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Nonlinear Infinite Dimensional
Optimal Control Problems
with State Constraints
and Unbounded Control Sets

H. O. FATTORINI *)

SUMMARY. - Using nonlinear programming theory in Banach spaces
we derive a version of Pontryagin’s mazimum principle that in-
cludes state constraints and allows unbounded control sets. We
discuss applications.

1. Introduction

Let A be the infinitesimal generator of a strongly continuous semi-
group S(t) in a Banach space E. Consider the optimal control prob-
lem for the system

y'(t) = Ay(t) + f(t,y(1),u(?), (0)=¢ (1.1)
in a fixed or variable interval 0 < t < ¢, with cost functional
t
wo(t,u) = [ fa(r,y(m), u(r) dr, (1.2
with control constraint

u(t) €U = control set, (1.3)
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and with state constraint and target conditions

y(t) € M = state constraint set (0<t<1),

y(t) €Y = target set. (14)

Under suitable conditions, Pontryagin’s maximum (or minimum)
principle holds under the form

N—
I
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ZOfO(ta y(t’ "7')’ ﬂ(t)) + <2(t)a f(ta y(t’ U
= min{zo fo(t, y(¢,u,v) + (2(1), f(t, y(t, w),v))}  (1.5)

a.e. in [0,], where u(t) is an optimal control, y(¢,u) is the corre-
sponding optimal trajectory and Z(t) € E* is the costate. The min-
imum principle puts especially drastic requirements on the optimal
control u(t) and the costate z(t) when the control set U is unbounded.
For instance, if f(¢,y,u) = f(t,y) + v and U = E then (1.5) guaran-
tees that zg # 0 or that Z(¢) = 0 a.e. (otherwise the minimum would
be — oo in a set of positive measure, contradicting existence of op-
timal controls). The same contradiction with existence is obtained
(whether or not zy # 0) if fo(¢,y,u) does not contain u explicitly or,
more generally, if it has less than linear growth in 4. Unboundedness
of the control set can be exploited in many other ways. In fact, when
given a choice (such as in parametric finite dimensional problems)
taking the control set U unbounded usually leads to stronger results
and/or shorter and more elegant proofs; for a beautiful treatment
of several classical problems of the calculus of variations in this vein
see [8].

The maximum principle for general infinite dimensional optimal
control problems with unbounded control sets seem to have received
scant attention except in particular cases such as the linear-quadratic
problem, where an enormous literature exists. For general problems,
two early contributions are [6] and [7], the first admitting point tar-
gets but no state constraints, the second (for the Navier—Stokes
equations modelled as abstract differential equations) not including
either point targets or state constraints. However, the proof in [6]
is incorrect and that in [7] pays insufficient attention to several key
points. We present in this paper a general minimum principle for
control problems described by abstract differential equations that
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includes state constraints and point targets and allows unbounded
control sets.

2. The abstract model

We consider the control system (1.1), where A generates a strongly
continuous semigroup S(¢) in a Banach space E. The control set U
is arbitrary, and the admissible control space C,q(0,T;U) consists
of U—valued functions u(-) defined in 0 < ¢ < T Coq(0,T;U) is
equipped with the distance

d(u(-),v(+)) = [{t € [0, TT;u(t) # v(t)}], (2.1)

where | - | indicates exterior measure (the set between bars in (2.1)
may not measurable). The function f : [0,7] x E x U — E has a
Fréchet derivative 0, f(t,y,u) € (E, E) with respect to y ((E,F) is
the space of all linear bounded operators from a Banach space E
into a Banach space F' equipped with the uniform operator norm)
and satisfies:

(a) For every t, u and z € E fixed the functions y — f(t,y,u)
and y — 0y f(t,y,u)z are continuous in y,

(b) For every u(-) € Cuq(0,T;U) and y,z fixed the functions
t = f(t,y,u(t)) and t = 0y f(t,y,u(t))z are strongly measurable,

(c) For every u(-) € Caq(0,T;U) there exist functions K,(-,c),
L,(-,c) (in general depending on u) such that

1f @&y, u)le < Kult,c), 10y f(ty, wt)llm,r) < Lu(t,c)
(0<t<T, |lylle <c¢). (2.2)

