GEOMETRICAL STRUCTURES ON DIFFERENTIABLE MANIFOLDS (*)

by Adriano Tomassini (in Firenze)(**)

SOMMARIO. - Si studiano le (X,G)-varietà e si danno alcuni esempi: quando il modello geometrico è la coppia (G/H,H), si danno condizioni necessarie e sufficienti affinchè ad una riduzione del fibrato degli r-getti su una varietà differenziabile M corrisponda una (X,G)-struttura sopra M.

SUMMARY. - We study (X,G)-manifolds and we give examples: when the geometric model is the couple (G/H,H), we give necessary and sufficient conditions ensuring that a reduction of the r-frames bundle on a differentiable manifold M gives rise to a (X,G)-structure on M.

1. Introduction.

The study of further structures on a differentiable manifold appears as one of the general frameworks in geometry.

Clearly, a very interesting situation is represented by those structures for which uniformization theorems are available. This is the case of (X, G)-manifolds, i. e. those manifolds locally modelled on geometric spaces (see [9]). Typical examples are locally conformally flat manifolds (see [8], [12]), spherical manifolds (see [4]), quaternionic coordinate manifolds (see [13]) and Riemannian manifolds locally modelled on homogeneous space (see [2]).

In the present paper we investigate (X, G)-structures and discuss several basic examples; moreover, when the model space is a homogeneous manifold, we describe (X, G)-structures as special reductions of the bundle of r-frames (see Propositions 3.1 and 3.2).

^(*) Pervenuto in Redazione il 24 Novembre 1995.

^(**) Indirizzo dell'Autore: Dipartimento di Matematica "Ulisse Dini", Università di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy). E-mail: tomassin@udini.math.unifi.it

We recall some facts about (X,G)-structures. Let X be a differentiable manifold and G be a formally analytic subgroup of Diff(X), i. e. such that if $g \in G$ coincides with id_X in some open subset of X, then $g = id_X$. The couple (X, G) is the geometric model. A (X, G)structure on a differentiable manifold is given by an open covering $\{U_{\alpha}\}_{{\alpha}\in A}$ of M and diffeomorphisms $\varphi_{\alpha}:U_{\alpha}\to X$ onto open sets of X such that, for every pair (α, β) with $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the change of coordinates map $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is the restriction of an element of G. A map $f: M \longrightarrow N$ between two (X,G)-manifolds is a (X,G)-map if for every $p \in M$ there exist a local chart (U, φ) around p and a local chart (V, ψ) around f(p) for the (X, G)-geometries of M and N respectively such that $\psi \circ f \circ \varphi^{-1} : \varphi(U) \longrightarrow \psi(V)$ is the restriction of an element of G. A (X,G)-map is a local diffeomorphism. Let M be a simply connected (X,G)-manifold and $p_0 \in M$ and (U_0,φ_0) be a (X,G)-chart around p_0 : we set $\Phi = \varphi_0$ on U_0 . Then we can analitically continue Φ on every curve for p_0 and since M is simply connected, we get a (X,G)-map $\Phi:M\to X$, that is unique up to left composition with elements of G. Φ is the developing map of the (X,G)-structure. If M is not simply connected, then we take the universal covering M of M, that is still a (X,G)-manifold: the developing map $\Phi: M \longrightarrow X$ induces a homomorphism $\rho: \pi_1(M) \longrightarrow G$, such that

$$\Phi \circ [\gamma] = \rho([\gamma]) \circ \Phi \,, \tag{*}$$

where $\pi_1(M)$ is viewed as the group of the deck transformations of \tilde{M} . The homomorphism ρ is called holonomy representation of the (X, G)-structure.

Vice versa, (X, G)-structures on M are determined by a homomorphism $\rho: \pi_1(M) \longrightarrow G$ and an equivariant immersion $\Phi: \tilde{M} \longrightarrow X$ (i. e. such that the (*) holds). A (X, G)-structure on M is said to be *complete* if the developing map is a covering map on its image; it is said to be *uniformizable* if the developing map is injective. Note that in the latter case ρ is injective and $M = \Phi(\tilde{M})/\rho(\pi_1(M))$.

I wish to thank Paolo de Bartolomeis for his helpful suggestions and valuable advice.

2. Examples.

In this section we give a list of examples of (X, G)-manifolds.

