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0. Introduction, Notations

We consider semilinear parabolic systems
o+ A(t)u + M(t,z,u, Du,..., D™u) =0 (0.1)

over [0,4+00) x @ C R*L. A(t) is an elliptic system of order 2m
satisfying the Legendre-Hadamard condition, the nonlinear term M
is subject to suitable growth conditions. (2 is a bounded domain
of R" with smooth boundary 99 on which the vector u satisfies
Dirichlet-0-conditions. Of course we prescribe the initial value

u(0,7) = p(z), = € Q. (0.2)

In the first part we work within the class of Holder-continuous vec-
tors, this is C%/?™([0,T] x Q). For simplicity we assume that
M(t,...) has the form M(t,z, D™u) and is quadratic in the m-th
order derivatives D™u. This is a direct approach to regularity and
it yields the following result: If the maximal interval of existence
[0,T(p)) for (0.1,0.2) is finite then the oscillation

sup |[u(t) = u(s)llcoq) (0.3)
t—s|<8
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for every d > 0 exceeds a certain value g9 > 0 which can be deter-
mined a-priori. Thus we improve on the results in [W1] in several
respects. An important role in our considerations is played by the
interpolation inequality

lullgarmogorixmy < @Bl itz (0-4)
2 1+a/2
Nl ot g™ 4 Tl ooz

As it was brought to our attention by A. Lunardi (University of
Parma) the constant ¢(7') in (0.4) as T — 0 blows up in a power-
like way. We clarify its usage here in order to avoid non-controllable
quantities. As an example we show that for a single second-order
equation

Opu — aij(t, ) Oy, Op;u + M(t, 2, Vu) = 0

with quadratic growth of M with respect to Vu we have an a-priori
bound on ||u(t)||C0(§) and that this is sufficient to ensure global (in
time) classical solvability.

In the results previously described we considered solutions in
classes of Holder continuous vectors; the critical quantity is the os-
cillation (0.3), the critical growth of M with respect to D™u is
quadratic. This is different in the second part (Chapter 3) of the
present paper. Here we switch over to weak solutions for which
we have a reasonable notion of energy: u € L*((0,T),L?(Q)) N
L2((0,T), H™2(£2)). In order to define weak solutions to systems like
(0.1) different assumptions on the elliptic operator A(t) are needed.
Whereas in the first part it was sufficient to assume that the co-
efficient matrices in (0.1) are Holder-continuous in (¢,z), we now
suppose that A(¢) in (0.1) has divergence-structure. The regularity
of the coefficient-matrices is of such a type that A(t)u can be writ-
ten down pointwise if u permits it. For details we refer to [GW].
This assumption allows us to define the notion of a weak solution to
(0.1) in the usual way and to ask for their regularity. The so called
“controllable” growth conditions

m
|M(t,.,u, Du, ..., D"™u)| < ¢ (1 +3° |D“u|—21“z'5‘> (0.5)

v=0
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are “critical” with respect to the “emergy class” u € L ((O,T),

LQ(Q)) N L2 ((O,T),Hm’Q(Q)). It has been proved in [GW] that
under this growth condition any weak solution is regular. A sign
condition on M is not needed. Here we show, by means of a coun-
terexample, that this result is optimal as it concerns the growth
condition.

We introduce some notation. C'zm ([T}, T5] x Q) is the subspace
of CO([T1, T3] x Q) whose members u have finite semi-norm

[ ] [T1,T3] X sup |U(tl,:l,") - u(t,x)|
2m,04 (t,2)£ (¢t z!) |t_tl|a/2m+ |$_.’El‘a
(t:2),(H 2" )E[Ty, To]x 0