State and target conditions are given by (1.4), with the state con-
straint set M and the target set Y closed in E. The cost functional
is given by (1.2) with assumptions on fy: [0,7] x E x U — IR that
parallel those on f(t,y,u); the Fréchet derivative 9, fo(t,y,u) € E*
exists and

(d) For every t, u fixed the functions y — fo(t,y,u) and y —
Oy fo(t,y,u) are continuous in y,
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(e) For every u(-) € Caq(0,T;U) and y fixed the functions t —
fo(t,y,u(t)) and 0, fo(t,y,u(t)) are strongly measurable,
Y

(f) For every u(-) € Caq(0,T;U) there exist functions K2(-,c),
LY%(-,c) (in general depending on u) such that

1 foltsy,u()lle < Ka(te), 18y folt,y, u(®)lle- < Ly(t,c)
0<t<Tyls <c). (23)

A subspace Cpaq(0,7;U) C Coq(0,T;U) is (f, fo)—bounded if es-
timates (2.2), (2.3) are independent of u(-) € Chaq(0,T;U), that
is, there exist functions K (t,c), L(t,c), K°(t,c), L(t,c) such that
(2.2) and (2.3) hold for all u(:) € Cpaq(0,T;U). Obviously, a
(f, fo)—bounded subspace Cpnq(0,7;U), remains (f, fo)—bounded
(with different functions on the right sides of (2.2) and (2.3)) after
adjoining any finite number of elements of Cyq(0,7;U).

The (f, fo)—completion [C},q(0,T;U)] of a bounded subspace
Chad(0,T;U) CCaq(0,T;U) is obtained by adjoining to Cpaq(0,T;U)
all other controls u(-) € Caq(0,7;U) that satisfy (2.2) and (2.3).
Obviously, the completion of a (f, fo) —bounded subspace will depend
not only on f, fo but on the particular functions K, L, K°, L° on the
right hand side of (2.2) and (2.3), so that a more precise notation
for [Cpaq(0,T;U)] would be

[Crad (0, T;U)] (4 1,1, 0,10)-

We will gloss over this subtlety.

A sequence u,(-) C Caq(0,T;U) is stationary if there exists a
null set e such that, for every ¢t € [0,7\e there exists n (depend-
ing on t) such that u,(t) = uny1(t) = upso(t) = .... A subspace
Csad(0,T5U) C Cyq(0,T;U) is saturated if the pointwise limit of
every stationary sequence in Cg,q(0,T;U) belongs to Csaq(0,T;U).
Saturation implies completeness of Cy,q(0,T; U) with respect to the
metric (2.1).

Let u(-) € Caq(0,T;U),v(+) = (v1(+),...,vm(+)) be an arbi-
trary collection of m elements of Coq(0,7;U), e = (e1,...,en) a
collection of m pairwise disjoint sets in [0,7"]. The patch pertur-
bation ue v (-) of u(-) corresponding to e, v is ue v (t) = v;(t) (t €
ej,j =1,...,m),uev(t) = u(t) elsewhere. A subspace C¢,q(0,T;U)
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C Caq(0,T;U) is patch complete if every patch perturbation of a
control u(-) with vj(-) € Ceaq(0,T;U) belongs to Ceaq(0,T5U). If
Crad(0,T5U) is a (f, fo)—bounded subspace of Cyq(0,7;U), then ev-
ery patch perturbation ue (- ) of a control u(-) € Chaq(0,T;U) with
vj(+) € Cbada(0,T;U) belongs to the completion [Chaq (0,75 U)].

We add the following three assumptions on the control set and
the control space:

(9) There exists a sequence U; C Uy C ... C U of subsets of U
such that

U= fj Un, (2.4)
m=1

and such that, for each m, the subspace Cuq(0,T;U,,) consisting
of all u(-) € Caq(0,T;U) with u(t) € Up, is (f, fo)—bounded and
satisfies

(h) Caq(0,T;Uy,) is saturated.
(k) Caq(0,T;U,,) is patch complete

Note that we do not assume that the entire admissible control
space Coq(0,T;U) is saturated; the reason why is illustrated in an
example in §4.