1) LOCALLY CONFORMALLY FLAT MANIFOLDS. Let $X = S^n$ be the unit sphere in \mathbb{R}^{n+1} and $G = C_n$ be the conformal group of S^n ; we recall that an n-dimensional manifold M is called *locally conformally flat* if there exists an atlas $\{(U_\alpha, \varphi_\alpha)\}_{\alpha \in A}$ such that, for every $\alpha \in A$, $\varphi_\alpha : U_\alpha \longrightarrow S^n$ is an open diffeomorphism on the image, and if $U_\alpha \cap U_\beta \neq \emptyset$ then the change of coordinates map is a conformal diffeomorphism (see [8], [12]). If n > 2, by Liouville's Theorem it follows that $\varphi_\alpha \circ \varphi_\beta^{-1}$ is the restriction of an element of C_n . Thus a locally conformally flat manifold is a (S^n, C_n) -manifold.

If M is compact and the conformal invariant d(M) (see [12] for the definition) is less than $\frac{(n-2)^2}{2}$, then by a Theorem of [12] it follows that the developing map Φ is injective.

2) Take $X = \mathbb{C}$ and $G = \operatorname{Aut} \operatorname{Hol}(\mathbb{C}) = \{f(z) = az + b \mid a, b \in \mathbb{C}, a \neq 0\}$; the compact (X, G)-manifolds are the complex tori. In fact, let \mathbb{C}/Γ be a complex torus and $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A}$ be the complex atlas which defines the complex structure on \mathbb{C}/Γ ; if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is a translation. The converse is a consequence of the following

THEOREM. ([3]) If M is compact and it is not a torus, then M cannot be covered by any system $(x_{\alpha}^1, x_{\beta}^2)$ of local coordinates such that $\left|\frac{\partial x_{\alpha}^i}{\partial x_{\beta}^j}\right|$ is constant on $U_{\alpha} \cap U_{\beta}$, for each pair of indeces (α, β) .

Note that in this case the (X, G)-structure is uniformizable and complete.

3) Fix $X = \mathbb{R}^n$ and $G = \text{Aff}(\mathbb{R}^n) = \mathbb{R}^n \rtimes \text{GL}(n, \mathbb{R})$, the affine transformations of \mathbb{R}^n . In such a case the (X, G)-manifolds are the locally flat manifolds (i. e., such that there exists a linear torsion free connection whose curvature vanishes).

4) Let X be a differentiable manifold and $G = \{e\}$ be the trivial subgroup of Diff(X). If M is a (X, G)-manifold it is possible to define a global map $\psi : M \longrightarrow X$ in the following way: for every $p \in M$ we take a (X, G)-chart $(U_{\alpha}, \varphi_{\alpha})$ around p and we set $\psi(p) = \varphi_{\alpha}(p)$. Since $G = \{e\}$, the map ψ is well defined.

If M is compact, then $\psi: M \longrightarrow X$ is a covering projection. In such a case the (X, e)-structure is complete but not necessarily uniformizable.

Vice versa, a covering space (M, ψ) of X is a (X, G)-manifold: this is immediate because ψ is an equivariant immersion of M in X.

5) SPHERICAL MANIFOLDS. A connected real hypersurface M in the complex manifold N of complex dimension (n+1) is said to be spherical if, at every point $p \in M$, there exists a local holomorphic coordinate system (z_1, \ldots, z_{n+1}) of N such that M is defined by

$$|z_1|^2 + \ldots + |z_{n+1}|^2 = 1$$

(see [4]). For example, the unit sphere $S^{2n+1} \subset \mathbb{C}^{n+1}$ is a spherical manifold. Let B_{n+1} be the unit ball in \mathbb{C}^{n+1} ; we recall that the group $\mathrm{SU}(n+1,\,1)$ acts transitively on B_{n+1} and on S^{2n+1} by the fractional linear transformations

$$z \longmapsto \frac{Az+B}{Cz+D} \,,$$

where $A \in M_{n,n}(\mathbb{C})$, $B \in M_{n,1}(\mathbb{C})$, $C \in M_{1,n}(\mathbb{C})$, $D \in \mathbb{C}$ satisfy the following identities:

$${}^t\bar{A}A - {}^t\bar{C}C = I_n, \quad {}^t\bar{A}B = {}^t\bar{C}D, \quad \bar{D}D - {}^t\bar{B}B = 1.$$

Further the automorphisms group of B_{n+1} , $\operatorname{Aut}(B_{n+1})$ and the CR-automorphisms group of S^{2n+1} , $\operatorname{Aut}_{\operatorname{CR}}(B_{n+1})$ are given by the quotient

$$SU(n+1, 1)$$
/ center.