(0 < @ < 1). The norm of Czm®([T}, Ty] x Q) is then given by

[Ty, To]xQ
lull 0 = [0l oy gy + Ll B 22,

All coefficient-matrices of A(t) in (0.1) belong to this space. If we

want to stress the underlying time-interval we also write ||u|| [T ’TQ]

for the norm of Com ([T}, Ty] x Q). Instead of ||.|lo0 we use the
symbol ||.||p. If no misunderstanding can arise ||.||o is also employed
for the norm of C°(Q). Analogously to C/2™ ([T, Ty] x Q) we

define CVF1([Ty, T] x Q) for 0 < y < 1, k € NU{0}, 0 < < 1 and
[Tl;TZ] L
’)’,k+’ﬂ’ ||'||’y,k+n - t

the norms ||.
w € CH([T1,Ty] x Q),
dyw € Cam *([T1, Ty x Q),
w : [Ty, Ty] — C*™H(Q)

with sup [[w(t)]|comta(g) < +o0.
T1<t<Th

Then we set

ol ) = 1000l 2+ sup_ eo(®)lgamsey
T <t<Ty
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If 71 = 0 we also write ||[|w]||r, instead of |||.]|[jo,1)- Due to ap-
propriate interpolation inequalities finiteness of |||w||[ir, ) implies

finiteness of .
Z ||D‘a|w||(2;;—2j+a)/2m,a

l&|=4,
1<5<2m

(cf. [W1]), together with the corresponding estimate.

1. General Theory for Semilinear Parabolic Systems in
Holder Spaces under Homogeneous Dirichlet-Conditions

We carry over the assumptions in [W1]: instead of equations dyu +
A(t)u = f, u(0) = ¢, we can as well treat systems where the ag (¢, x)
are N x N-matrices. We then assume Legendre-Hadamard’s condi-
tion to be fullfilled, this is (¢p is some positive constant)

Re(-1)™ >~ aa(t,z)E*¢C" > al¢™|CP,
|&|=2m
EeR, ceCN,zeQ, t>0.

For simplicity we assume the ellipticity condition to be valid for all
t > 0. The following quantities are assumed to be given:

manaNa Co, Q’ ||a’5é||ﬁ,aa .

Dependence of constants on these quantities is not explicitly men-
tioned. In contrast to that, dependence of the constants on the time
interval [0,7T], the initial value ¢ and the right-hand side f is men-
tioned. We are going to consider semilinear problems

Oyu+ A(t)u+ M(t,.,D™u) = 0,
u(0) = g, (A(0)¢ + M(0,.,D™¢))|0Q =0,

o7 ) du ,
Therefore we fix our assumptions on M:
Al. Let

M (', 2',p") — M(t,z,p)| < (T) - |p" —pl- (Ip'| + Ipl) +
+eTA+ PP+ - (| —t[om + |2’ — z|),

0<t't<T, ' \zeQ, p,pecRVm T >0.
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Sm 18 the number of multiindices & of R" with |&| = m. ¢(.) depends
monotonically non decreasing on T > 0. (Ifw e C%([o,T],C™(Q))
has the property D™w € C*/?™([0,T] x Q) we arrive at

1M D) |87, < () (D™ w) &7 D™ P+ 1).)

A2. Let w; € C°([0,T],C™(Q)), D™w; € Com*([0,T] x Q), i = 1,2,
w1(0) = wy(0). Then we suppose that

|M (., D™wg) = M(.,., D™wi) 16", < A(T, D) - |||z = w ||,

where X : Rt x Rt — Rt is continuous, D > |||wa|||r + [||w1]||7,
MT,D) — 0 as T — 0 for every D > 0. (This requires a condition
on OM /0p analogous to the one for M in A1, but somewhat weaker.)

As a consequence of Assumption A2 we have

THEOREM 1.1. Let ¢ € C?*™T(Q), let
m ¥ .