Our approach to the minimum principle goes as follows. Let
@(-) be an optimal control (with respect to the entire admissible
control space Cpq(0,T;U)). Then u(-) is optimal in any subspace of
Cad(0,T;U), in particular, in [{a(-)} U Caq(0,T;Uy,)] for each m.
Since this space is (f, fo)—bounded, estimates (2.2) and (2.3) hold for
an arbitrary element u(-) € [{@(-)}UCaq(0,T;Uy,,)] with functions
K(-,c), L(-,c), K°(-,c), L%(-,c) independent of the control u(-).
Under these conditions, Pontryagin’s minimum principle including
state constraints has been shown to hold in [5]. In its integral form,
it reads

7
20m 0 {fO(S’ y(sa ﬂ')’ ’U(S)) - fO(sa y(sa ﬂ')v ﬂ(s))}ds
7
+ ) (Em(s), f(s,y(s,),v(s) = f(5,4(s,0), a(s)))ds = 0 (2.5)
and holds in a set e, C [0,7] of full measure for arbitrary v(-) €
[{u(-)} UCaq(0,T;Upy)], where the costate z,(s) solves the adjoint
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variational equation

dim(s) = _{A* + (9yf(8, y(37 ﬁ), a(s))*}im(s)ds
—20m0y fo(s,y(s, @), u(s))ds — pm(ds), Zm(t) = zm-  (2.6)

Here, (20m,tm,2m) € IR x X(0,¢; E*) x E*, where %(0,T; E*) is the
space of all E*—valued countably additive measures y of bounded
variation defined in the field generated by the closed sets in [0, 77,
the space 3(0,t; E*) endowed with the total variation norm; we have
%(0,t; E*) = C(0,T; E)* with duality product

t
(o) =[50, lds))
(see [5]). We also have
om > 0, i € (limind Taggry (Fa(-))) ™, 2 € (liminf Ty (7))

(2.7)
where M(¢) C C(0,%; E) is defined by

(S

M(t) ={y(-) € C(0,1; E); y(t) e M (0 <t <1)},

and where {7 (-)} (resp.{g™}) is a sequence in M (%) (resp. Y) such
that 7(-) — y(-, @) (resp. g7 — y(t,a)); Tx (z) denotes the Clarke
tangent cone to X at x € X. The polar cone X~ C E* to a set
X C E is the set of all z € E* such that (z,z) < 0 (z € X), and
liminf,, , X, is the set of all z = lim,,_,, z,, with z,, € X,,.

The solution zp,(s) of (2.6) is understood as follows: if S(¢, s;u)
is the solution operator of the variational equation

g'(t) = {A+0,f(t,y(t,a),a(t) }(t)
and
Vm(ds) = 5t_(d3)z + zOmany(sa y(sa ﬂ), ﬂ(s))ds + Nm(ds)

(67(ds) the Dirac delta centered at ¢) then

Zml(s) = / S0, 5 8) vim (do), (2.8)
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which is shorthand for: Z,(s) is the only element of E* satisfying

(o)) = [ ol do), S(o,53 ) (2.9)

for all y € E. No assumptions on the adjoint semigroup S(¢)* or
the adjoint solution operator are necessary. In general, Z,(-) is
everywhere defined, E—weakly continuous and strongly measurable
when E* is separable; moreover,

1Zm () |+ < C(|20m|+|2mllB= + | 1mlls0,7,8+) (0 <t <E). (2.10)

where C is a bound independent of m. Throughout, the subindex
m on the various entities is a reminder that we are applying the
maximum principle in the space [{@(-)}UC,q(0,T; Up,)] rather than
in the full space Caq(0,%;U). See [5] for proofs and further details.
Let e (resp. eg) be the set of all Lebesgue points of all functions

f(-,y(-,ﬂ),ﬂ( ))a f('ay("ﬂ)’u) Vo € Uy, ,

(respectively

fO('ay("a)’ﬂ('))a fO(-,y(-,’U,),’U) Vo € Un, )

Assuming that

(4) eNeg has full measure in [0, ],
(k) Caa(0,T;U) contains all constant controls u(t) =v € U,

we may put spike perturbations v(c) = vy p(0) in (2.5) (vep(o) =v
ins—h <o <s,v,,(0) = (o) elsewhere) and take limits as h — 0.
The result is the pointwise minimum principle

Zom{f()(S,y(S,'U/),’U) - fO(say(svﬂ)aﬂ(s))}
+ <2m(3)’f(say(saﬂ)’v) - f(svy(s’ﬂ')aﬂ'(s))})

for t € eNey Ney (that is, a.e. in [0,%]). Since the U, are an
expanding sequence and every v € U belongs to some Up,, (2.11) will
be verified for every v € U and m sufficiently large (depending on v.)
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Thus, if we can show that (2o, 2 (s)) is IR x E—weakly convergent
to (20,2(s)) € R x E*, an m—independent version of (2.11) will be
obtained. Of course, the essential difficulty is to show that z(s) is
the costate corresponding to a nontrivial (that is, nonzero) multiplier
(20, p,2) € R x X(0,t; E*) x E*.