We have the following

THEOREM. ([1]) Let f be a biholomorphic map from a connected neighbourhood U of $p \in S^{2n+1}$. If $f(U \cap S^{2n+1}) \subset S^{2n+1}$, then f is the restriction to U of a fractional linear transformation.

Let M be a spherical manifold and $\mathcal{U} = (U_{\alpha}, \varphi_{\alpha})_{\alpha \in A}$ be a spherical atlas: if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then the change coordinate map

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1} : \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$$

is a local biholomorphism from an open set in \mathbb{C}^{n+1} intersecting S^{2n+1} to S^{2n+1} . By the previous Theorem it follows that $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is the restriction of a linear fractional transformation. Therefore spherical manifolds are $(S^{2n+1}, \operatorname{Aut}_{\operatorname{CR}}(S^{2n+1}))$ -manifolds.

- **6)** Let $X=S^{2n+1}=\{z\in\mathbb{C}^{n+1}:|z|=1\}$ and $G=\mathbb{Z}_m$ be the m-cyclic group generated by $g=e^{2\pi im}$, acting on S^{2n+1} by scalar multiplication; then the lens space is defined as $\mathcal{L}_{(m)}^{2n+1}=S^{2n+1}/\mathbb{Z}_m$. Set $\rho=id_{\mathbb{Z}_m}$ and $\Phi=id_{S^{2n+1}}/\mathbb{Z}_m$ being isomorphic to $\pi_1(\mathcal{L}_{(m)}^{2n+1})$; therefore it follows that $\mathcal{L}_{(m)}^{2n+1}$ is a (X,G)-manifold and, by definition, is both uniformizable and complete.
- 7) COORDINATE QUATERNIONIC MANIFOLDS. We recall the definition of quaternionic structure in the sense of Sommese (see [13]). A quaternionic manifold is a differentiable manifold with an open cover $\{U_i\}$ of M and diffeomorphisms $\varphi_i:U_i\to\mathbb{R}^{4n}$ such that $\varphi_i\circ\varphi_j^{-1}$ is a quaternionic map with respect to the standard right quaternionic structure on $\mathbb{R}^{4n}\simeq \mathbf{H}^n$. By Proposition I of [13] it follows that the change of coordinates map is the restriction of a quaternionic affine map and therefore coordinate quaternionic manifolds are $(\mathbf{H}^n, \mathrm{Aff}(\mathbf{H}^n))$ -manifolds.

By a result of [5] it follows that the compact $(\mathbf{H}, Aff(\mathbf{H}))$ -manifolds are uniformizable.

8) Let $X = S^n = O(n+1)/O(n)$ be the unit sphere in \mathbb{R}^{n+1} and H = O(n) be the orthogonal group as a subgroup of O(n+1); let \mathbb{Z}_2 be the cyclic group of order two generated by a and $\mathbf{P}^n(\mathbb{R}) = S^n/\mathbb{Z}_2$ be the real projective space. $\mathbf{P}^n(\mathbb{R})$ is a $(S^n, O(n))$ -manifold. It is sufficient to give the holonomy representation $\rho : \pi_1(\mathbf{P}^n(\mathbb{R})) \longrightarrow O(n)$ and the equivariant immersion $\Phi : S^n \longrightarrow S^n$, S^n being the universal covering of $\mathbf{P}^n(\mathbb{R})$. Since $\pi_1(\mathbf{P}^n(\mathbb{R}))$ is isomorphic to \mathbb{Z}_2 , we set

$$\rho(e) = I \quad , \quad \rho(a) = -I$$

and $\Phi = id_{S^n}$, where I is the identity in O(n).

9) Let $X = S^6 = \{x \in \mathcal{I}m \mathbf{Cay} \mid || x || = 1\}$ and $G_2 = \mathrm{Aut}(\mathbf{Cay})$. We recall that

$$G_2 = \{ g \in \mathcal{O}(7) : g^*(\omega) = \omega \},$$

where $\omega \in \otimes^3(\operatorname{Im} \operatorname{Cay})^*$ is given by

$$\omega(x, y, z) = \langle x, yz \rangle$$
.

