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The Semigroup Approach to
Non-Linear Age-Structured Equations

VIOREL BARBU and MIMMO IANNELLI *)

1. Introduction

This paper is concerned with some non-linear evolution problems mo-
tivated by age-structured and size-structured population dynamics.
Namely we will consider the problem:

' %l(a,t) + %(p(l(a,t)) + n0(@)l(a,) + DU(- 1) = 0
{ »(l(0,1)) = E(I(-1)) (1.1)

l(a,0) =lp(a)

\
where ¢t > 0, a € [0,at] and D(-), E(-) are operators in L (0,a4).
Here the main feature is the presence of the non-linear function ¢

and of the non-local boundary condition at a = 0.
Moreover we will consider:

0 d
al(a,t) + %l(a,t) + D(I(-,t)) + Bl(a,t) 50
1(0,) = E(I(,t)) (1.2)

l(a,0) =ly(a)
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where [(a, t) belongs to a banach space Y and the attention is focused
on the presence of the non-linear multivalued operator B : Y — 2Y.

Though these two problems are motivated in the context of popu-
lation dynamics, we are here concerned with the mathematical treat-
ment by the method of non-linear semigroup theory, more than with
modeling aspects. However problem (1.1) may occur when deal-
ing with size structured growth while problem (1.2) is related to
non-linear diffusion of a structured population. References to these
problems can be found in [5], [6], [7]; our methods are rather re-
lated to those in [7], within the context of the theory of nonlinear
semigroups (see [1]-[4]). Possible examples of (1.1) and (1.2) are the
following

2 1ast) + 510, 0) + pofa)i(a, 1)+ pla, PE)I(a, 1) =0

{106 = [ Bla, Pt)i(a )da (1.3)

l(a,0) = ly(a)

\

at
where P(t) :/ l(a,t)da,
0

(0

0
al(a,t, z) + =—l(a,t,z)

da

+u(a, z, P(t,z))l(a,t,x)) — Ap(l(a,t,z)) =0

a (1.4)
ummw:A*mmanmﬂwuwm

l(a,0,z) = ly(a,x)

a

+

where P(t,z) = / l(a,t,z)da, z € Q C R" and some significant
0

conditions on the boundary 92 must be added.
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2. Existence for problem (1.1)

Here we shall study (1.1) under the following assumptions:

p:R =R is continuous, increasing and such that

(2.1)
p(0) =0, lim [p(z)] =+oo

|z| =00

1 . . at
po(+) € Ly, (0,at) is non-negative and / po(a)da = +oo
0
(2.2)

([ D LI(O,aT) — Ll((),aT) is locally Lipschitz continuous,

! D(0) =0, and the following inequality is satisfied

a
/0 "D()(a) signi(a)da > ~dlil,1 ., VIE€L'(0,ap)
(2.3)

E: Ll(O,aT) — R s locally Lipschitz continuous, and
(2.4)
1
[E(l)| < C’|l|L1(0,aT) Vie L (0,at)

Actually, instead of (2.3) and (2.4), we will first consider the more
restrictive assumptions:

D: Ll(O,aT) A (0,a4) s Lipschitz continuous and D(0) =0
(2.5)

E:L (0,at) = R s Lipschitz continuous and E(0) =0 (2.6)
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We first write (1.1) as an abstract Cauchy problem in the Banach
space X = L' (0, as):

Lyt + Al(e) + DI(t) = 0
dt (2.7)

where A : D(A) C X — X is defined as follows:

D) = {1 € X | Zolf() + mo()F() € X 5 @lF(0) = E() )

Af = 2-0(£(@) + pola) f a)
(2.8)
We have:

PROPOSITION 2.1. Let (2.1), (2.2), (2.5), (2.6) be satisfied. Then
the operator A : D(A) C X — X is w-m-accretive for some w > 0.

Here we recall that the operator A is said to be w-m-accretive if
Range (AT + A) = X for some A >w (2.9)

IAMz1 —x2) + Azy — Azo] > (A —w)|z1 — 22| VA>w  (2.10)

Proof of Proposition 2.1. Let A > 0, g € X and consider the
equation

A+ Au=g (2.11)

i.e. the problem:



THE SEMIGROUP APPROACH TO NONLINEAR 63

To solve this we first consider the auxiliary problem:

xo(a) + Lop(o(a)) + pola)o(a) = g(a) ; a€ [0,ay)
da (2.13)

where € R and 9 = ¢! (defined on R). Setting w(a) = ¢(v(a))
we transform (2.13) into

%w(a) = —(A + po(a))p(w(a)) + g(a)
(2.14)

w(0) =z

Since 1 is an increasing function on R, problem (2.14) has a
unique maximal solution w which is continuous on [0,a;) and such
that

dw 1
(@) < 2l + 19l 00y o € Ly, (0,01) (2.15)

Thus if we set v(a) = ¥(w(a)), a € [0,a4), we get a solution to (2.13),
on the interval [0, a;), such that v € D(A).