3. Nonvanishing of multipliers

Let u(-) € Caq(0,%,U) be a control such that y(t,u) exists in 0 <
t < t. Given a probability vector p = (p1,...,px) and v(-) =
(vi(+),---5ve(+)) (vi(+) € Caa(0,£;U)) we denote by &(t,u,v,p)
the solutlon &(t) of the inhomogeneous variational equation

§t) = {A+0,f(t,y(t,u),u(t)} ()
k
+ ngpj{f(t, y(t’ u)’ Uj (t)) - f(ta y(ta U), ’U,(t))}, (31)

£0) = 0.

Given t € [0,7] we denote by Z(£,u)(t) C C(0,#; E) x E the set of
all pairs (£(-,u, v, p), £(f,u, v, p)) for all possible p and v(-); clearly,
E(%,u)(t) is convex. If each of the components v;(-) of v(-) belong
to [{a(-)} U Caa(0,%;Un)] ({Unm} the sequence in (z), Section 2),
the corresponding set is denoted by Z,,(#,u)(f). Using these sets,
we can give a condition that guarantees that, for each m, the multi-
plier (zom, fim, 2m) € IR x X(0,%; E*) x E* in the adjoint variational
equation (2.6) is nontrivial, i.e.

(Zoms timy 2m) 0 (m=1,2,...). (3.2)

Call a sequence {@,} of subsets of a Banach space precompact
if every sequence {g,}, g» € @, has a convergent subsequence. A
constant sequence @, @, ... is precompact if and only if @) is a pre-
compact subset.

LEMMA 3.1. Assume that for each m there exists p,, > 0 and a
precompact sequence {Q" }, Q" C C(0,t; E) x E such that

o0

N {Ewl85) B ~ Ty () T T5)) VB0, ) + Q1 }
° (3.3)
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contains an interior point in the space C(0,t; E) x E for ng large
enough, where the sequences

{am(+)} € Ha()} U Caa(0,T;Un)]

and

{@m (), Um)} EM(E) XY
are such that ﬂnm() - ’E(), (ﬂ?n()ag%) - (y(-,ﬂ),y(t_,ﬂ)), and
B(0, p,) is the ball of center 0 and radius py, in C(0,t; E) x E.
Then (3.2) holds.

For the time optimal problem, we replace Z,,(t, @")(t) by
B (£, iy, ) (tn),

where {t,} is an arbitrary sequence in [0,¢,) with ¢, — ¢.

For a proof of Lemma 3.1 see [3, Lemma 2.5]. Note that Lemma
3.1 is an independent result for each m; it requires that (3.3) contain
a ball B((ym (), Ym), €m) for each m, but no interaction between the
balls is postulated.

Let F be a Banach space. A closed set X C F is T—full at
z € X if, for every sequence {z"} C X such that 2" — Z there exists
p > 0 and a precompact sequence {Qn}, @n C F such that

ﬁ {Tx(z") N B(0, p) + Qn} (3.4)

n=ngo

contains an interior point for ny large enough. Note that when the
sequence {Q} is bounded (in particular, when @, = Q) we may
dispense with B(0, p) in the intersection (3.4); however, unbounded
precompact sequences exist (example: E, {0}, E,{0},...). The set
X is strongly T—full at Z if (3.4) contains an interior point for
Qrn = {0} (here B(0, p) can be dropped). Finally, a set X is T'—full
if it is T'—full at each £ € X, with a corresponding definition for
strongly T'—full. Examples of strongly T'—full sets are closed convex
sets with nonempty interior. Fullness (obviously not strong fullness)
survives after cutting with finitely many smooth hypersurfaces:
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LEMMA 3.2. Let Xy C F be convex and closed with nonempty inte-
rior, and let 1,...,p, be continuously Fréchet differentiable func-
tionals in F,

X =XoN{z;9i(x) =c¢j; j=1,...,n} (3.5)

Then, if £ € X and the Fréchet derivatives 01 (Z),...,0pn(Z) are
linearly independent, X is T'—full at .