REMARK 2.1. If $\Gamma \subset O(7)$ is a group acting freely on S^6 , then $\Gamma \simeq \mathbb{Z}_2$. In fact, let $g \in \Gamma$; g has at least one real eigenvalue λ that is 1 or -1. If $\lambda = 1$ (=-1) then g (respectively g^2) has fixed points and consequently g = I $(g^2 = I)$. Therefore, if $g \neq I$ then all the eigenvalues of g are -1 and since g is diagonalizable, g = -I.

Since $\Gamma \not\subset G_2$, the previous remark implies that the only compact (S^6, G_2) -manifold is S^6 .

3. (X,G)-structures as special reductions.

Let G be a Lie group and H be a closed subgroup. In this section we consider the (X, G)-manifolds whose geometric model is given by an n-dimensional homogeneous space X = G/H and by the subgroup H. Let us denote by o the origin of X, (i. e. the coset H) and fix a linear frame $u_o \in L(X)_o$; we assume that the linear isotropy representation of H, $\alpha: H \longrightarrow \operatorname{GL}(n, \mathbb{R})$ defined by

$$\alpha(h) = u_o^{-1} \circ h_* \circ u_o$$

 h_* being the differential of h in o, is faithful.

REMARK 3.1. If the subgroup H is compact, then this hypothesis is satisfied. In such a case the Lie algebra g of G admits an $\mathrm{ad}(H)$ -invariant scalar product which corresponds to a G-invariant metric on the homogeneous space X = G/H. If $h \in \mathrm{Ker}(\alpha)$, then we have $h_*[o] = id_{T_oX}$ and h(o) = o, h being in H. Therefore h fixes the geodesics starting from $o \in X$. Let N be a normal neighbourhood of o in X and $U = \{x \in N : h(x) = x\} \neq \emptyset$: U is open and closed in X and consequently h = e, i. e. α is faithful.

Vice versa: if the linear isotropy representation of H is faithful and G admits a bi-invariant Riemannian metric, then H is compact. This fact is a consequence of the following

Theorem. ([10]) Let G be a connected Lie group; G has a biinvariant metric if and only if

$$G = \mathbb{R}^s \times K$$
,

where K is a compact Lie group.

In particular we have that

$$H=\mathbb{R}^p\times K'$$
.

By the faithfulness of the linear isotropy representation, the factor \mathbb{R}^p cannot occur in the last decomposition.

Let V and V' be two neighbourhoods of o and

$$f: V \longrightarrow M$$
, $f': V' \longrightarrow M$

be two diffeomorphisms onto their images such that f(o) = f'(o) = p; f and f' define the same r-jet at p if the have the same partial derivatives up to the order r at o. The equivalence class of f is called an r-frame at p and is denoted by $f_n^r(f)$. We set

$$\begin{array}{rcl} G^r(n) &=& \{r-\text{frames at } o \in X\} \\ &\Gamma^r_H &=& \{j^r_o(f): f \in H\} \\ L^r(M)_p &=& \{r-\text{frames at } p \in M\} \\ L^r_G(M)_p &=& \{j^r_p(f) \in L^r(M)_p: f^{-1} \text{ is a } (X,G)-\text{chart} \\ && \text{around } p \in M\} \\ \\ L^r(M) &=& \bigcup_{p \in M} L^r(M)_p \\ L^r_G(M) &=& \bigcup_{p \in M} L^r_G(M)_p. \end{array}$$

The set $G^r(n)$ is a group with the product given by $j_o^r(f) j_o^r(g) = j_o^r(f \circ g)$. It acts on $L^r(M)$ on the right in the following way: if $u = j_p^r(f) \in L^r(M)$ and $a = j_o^r(g) \in G^r(n)$, then $ua = j_p^r(f \circ g)$. Let

 $\pi:L^r(M)\longrightarrow M$ be the projection defined by $\pi(j_p^r(f))=p$; then $(L^r(M),\,\pi\,,G^r(n))$ is a principal $G^r(n)$ -bundle, called the bundle of r-frames. If n=1, then $L^1(M)$ is the bundle of linear frames. We remark that $L^r_G(X)=G$ and that the subgroup Γ^r_H is isomorphic to H.