Then there ezists a T(p), 0 < T(p) < 400, such that there is a
unique u with |||ul||r < +oo for every T < T'(p),

Byu+ A(t)u+ M(t,.,D™u) =0, 0<t<T < T(p), (1.1)
u(0) = ¢, (1.2

U 0 on B0, 0<t<T<T 1.3
ﬁ()— on , 0<t<T <T(p). (1.3)

If T(p) < 400 then |||ul|lr — +o00 as T 1T T(p). T(p) is called the
mazimal interval of existence for the Problem (1.1,2,3). Let F >
0, let @ fulfil the previous assumptions. Let F > ||¢ll2mta- Then
there is a finite interval [0,T1(F)], T1(F) > 0, such that Problem
(1.1,2,8) has a unique solution u on [0, Ty (F)] with |||ul[|7, 7) < +o0.
[0,T1(F)] is called a first interval of existence.

Proof. In view of the linear estimates in [LSU, ch. VII], [W1, p. 437]
being valid also for systems like ours the assertions of Theorem 1.1
can be easily shown to be true by making use of Banach’s fixed point
theorem. O
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As for global existence we have

THEOREM 1.2. Let p € C?™+2(Q)), (A(0)p+M(0,.,D™))|0Q = 0,
Ml =0 0n 0, 0<j<m-—1. Let F > ||¢|l2mta- Let T >
T1(F) > 0. Then there exists a constant

E0 = 60(T,T1(F)) >0

with the following property: Let u be a solution of Problem (1.1,2,3)
on [0,T) with |||u|||; < +oo, for every T, 0 < T < T. If for some
6 > 0 we have

Ju(t + k) —u(t)]lo < €0 (1.4)

forallh,t,0 <h<§,0<t<t+h<T, thenu can be continued into
T such that |||u|||7 is finite and such that u solves Problem (1.1,2,3)
on [0,T]. In particular we have T(p) > T.

Proof. Set
v(t) = u(t) — u(t — 9)

on [4, T], T—§ <T < T.4§ is positive, < %Tl (F) and will be specified
later on. We have

O+ Alt)o = —(A(t) — A(t = 0))u(t - 0) —

— (M(t,., D™u(t)) — M(t = 0,., D™u(t — 5))),
= —(A(t) — A(t = 0))u(t - 0) —

— (M(2,., D™ (u(t) — u(t — 6)) + D™u(t — 4)) —
— M(t—6,.,D™u(t — 9))).

Then (observe that ‘[5, T]‘ > T —26 >Ty(F)—26 > 3T1(F))
[W1, pp. 438, 439]
Wolllgzy < e(Dllulllr—s +
Al
+ () (D™ () = u(. = 8)) + D™u(. - 9)|

D™ (u(.) — u(. — 6)) + D™u(. — &)|¥"T +

0,17

2m %

D™ u ()& ()P 4 2) +
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+ (D) (@ l2ma + 4(6)ll2m+a),
< oT)|[ulllr—s +

+o(T) |07 (u(.) — (- = ),
D" () — ul. = DIFT +

+ () [D™ () — (. = I,
D™ — )T +

+ o)D" (. - 6)) |57,
D™ () — (. — 8P

+ o)D" (. — IET, D™l — ) I +

+ (1) [ D™ u()]| S D™ () 5+

+2¢(T) + e(T) (@ ll2mea + [14(6)l|2m+a),

[W1, pp. 438,439]
< D) lulllrs +
(0.4) on [4, 7] )

+ e(T, T (F))] o]l 799 (l0 Ol +

+o(T, 73 (F)) (ol 2 ha (oIS + 1) -
D)l +

+ o, 73 (F)) (ol 22 he (oIS + 1) -
D)l 2 +

+ (D) [ D™ u()]) D™ () g+

+2¢(T) + e(T) ([0 l2mea + [14(6)l|2m+a)-

Here 1,72 denote fixed positive numbers with 1,y € (0,1). hy, ho
are some continuous functions from RT into itself. ¢ is a fixed con-



228 H.-C. GRUNAU and V. VON WAHL

tinuous function from R* into itself with g(r) — 0 as r — 0. Now
we choose ¢ in such a way that