For proofs and additional details see [4], [5]. It is an immediate
consequence of the definition that the set (3.3) will contain an interior
point for ng large enough if M(¢) x Y is T—full in C(0,%; E) x E,
which is equivalent to T'—fullness of M(¢) and Y in their respective
spaces; no attention is paid to Z,,(t,%")(t) here. On the other hand,
the following result does not scorn help from =, (¢, a")(t), if only in
the second coordinate of C(0,; E) x E.

LEMMA 3.3. Assume M(t) is T—full in C(0,t; E) and that for each
m there exists p,, > 0 and a precompact sequence {Q%}, Q" C E
such that

o

N {TEnE @) () - Ty (@) N BO, pm) + Q) (36)

n=no

contains an interior point for ny large enough, where
{im} € [{u(-)}UCa(0,T;Un)] and {f}CY

are such that 4, (-) — u(-) and g7, — y(t,u) and II is the projection
of C(0,%; E) x E into E. Then there exists p,, > 0 and a precompact
sequence {Qm}, Q" C C(0,t; E) x E such that (3.3) has an interior
point in C(0,%; E) x E for ng large enough.

For the proof, note that (3.3) will be satisfied (with a different
pm) if there exist p, > 0, an integer ng, and precompact sequences
{Qm.c} in C(0,%; E) and {Qp,} in E such the set A, C C(0,1; E)x E
of all points with coordinates

TG, P, V) = T (Im(-) N Be0,pm) + Qe (37)

i, ay,, p,v) — Ty (§) N B(0, pm) + Q1 (3.8)

(S
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contain a common polyball
B.(ym(*),€m) X B(ym,€m) in C(0,4;E) x E

for n > ngy. Here (for each m,n) p ranges over all probability vectors,
v over all vectors of elements of [{@(-)} U Caq(0,7;Up,)] and p and
v are the same in (3.7) and (3.8).

Under the present assumptions, formula (3.1) determines that

1€t iy, P, V)| < O (02 <2) (3.9)

for all p, v. The fact that M() is T-full implies the existence of
om > 0 and of a precompact sequence {Q7, .} in C(0,%; E) such that
the sets

TM(ﬂ (gﬁn( ' )) n B(Oa Um) + Qnm,c
contain a common ball Be(ym(-),€n) for n > ng large enough. Re-
placing Qy, . by @7, . —Ym(-) we shift the ball to B.(0, ¢,). Accord-
ingly,

o0

N { T () 1 Be(0,mm0m) + 7o Qe = ym(-)) }

n=ng

contains the ball B.(0,r,€6,) C C(0,t; E) for n > ny large enough
(recall that Ty (47, (- )) is a cone). Taking 7., so huge that rmeq >
2C,, 1! (C the constant in (3.9)) and defining

nm,c = Tm( ~?n,c —Ym(+))

we deduce that the sets (3.7) contain B.(0,C,,) for n > ng for any
choice of p, v, thus we are free to choose p, v at will in (3.8); all we
have to do is to check that the sets (3.8) contain a common ball in
E for n large enough. This is insured by the assumptions of Lemma
3.1, since we may always suppose that r,,om, > pm.

See the comments after Lemma 3.1 for the time optimal problem.
The proofs of all the results above are based on the following result
([2], [3]), where {A,} is a sequence of subsets of a Banach space F.
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LEMMA 3.4. Let {z,} be a sequence in F* such that
0<c< el <C, (Zn,y) > —€n (Y € Ay), (3.10)

with €, — 0. Assume there exists a precompact sequence {Qn} such
that

A= ) {wm(An) + Q) (3.11)

n=no

contains an interior point (conv = closed convex hull). Then every
E—weakly convergent subsequence of {z,} has a nonzero limit.

For the proof, see [2, Lemma 2.5].