A H-reduction $P \subset L^r(M)$ is said to be integrable if for every $p \in M$ there exists a neighbourhood U of p and a diffeomorphism $\varphi: U \longrightarrow X$ onto its image such that

$$\varphi_*: P|_U \longrightarrow G|_{\varphi(U)}$$
,

where $\varphi_*(j_q^r(f)) = j_{\varphi(q)}^r(\varphi \circ f)$. We have the following

PROPOSITION 3.1. Let M be a (X, H)-manifold; then $L^1_G(M)$ is an integrable H-reduction of $L^1(M)$.

Proof. The subgroup H acts on $L^1_G(M)$ on the right in the following way: for $u=j^1_p(f)\in L^1_G(M)$ and $a=j^1_o(h)\in H$, then

$$ua = j_p^1(f \circ h).$$

Since an element $h \in G$ belongs to H if and only if h(o) = o, then $(f \circ h)^{-1}$ is a (X, H)-chart such that $(f \circ h)(o) = p$. Let $j_p^1(f)$, $j_p^1(f')$ be in $\pi^{-1}(p)$; by the definition of (X, H)-manifold it follows that

$$(f^{-1} \circ f')|_{f'^{-1}(U \cap U')} = h|_{f'^{-1}(U \cap U')}$$

where $h \in H$. Thus $j_p^1(f') = j_p^1(f \circ h)$, i.e. H is transitive on the fibre $\pi^{-1}(p)$. Therefore $L_G^1(M)$ is a subbundle of L(M) whose structural group is H.

Let p be a point of M, $(U_{\alpha}, \varphi_{\alpha}, V_{\alpha})$ be a local (X, H)-chart around p and $j_q^1(f) \in L_G^1(M)|_{U_{\alpha}}$; set

$$\varphi_{\alpha*}(j_q^1(f)) = j_{f^{-1}(q)}^1(\varphi_\alpha \circ f).$$

This definition does not depend on the local coordinates: if $(U_{\beta}, \varphi_{\beta}, V_{\beta})$ is another local (X, H)-chart around p, we have

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}|_{\varphi_{\beta}(U_{\alpha} \cap U_{\beta})} = h_{\alpha\beta}|_{\varphi_{\beta}(U_{\alpha} \cap U_{\beta})},$$

 $h_{\alpha\beta} \in H$. Therefore, if $q \in U_{\alpha} \cap U_{\beta}$, we get

$$\varphi_{\alpha*}(j_q^1(f)) = j_{f^{-1}(q)}^1(\varphi_{\alpha} \circ f) = j_{f^{-1}(q)}^1(\varphi_{\alpha} \circ \varphi_{\beta}^{-1} \circ \varphi_{\beta} \circ f) =
= j_{f^{-1}(q)}^1(h_{\alpha\beta} \circ \varphi_{\beta} \circ f) = j_{f^{-1}(q)}^1(\varphi_{\beta} \circ f)
= \varphi_{\beta*}(j_q^1(f)).$$

This shows that $L_G(M)$ is integrable.

PROPOSITION 3.2. Let P be an integrable H-reduction of $L^2(M)$, the bundle of the 2-frames over M; then M is a (X, H)-manifold.

 \Diamond

Proof. We shall construct an atlas of (X, H)-geometry. Since P is integrable, for every $p \in M$ there exists a neighbourhood U_{α} and a diffeomorphism $\varphi_{\alpha}: U_{\alpha} \longrightarrow V_{\alpha} \subset X$, such that

$$\varphi_{\alpha*}: P|_{U_{\alpha}} \longrightarrow L_G^2(X)|_{V_{\alpha}} = G|_{V_{\alpha}}.$$

Then if $(U_{\beta}, \varphi_{\beta}, V_{\beta})$ is another diffeomorphism, for $q \in U_{\alpha} \cap U_{\beta}$, we obtain

$$\varphi_{\alpha*}(j_q^2(\varphi_\beta^{-1})) = j_x^2(\varphi_\alpha \circ \varphi_\beta^{-1}) = j_x^2(h_{\alpha\beta}^x),$$

where $x=\varphi_{\beta}(q),\ h^x_{\alpha\beta}\in H.$ We shall prove that $h^x_{\alpha\beta}$ does not depend on x. The last relation implies that for every $x\in\varphi_{\beta}(U_{\alpha}\cap U_{\beta})$ the change coordinate map $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}$ and the linear transformation $h^x_{\alpha\beta}$ have the same partial derivatives up to the order 2; thus if (U,ψ,V) is a local chart around o the diffeomorphism $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}$ is linear and consequently $h^x_{\alpha\beta}=h_{\alpha\beta}$. Therefore

$$\varphi_{\alpha} \circ \varphi_{\beta}^{-1}|_{\varphi_{\beta}(U_{\alpha} \cap U_{\beta})} = h_{\alpha\beta}|_{\varphi_{\beta}(U_{\alpha} \cap U_{\beta})},$$

