ymasT
<M o (_ (el — y)) ) |
tma (2t) ma=T1

In the next step we consider the term corresponding to I's. Then

< u /ﬂ [(Rei® — )t 2ee e
- -5

R/l R 2y R s dg
< M /’61 Rl—leRo‘tcos(a@—w(a—l))Rn/m—l+le—cR1/m\x—y\da
B -8

n

_apl/mi._
)
= tma -8

If Rt > 1, we obtain by Lemma 3.2

e—ch/m\z—y| eRat(Rat)%
Kg(t, x, < M 7
| S( y)l — tm (Rat)l/Q

e—ch/m |z—y|

< _ e(l—I—E)RO‘t
tma

for some ¢ € (0,1/2). Choosing now R® as in (3.2) we verify that
for the case R* = 1/t we have

efch/mkvfy\
|Ks(t,z,y)] < M—

{n/ma

1
M clz —y| tmelma-1)
R W T ———

M ( (c|z —y|)—m’<'i"‘1>
n/ma exp | — 1
t (2t) ma—1

INA
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mo

Finally consider the case where R® = (C|w2—;y|) m=! Then

‘Ks(t,.'li,y)‘ <
< MV™ exp (—CR%M - y|) exp ((1 + ) R*?)

(c\x - yl) ﬁ) exp ((1 + €)R%t)

IN
S
3
s
3
8
@
o
he)
|
el
8
[
<

2t

(clz — yl)7a™T L (Lte)(de — yD%)

IA
S
3
~~
3
)
@
™ >
kel
|

(gt)ﬁ O mT pmanT
oyl masT 1 1
S Mt’n/ma exp (C|‘T y1|) [_ . + ( j:ag)]>
tma-1 2ma—1 2ma—1
_ oyl masT
< Mtn/mae p 7(C|‘T y‘) ),
tma-1
1 1
where v = — + ( :,I;f) <0 O
2ma—1 2ma—1

Proof of Proposition 2.2. Let 1 < p,q < co and p € p(4p). We
claim that u € p(A4,). By [Ar, Prop. 2.3] it suffices to show that
| R(; Ap)ll£(zay < 00. Since

1
R, Ap) = / ST (t)dt + Ty (1) R, Ayp)
0
we only have to prove that

1T (1) R, Ap)ll £(ray < 00
To this end note that

Tp(D)R(p, Ap) = Tp(1/2)R(u, Ap)Tp(1/2) -

It then follows from Young’s inequality that || T(1/2)[z(z1,10) < 00
and Proposition 3.2b implies that ||T(1/2)||z(ze 1) < 0. Hence

I Tp (1) R (s, Ap)ll £zt 100y < 00

It follows from Proposition 3.2b that T,(1)R(u, A,) may be rep-
resented as an integral operator with bounded kernel. Since (2 is
bounded, the proof is complete. O
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Proof of Theorem 3.3. The proof of Theorem 3.3 parallels the one
given by Arendt [Ar, Theorem 4.2] for the case m = 2. The only
fact which needs comment is that 7} ,(¢) given by

Te,p(t) = UE_J}Tp(t)UE,p

is bounded for the LP norm.
Here we use the following notation. Let € € IR", z € IR" and set
ex = ) 5 €jx;. Define L? := L2((2) by

L2(Q) = LP(Q,e P*dx)
= {f Q= (D;/Q |f(z)Pe P*dx < oo} .

Then (U, pf)(z) = e ** f(z) defines an isometric isomorphism of L?

onto L” and T; , defines a Cp-semigroup on LP. It follows that i},p
is an integral operator whose kernel K.(t,-,-) is given by

K. (t,z,y) = T VK (t,2,y).

Let S p(t) := U} Tp(t)Us . Then
SeaON@ < [ VIR (b 2,9)]17 W) dy
M _ clz — sy
/Rn eV exp <—%> |f(y)| dy.

- /m {1

Observe that there exists w; > 0 such that

m _1
m—1
exp (_g (%) ) exp(le]|z]) < exp(wi|e[™?)

for all z € . Hence it follows from Young’s inequality that

1
|m|m) m—T

C w1 |e|™t ﬂ _%( t
ISep(®) fllr < e i e

n tn/m

da || f||z»

A

Mewilel™ ||f||LP )
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