(T, T1(F))g(0) < 5-

Since g is a function simply originating from the interpolation in-
equalities employed in [W1, p. 438] we have gy = (T, T1(F)). As-
sume now that (1.4) is valid. ¢ is taken from (1.4). Possibly we
diminish it to satisfy § < 173 (F). Then |[u(t)|lo < ¢(6;T)(1+ [l¢llo),
0 < t < T. Employing the inequality a'~7b < ¢(7)(pa + (pll_7 b)),
a,b>0,p>0,v€(0,1), we arrive at

ol < eDllulllr-s +
+C(T7T1(F)a’71a’72ahlah?aéa

[ellzmas [[u(d)l2m+as || ulllT—s)-

Letting T tend to T we arrive at the assertion. O

2. An Application to Second Order Equations

We now consider the previous problem for m = 1 and for a single
equation. Then we have

Oru — a4(t, w)agiwju +M(t,z,Vu) = 0, (2.1)
u(0) = o,
u(t) = O0ondQ,t>0.

We omit the summation sign in the spatial elliptic part and set
Alt)u = —aij(t,m)agiwju, thereby assuming that A(¢) only contains
second order derivatives. The first compatibility condition reads

A(0)p + M(0,z,Vy) =0 on 0f. (2.2)
Instead of (2.1) we consider the problems
Orug — ag(t, x)@%izjua + M(t,z,Vu,)— (2.3)
- M(Oa €z, O-V(P) + O-M(Oa €L, V‘P) = 0,
Ug (O) = 0y,

ug(t) = 0on 09, t >0,
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0 <o <1. Since

A(0)op + M(0,z,Voyp) — M(0,z,0Vy) + oM (0,z,Vy)
=o(A(0)p + M(0,z,V)), (2.4)
=0ond, 0<o <1,

the first order compatibility condition is fullfilled for all problems
(2.3), provided it is so for (2.1). For ¢ = 1 the unique solution of
(2.3, 0 = 1) is the function u under consideration, for ¢ = 0 the
unique solution of (2.3, 0 = 0) is ugp = 0. A minor generalisation
of Theorem 1.1 shows that there is a joint first interval of existence
[0,71] for all problems (2.3), 0 < ¢ < 1. The maximum-principle
furnishes

[LSU,p. 13]
o, (t) —ue,W)lo < oz —a1]-c(ll@llo, IVello) - €.

Let us set 09 = 01 + ¢ for some ¢ > 0. Then

[t (t + P) = gy () [lo <

S ||u02 (t + h) — Ugy (t + h)HO + ||U(71 (t + h) — Ugy (t)”O +
Flwo, () — oy ()0

< 2ee’c(||¢llo, [Vepllo) + 1ty (t + h) — g, (£) -

Let T' > 0. Let ug,, ug, solve (2.3, 0 = 03), (2.3, 0 = 1) resp. over
any cylinder [0,7] x 2,0 <T < T. Let

1
2ee” c(llello, [Veello) < 50(T, T3),

where ¢o(T,T1) > 0 is the quantity constructed in Theorem 1.2. It
can be chosen uniformly for o € [0,1]. If u,, is uniformly continuous
from [0,T) into C°(Q) and thus, according to Theorem 1.2, exists
on [0, 7] x © by continuation as the unique solution of (2.3, ¢ = 01),
Theorem 1.2 now shows: wu, exists on [0,7] x Q for all o, 01 <

o < o1+ (Seo(T, 1) /cll¢lo, | Vlo) ) - Starting with 0y = 0 we
exhaust [0, 1] in finitely many steps. Since T" can be chosen arbitrarily
we end up with the global solution for (2.1).
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3. On the Necessity of Controllable Growth Conditions in
Regularity Theory

We consider the semilinear parabolic equation
ug + (—A)™u = M(t,z,u) in [0,1] x B (3.1)

with smooth initial and boundary values. B C R" denotes the (open)
unit ball, M a Hoélder continuous nonlinear function. In [GW] the
sufficiency of controllable growth conditions