Now we recall that if f and g are absolutely continuous in [«, ]
we have:

/j[f'(a)—g'(a)] sign[yp(f(a)) —(g(a))lda > —|f(e) —g(e)| (2.16)
so that, from (2.14) we get

_ 1 _
|’U_U|L1(0,a1) < X|x—x| (2.17)
where v and ¥ are the solutions to (2.13) with respective initial data
z and 7.

If we now define the mapping T' : (—oo,+00) — L' (0, a;) by
setting:
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(Tz)(a) = v(a) (2.18)
where v(a) is the solution to (2.13) with datum z, our final goal of
solving problem (2.12) is equivalent to solving the following equation
in R:

z = E(T'z) (2.19)
Since, by (2.17)

|E(Tz) — E(T'z)| < 'E%\x — z (2.20)

equation (2.19) has a unique solution z* € R so that I'z* € D(A) is
the unique solution to (2.11).

Thus equation (2.11) has a unique solution u € D(A) for any
g € X; if moreover we consider ¢g,§ € X and call u, @ the respective
solutions of (2.11), using again (2.16) we get

_ 1 _
lu — a1 (0,a4) = mlg — 4 (2.21)

thus proving that the operator A is w-m-accretive with w = |E|pp.
O

We note that, defining

X, ={feL'(0,a)| fla)>0 ae in (0,a1)}  (2.22)
and considering the assumption

E(X.) C [0, +00) (2.23)

from the proof of the previous proposition we can derive the following
additional result

COROLLARY 2.1. Let (2.23) be satisfied, then, under the assump-
tions of proposition 2.1, if g € X, we have (A\+ A)"lg € X, .
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The proof is immediate by noticing that in (2.14), if z > 0 and g is
non-negative a.e. in [0, a4), then the solution w is also non-negative.
Our next result concerns the density of the domain D(A):

PROPOSITION 2.2. Let (2.1), (2.2), (2.5), (2.6) be satisfied. Then
D(A) =X.

Proof. Let f € L' (0,a4) and consider the sequence f,, € C*°([0,a4))
such that f, — f in X. Let p € C®°(R™) be such that p(r) = 0

1
for 0 < r < 2 and p(r) = 1 for > 1. Then take R such that

R> (1 + |fn|L1(0 af)) ,Vn, and consider the mapping T': B(0, R) —
B(0, R) defined as

(Tg)(a) = p(na) fn(a) + (1 = p(na))(E(g)) (2.24)

where n > %1/)(\E(0)| + |E|LipR) and B(0, R) is the ball in X, with
center 0 and radius R.

For any fixed n, T is a compact mapping so that it has a fixed
point g, € B(0,R), i.e. we have a sequence {g,} C B(0,R) such
that

gn(a) = p(na)fn(a) + (1 — p(na))y(E(ga)) (2.25)
It is easy to see that g, € D(A) and that

o 1
=00l 30y < | Fu(@lda+ ZH(EO) + |Elup)  (226)

so that
lim g,= lim f,=Ff

n—-+0o n—-+0o0o

and the thesis is proved. O

The previous results show that the operator A: D(A) C X — X
is the generator of a nonlinear quasi-contractive semigroup on the
space X. This semigroup is generated in the sense of Crandall and
Ligget [4] and, since the mapping D(-) is Lipschitz continuous, the
Cauchy problem (2.7) has a solution in the following generalized
sense
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DEFINITION 2.1. [(t) is a generalized solution to (2.7), if there exist
le(t) (with € > 0) such that

i) I(t)= li_r%le(t) in C([0,T],X) forany T >0;
€
i1) Ve>0, I[(t) isthe solution of the difference equation
() —l(t —e)] + Al(t) + DI(t) =0 Vt>e

L) =1y Vt<e
(2.27)

We also see that, by Corollary 2.1, with the further assumption:

JA+D) 7 (Xy) € Xy (2.28)

the solution of (2.7) belongs to X if Iy € X .
We summarize the results in the following

PROPOSITION 2.3. Under the assumptions (2.1), (2.2), (2.5), (2.6),
for each ly € X problem (2.7) has a generalized solution I(t) in the
sense of Definition 2.1. Moreover, ifly € X1 and (2.23), (2.28) hold,
then I(t) € X4 for all t > 0.

We now consider the general case in which the mappings D and
E satisfy the assumptions (2.3) and (2.4).