Lemma 3.4 will also serve to justify the taking of limits in (2.5)
and (2.11). To this end, we begin by observing that (2.5) can be
written in the form

zOm&O('Ea u, p, V) + <,Um> 5(7 u, p, v))C + <Zm7 5(51 u, p, V)) Z 07 (312)

for arbitrary p, v, where

’Uj( ) S [{ﬂ( : )} U Cad(oat_; Um1)]]

and &(t,u, p,Vv) is given by (3.1),
t
fo(t,ﬂ,p,v) :/0 <8yf0(’7',y(T,ﬂ),ﬂ(T)),f(T,ﬂ,p,V))dT

+§pj /Ot {fo(r,y(r,8),vj(7)) — fo(r,y(r, @), a(r))}dr, (3.13)

and (-,-) (resp. (-,-).) indicates the duality of E and E* (resp. the
duality of C(0,%; E) and X(0,, E*)). For a proof of the equivalence
of both inequalities see [5] where the reverse route is followed; (3.12)
is obtained first as a consequence of nonlinear programming theory
and then transformed into (2.5).

Assuming that (3.3) holds each multiplier (zom, fim, 2zm) is non-
zero, thus we may complement (3.12) with the condition

2om + l6mlS0z5e) + l2mlE =1 (m=1,2,...).  (3.14)
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Selecting a subsequence, we may assume that (2om, m, 2m) is (IR X
C(0,t; E) x E)—weakly convergent to (2o, i, z) € RxX(0,t; E*)x E*,
and the objective is to show that

(z0, i1, 2) # 0. (3.15)

To this end, we combine (3.12) with (2.7), obtaining

ZOm&)(ﬂ u, p, V) + <Hm> 6(31&5 b, V) - ym( ' ))C
+ {2m, &(t, 4, P, V) — ym) > 0, (3.16)

for (ym(-),ym) € Apm = My X YV, where

e (3.17)
Vm = limint Ty (7)) C .

If zp = limy,—00 Zom # 0, there is nothing to prove. On the other
hand, if zp;,, — 0, (3.16) and uniform boundedness of &y(t, @, p, V)
(recall that v;(-, ) € [{a(-)} U Cad(0,%;Uy,)] imply that

<M’ma 5(’ u, p, V') - ym( ) ))C + <Z’m7 é(fa U, P, V') - ym) > —€m — 0,
(3.18)
for arbitrary p, v, (ym(-),ym) € Am. Accordingly, the result below
follows from Lemma 3.4.

LEMMA 3.5. Assume that there exists p > 0 and a precompact
sequence {Q,,}, Qn C C(0,t; E) x E such that

o0

N {EnEa)(E) — Mm X V) + Qm} (3.19)

m=my

contains an interior point for mg large enough. Then (3.12) holds.

Our objective below is to give conditions on the sets =, (t;u)(t),
M(¢) and Y that guarantee the assumptions of Lemma 3.1 and
Lemma 3.5 at the same time. If for each m the intersection (3.3)
contains an interior point for ng large enough we have (3.2), and we
can count on (3.14) and (3.16); then we use Lemma 3.5 to show that
(20, i1, 2) # 0, which is the final aim of this paper.
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Consider an arbitrary Banach space F', a closed subset X C F', a
point Z € X and a double sequence {z;m,n =1,2,...} C X such
that

LEMMA 3.6. Let X be strongly T'—full at z, and let
Xn = linrgg)réfTX(:v"m).

Then
) Xm (3.20)

contains an interior point for mg large enough.

Proof. Obviously, for each m, the definition of A, is oblivious to
deletion of finitely many terms of {z]};n = 1,2,...} thus we can
assume that ||zl — Z|| < 1/m (n =1,2,...). Arrange the sequence
{z}} in an infinite matrix

zi 2t o
wy @ o
1,2 .3

I3 I3 I3

and take the Cantor zig-zag sequence

T, T1, T, T3, T3, T, e
It is plain that this sequence converges to Z, thus by definition of
strong T'—fullness there exists mg such that

N Tx(z) (3.21)

m+n>mo

contains a ball B(z,€) for my large enough. This means: for each
m, given w € B(z,e¢) there exists wl' € Tx(z]) such that w =
wyy, (n > max(0,mg —m)). This is much stronger than the claim of

Lemma 3.6. O
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In the following result (Lemma 3.7) we have a double sequence
{g";m,n = 1,2,...} CY such that lim, . g% = 7 for all m and
M, Ym are defined by (3.17).