M (t,z,u)| < (1 + |uf)+ 7 (3.2)

for weak solutions v € L*°((0,1),L?(B)) N L?((0,1), H™?(B)) of
(3.1) to be smooth was shown. Here by means of a simple example
we also demonstrate the necessity of (3.2). In [GW] for simplicity
we considered homogeneous Dirichlet boundary data on [0, 1] x 0B.
But by simply subtracting the data, smoothly extended to [0, 1] x B,
it is sufficient to assume smooth initial and boundary data:

J J
(83) u(t, )98 = (ﬁ) 01,108
v ov
for j=0,..,m — 1, t € [0,1], (3-3)

u(0,.) = ¢(0,.),

with some ¢ € C*([0,1] X B).
For some v > 0, to be specified below, we define on [0,1] x B :

w(t, ) = (1 —t+ |z*™) " 2m.

Obviously u is arbitrarily smooth in [0,1] x B\ {(1,0)} and de-
velops a singularity in (¢,z) = (1,0). We want to show that for
any § > 0 there is some v > 0 such that u € L*°((0,1), L?>(B)) N
L?((0,1), H™?(B)) weakly solves the equation (3.1) with an appro-
priate nonlinearity M, satisfying the growth condition

|M (t, z,u)| < c(1 4+ [u])?

with “slightly supercritical” exponent: 1 + 47'” <p<l+ 477” + 4.
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n
Let % = 231 \%\6%1- denote the radial derivative. By induction on
1=

j we find:
(Ou v 2my— L —1
— = —(1—-t L 7
= L=t famy
o . 2zl .
EA]U‘ _ Z Cjk|m|2mk72]71(1 — i+ |x|2m)f%7k’
k=1
9 m>j>0, (3.4)
2j
ANy =" dj|s™ 72 (1 — t + |of*™) "2mF,
k=1
\ m2>j2>1,

(t,z) € [0,1] x B\ {(1,0)}, ¢jk,djr € R are suitable numbers, de-
pending on v and m.

In particular, with suitable numbers Ak € R, u is a classical
solution on [0,1) x B of the following equation:

2m—1
u + (A" = ZJmk|x|2mk(1—t+|x|2m)—%—k—1
k=0

2m—1 _
=(Z%mMmewmﬂ
k=0
(1 14 oty a0 50
=: g(t,x)up = g(tax)|u|p_1u7 (35)

where the additional parameter € > 0 will also be specified below
and p = p(v,e) =1+ 27"‘ + €. The function

2m—1
gt,m) = > dmglal (1 =t 4 [£f2) R
k=0
is Holder continuous on [0,1] x B. We set

M(t,z,u) = g(t,z)|ulP~ u. (3.6)
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Now we want to investigate the integrability properties of the solu-
tion u. We additionally assume

n
T< 5 (3.7)

For ¢ € [0, 1] we find

e _
u(t) 22 ) = / (1=t o™ & do < / 2] < o0
B B

uniformly on [0,1]. Moreover by Lebesgue’s theorem we see that
u € C°([0,1], L*(B)). (3.8)

Observing the radial symmetry of v and the estimates (??) we cal-
culate by means of Fubini-Tonelli:

1 1
/||u(t)||§{m,2 dt < c//(l—t+|w|2m)%1dxdt
0 0 B
< c/ || 2 dz < oo,
B

u € L*((0,1), H™?(B)). (3.9)
Due to the properties (3.8) and (3.9) of u and

1

1
//|M(t,a:,u)|dwdt < c//(l—t+|a:|2m)ﬁ1da:dt
B 0 B

0

< /|x|_7d:(; < 00,
B

we conclude that u is a singular weak solution to (3.1) on [0,1] x B.
Admissible testing functions are e.g. differentiable once with respect
to t and 2m-times with respect to x.
To conclude we let v 7 5 and € N\, 0 and find that
2m 4m
p=p(’y,€)=1+7+€\,1+7

approaches the “critical exponent” in our regularity result [GW].
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