For each N > 0 we define the Lipschitz continuous operators
Dy:X—-Xand En: X - R

D(f) if flx<N
Dn(f) = (2.29)
D(Af) if flx>N

E(f) if Iflx<N
En(f) = (2.30)
E(Ff) i Iflx>N
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and finally we denote by Ay : D(Ay) C X — X the corresponding
operator (2.8).
Now, by Theorem 2.3 the problem

C1(6) + Anl() + Dyi(t) = 0
(2.31)
10) = Lo

has a unique generalized solution Iy (t) € C(R*; X). In other words

In(t) = lim IN(t), in C([0,T);X), forany T >0

e—0t

where [N (1) satisfies

1
SN =Nt — ]+ ANIN () + DNIN () =0 V> e
€

(2.32)
INt) =1y Vt<e
By (2.3) and (2.4), (2.32) yields
1 1
S @) < (= )l + 1BGY (0)x + 31 (1)
(2.33)
1
<[t —olx +(C+ o)l B)x
so that we have
N < N .
Rl < e el veso (@39
and consequently
N (#)|x < CHNp(t)|x  VE>0 (2.35)

The previous estimate allows to solve our main problem; in fact
we fix any lp and T > 0, then we choose N sufficiently large so that

eI (t)|x < N (2.36)
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consequently [(t) = In(t) is a generalized solution of the original
problem.
We summarize these last results in the following

THEOREM 2.1. Under the assumptions (2.1)—~(2.4), for each ly € X
problem (2.7) has a generalized solution in the sense of Definition
2.1. Moreover, if ly € Xy and (2.23), (2.28) hold, then I(t) € X,
for all t > 0.

3. Existence for problem (1.2)

As mentioned earlier we now consider a real Banach space Y with
the norm denoted | - |y. We shall denote by X the space L' (0, ap;Y)
endowed with the usual norm |- |x. We shall study problem (1.2)
under the following assumptions on operators B, D and E.

B:Y —2Y  is m-accretive, D(B)=Y, 0¢ B0 (3.1)
D:X — X s locally Lipschitz, D(0)=0 and
(3.2)
A=O)ulx <|Au—D(u)|lx YueY, A>0
E:X =Y, islocally Lipschitz, E(0)=0 and

(3.3)
E(f)ly <olflx VfeX

Proceeding as in the previous case we shall study first problem (1.2)
under the hypothesis

D€ Lip(X,X) , D(0)=0 (3.4)

E€Lip(X,Y) , E0)=0 (3.5)
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In order to formulate our problem in an appropriate abstract
form we have to consider the following initial value problem in Y

d%l(a) +Bl(a) 3 g(a), a€[0,ay)
(3.6)

where Iy € Y and g(-) € L' ((0, at);Y). We recall the following result
(see [2])
THEOREM 3.1. Let B: D(B) CY — Y satisfy (3.1). Then, for any

g € X, problem (3.6) has a unigque mild (integral) solution I(-) in the
sense that it is continuous, [(0) = ly and it satisfies:

@) —uly <) —uly + [ o) ~v.1(0) ~ulds  (37)
S
for alluw € D(B), v € Bu, 0 < s <a < +oo, where

1
L= lim < (|z+ Myly —
2,9l = lim +(jz +Myly — zly)

O
Now we define the operator A: D(A) C X — X:
D(4) = {f € C([0,a4}; ),
[ satisfies (3.7) for some g€ X, f(0) = E’(f)}
Af =g
(3.8)
so that problem (1.2) has the following abstract formulation
d
1)+ Al(t) + Di(t) 50
¢ (3.9)

Then we have the following
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PROPOSITION 3.1. Let (3.1), (3.4), (3.5) be satisfied, then the oper-
ator A: D(A) C X — X is w-m-accretive with w = |E|Lp.

Proof. Let A > 0 and f € X. Since the operator
(M+B):DB)CY =»Y
is m-accretive, the problem
A(a) + il(a) + Bl(a) > f(a), a€]0,at)

da (3.10)

10) = I

has a unique mild solution for any datum ly. Moreover, if [ and [ are
two solutions with respective data (I, f) and (I, f), we also have

L= Tlx < & (o~ loly +11 = Flx) (3.11)

Thus if we define the mapping I : Y — X, by setting (I'z)(a) = I(a)
where I(a) is the solution to (3.10), with datum z, we have that, for
A > |E|Lip, the equation

z = E(T'x) (3.12)
has a unique solution z*, such that I'z* is the (unique) mild solution
to the problem (3.10) satisfying the condition [(0) = E(I(-)).

Thus, since I'z* satisfies (3.7) with g = f — AI'z*, it belongs to D(A)
so that (2.9) is satisfied. Moreover (2.10) follows from (3.11) and the
thesis is proved. O

From this point on we can proceed like in the study of problem
(1.1) in the previous section, both concerning the special case of the
assumptions (3.4), (3.5) and the general case of (3.2), (3.3). Moreover
defining the set

K:{feX;f(a,)EK a. e. G,E[O,GIT)}

where K is a closed convex cone of Y, we can consider the following
additional assumptions

(M+B)'KCK VA>0 (3.13)
IAN+D)H(K)ck , EK)CK (3.14)
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and have solutions in K. The final results are summarized in the
following

THEOREM 3.2. Under the assumptions (3.1), (3.2), (3.3), for each
lo € X problem (3.9) has a generalized solution in the sense of Defi-
nition 2.1. Moreover, if ly € K and (3.13), (3.14) hold, then I(t) € K
for all t > 0.
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