LEMMA 3.7. Assume that M(t) is strongly T—full in C(0,t; E) and
that for each m and every sequence

{tm} € [{a(-)} U Caa(0, T Un)]

with 4, (-) — u(-) the set

o
(N LERE ap,) (@) (3.22)
n=ng
contains an interior point for ny large enough. Then: (a) the as-
sumptions of Lemma 3.1 hold; (b) for every my the set

o
N {EmEa)(E) — (M x {0})} (3.23)
m=mo
contains an interior point for mg large enough, so that the assump-
tions of Lemma 3.5 hold as well.

The requirements on E,,(f,40)(t) are stronger than those in
Lemma 3.3, thus (a) follows. To show (b) it is enough to prove
that the set A C C(0,%; E) X E of points with coordinates

5(',ﬂ,p,V) - Mma f(ﬂﬂap’v) (324')

contains a polyball B.(0, €) x B(0, €) for m > my large enough, where
v(-) is such that v;(-) € [{a(-)} U Caa(0,%;Up,)]. To service the
first coordinate we use Lemma 3.6 and then an argument similar
to that used after (3.8) to show that {£(-,u,p,v) — My, } contains
a fixed ball irrespective of the choice of p,v(-). For the second
coordinate, we just note that the assumptions on II(E,,(¢,a%)(¢)
particularized to @, = % imply that {£(¢,%,p,Vv)} contains an in-
terior point. The fact that our conclusions imply those of Lemma
3.5 (that is, that the intersection (3.19) contains an interior point
(3.22) does) follows from the fact that {E,,(u,?)(¢)} is an increasing
sequence of sets.



142 H. O. FATTORINI

COROLLARY 3.8. Let M(t) be strongly T—full and assume that, ei-
ther (a) The target set'Y is strongly T—full, or (b) (3.22) contains an
interior point for each m and ng large enough for sequences {a,(-)}
satisfying the assumptions in Lemma 3.7. Then (3.15) holds.

Proof. In case (a) the set X = M(¢) x Y is strongly T—full in
F =(C(0,1; E) x E, thus Lemma 3.6 applies. We have

Tovawyxy) Um () Ym) = Ty Gm (+)) X Ty (),
so the intersection (3.21) is
N Ty @G () x Ty ()
m—+n>mo

and contains an interior point for mg large enough; this obviously
implies the assumptions of Lemma 3.1. On the other hand, (3.20) is

o0

N (M X V)

m=my

and contains as well an interior point for mg large enough, so that the
requirements of Lemma 3.5 also hold. In case (b) the assumptions of
Lemma 3.5 are satisfied. O

4. The minimum principle

We assume that hypotheses (a) to (k) in §2 hold, and denote by ()
an optimal control.

THEOREM 4.1. Let the assumptions of Corollary 3.8 be satisfied.
Then the minimum principle

z0fo(s,y(s,u), u(s)) +(2(s), f(s,y(s,u),u(s)))
= {)Iéi[I]l{Zofo(s, y(s, ,a)’ 'U) + <2(3)7 f(sa y(sa ﬂ), ’U))} (4'1)

holds in a set e C [0,T] of full measure; the costate z(s) solves the
adjoint variational equation

dz(s) = —{A* + 0y f(s,y(s,u),u(s))" }Z(s)ds
—200y fo(s,y(s,u),a(s))ds — p(ds), Z(t) =z (4.2)
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with (29, u,2) € R x $(0,t; E*) x E*,

(ZOalu’az) 7é 07 (43)

2020, pe (hm infy, 00 liminfy, o0 TM(E)(gﬁz( ’ )))_a (4 4)

z € (liminf,,, o liminf, oo Ty (90)) ",

where {gI (-)} (resp. {gm}) is a double sequence in C(0,t; E) (resp.
E) such that g7 (-) — y(-,a) (vesp. g%, — y(t,a)) for allm = 1,2, ...

Proof. The multiplier (zg,u,2) is constructed, the same as in §3,
as the (IR x C(0,t; E) x E)—weak limit of (a subsequence of) the
multipliers (zom, fim, 2m); thus (4.3) is insured by Corollary 3.8. All
we have to do is to take limits in the pointwise maximum principle
(2.11) and in the adjoint variational equation (2.6) for z,(s); this
means we must show that

Zm(s) = Z(s) weakly in E* (0 < s <1).

To show this we write the equation (2.9) for z,(s) and keep in
mind the facts that zp,, — 20, 2n — 2z E—weakly in E* and
pm(ds) — p(ds) C(0,t; E)—weakly in X(0,¢; E*), so that v, (ds) =
05(ds)zm + zom Oy fo(s,y(s,a),u(s))ds + pm(ds) = v(ds) = dg(ds)z +
200y fo(s,y(s,a),u(s))ds + pu(ds) C(0,¢; E)—weakly in 3(0,%; E*);
taking limits in (4.6), the equation

#(6),1) = [ (vldo), S(o;550)

for z(s) results.
It only remains to show the three relations (4.4). The first is
obvious since z;,0 — z9. To show the third, note that we have

(Zm>ym) <0 (ym € hnrggéfTY(?j?n))
hence, taking limits,
e e n
(z,y) <0 (z € liminf lim inf Ty (g,))-

The proof of the corresponding relation for y is the same. O
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REMARK 4.2 The double liminf in conditions (4.4) can be used
essentially as the simple lim inf in conditions (2.7). For instance, we
have

THEOREM 4.3. Let ¢ € [0,%] be the set where the state constraints
are not saturated (that is, where y(¢t,a) € Int(M)). Then p = 0 in
€Q-

Proof. We use Lemma 2.3 in [4] for the control space Caq(0,%; Upy)
and obtain p,;, = 0 in eg. Then we take limits. O

All results above apply to the system
y'(t) = Ay(t) + f(t,y(8) +u(t), y(0)=¢ (4.5)

in an arbitrary Banach space E, with A the infinitesimal generator of
a strongly continuous semigroup. We use as control set an arbitrary
closed subset U = E. The admissible control space Cyq(0,T;U) is
the subset of LP(0,7;FE) (1 < p < o) defined by u(t) € U a.e.
(p = 1 is bad for existence purposes). We assume that the func-
tion f(t,y) satisfies (a), (b) and (c) in §2; that these conditions are
valid for f(t,y,u(t)) = f(t,y) + u(t) follows from the definition of
Cad(0,T;U). The cost functional (1.2) is required to satisfy (d), (e),
(f). Conditions (g), (h), (), (), (k) are obvious, with U,,, = B(0,m)
in (g). If the state constraint set M and the target set Y satisfy the
assumptions in Corollary 3.8, nontriviality of the multiplier is guar-
anteed. Incidentally, this system illustrates why we don’t ask the
whole admissible control space C,q(0,t; U) to be saturated; if U = E,
u € E, u # 0 the sequence u™(t) = 0 (0 <t < 1/n), u"(t) = u/t
(1/n <t <t) is stationary in Cyq(0,¢; U) but its limit is not a mem-
ber of Caq(0,%;U). On the other hand it makes no difference to ask
patch completeness of Cyoq(0,%;U,,) (condition (k)) or of the whole
space.

Assume an optimal control exists in the case U = E. Then the
minimum principle (4.1) holds; in particular the minimum must be
a.e. finite. A number of conclusions are immediately obvious. On
the one hand, zy > 0 (otherwise the minimum would be — oo or the
costate trivial); this means the so-called “abnormal” case is ruled out.
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On the other hand, and for the same reason, the cost functional must
contain u explicitly and its growth at infinity must be at least linear.
This is of course related with convexity of fo(t,y,u) with respect to
u, a condition that has to do with weak lower semicontinuity of the
cost functional and is needed for existence theorems.

In case A generates a strongly continuous group, it is known
(see [4] and references thereof) that the assumptions of Lemma 3.7
hold, thus nothing is needed of the target set and the point target
case is tractable. However, lack of compactness of S(-) compromises
existence theorems for optimal controls.

A more interesting application is to semilinear wave equations

0? UL 0
Syt ) = b3 > 5; (as0(2) 5, v (t: )
+30b (w%y(t, z) + c(@)y(t, z) — $ly(t,2)) + ult,z)  (4.6)

in a bounded domain 2 C IR™; the control set U is an closed subset
of L?(Q) and Cuq(0,%; U) is the subset of L?(0,#; L?(Q)) defined by
u(t) € U a.e. The point target case is tractable (see [4] for details).
If (4.6) is reduced to a first order equation in the energy space

E = H'(Q) x L*(Q)

in the customary way, the corresponding semigroup S(-) is not com-
pact (in fact, it is a group) but existence theorems can be obtained
on the basis of the compactness of the imbedding H'(Q) — L%(Q),
guaranteed by the Rellich-Kondrachev theorem.
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