 $\mathcal{A} = (U_{\alpha}, \varphi_{\alpha}, V_{\alpha})$ is an atlas of (X, H)-geometry and M is a (X, H)-manifold. \diamondsuit

If we consider as the model space the couple (G/H, H) such that the subgroup H can be embedded into the group $G^r(n)$ via the r-representation of isotropy, (i. e. the elements of H are known when we give the partial derivatives up to the order r at the point o), then the previous Propositions can be generalized in the following way:

Proposition 3.3. If M is a (X, H)-manifold, then $L^r_G(M)$ is an integrable H-reduction of $L^r(M)$.

As for the case r = 1 an integrable H-reduction of L^{r+1} determines a (X, H)-structure on M. We have the following

PROPOSITION 3.4. If P is an integrable H-reduction of the bundle of (r+1)-jets L^{r+1} , then M is a (X, H)-manifold.

To finish this Section, we give a description of the group $G^2(n)$. We may suppose $X = \mathbb{R}^n$. By definition

$$G^2(n) = \{j_0^2(f) \mid f: U \longrightarrow \mathbb{R}^n \text{ is a diffeomorphism } f(0) = 0\}$$

and the group operation is defined by $j_0^2(f) j_0^2(f') = j_0^2(f \circ f')$. Every 2-frame $u = J_0^2(f)$ has a unique polynomial representation given by

$$g(x) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} u_{j}^{i} x^{j} + \sum_{j,k=1}^{n} u_{jk}^{i} x^{j} x^{k} \right) e_{i}$$

 $\{e_1,\ldots,e_n\}$ being the canonical basis of \mathbb{R}^n , $x=\sum\limits_{i=1}^n x^ie_i$ and $u^i_{jk}=u^i_{kj}$. The (u^i_j,u^i_{jk}) define a coordinate system in $G^2(n)$. Therefore, we may identify every 2-jet $u=j^2_0(f)$ with the couple (A,α) , where A is the Jacobian matrix (u^i_j) and α is the Hessian matrix, i. e. α is a bilinear form on $\mathbb{R}^n\times\mathbb{R}^n$ taking its values in \mathbb{R}^n . Thus, the product expression has the following form

$$(A, \alpha) (B, \beta) = (AB, \gamma)$$

where AB denotes the matrices product and γ is defined by $\gamma(x,y) = \alpha(Bx, By) + A\beta(x,y)$. The identity element is the couple (I,0) and the inverse of (A, α) has the following representation

$$(A, \alpha)^{-1} = (A^{-1}, \beta),$$

 β being defined by $\beta(x,y) = -A^{-1}\alpha(A^{-1}x,A^{-1}y)$.

4. The Riemannian case.

In this section we take as the model space a simply connected Riemannian homogeneous space (X, k), k being an invariant metric on X. We recall the well known

THEOREM. ([11]) The group $\operatorname{Iso}(M)$ of isometries of a Riemannian manifold M is a Lie transformation group with respect to the compact-open topology. For each $x \in M$, the isotropy subgroup $\operatorname{Iso}_x(M)$ is compact. If M is compact, $\operatorname{Iso}(M)$ is also compact.

Therefore X = G/H, where $G=\operatorname{Iso}(X)$ and H is the isotropy group at the origin o of X; moreover, the linear isotropy representation of H

$$\alpha: H \longrightarrow \operatorname{GL}(n, \mathbb{R})$$

is faithful, H being compact and $\alpha(H) \subset O(n, \mathbb{R})$.

Let M be a (X, H)-manifold; by Proposition 3.1 it follows that the bundle $L^1(M) = L(M)$ reduces to $H \subset O(n, \mathbb{R})$ and this gives a Riemannian structure on M. Since the reduction is integrable, the (X, H)-manifold M is locally isometric to the model space X. In particular M is locally homogeneous.

Let us consider now a Riemannian manifold (M, g) locally isometric to the model space (X, k). We recall the following result

THEOREM. Let M and M' be connected and simply connected, complete analytic Riemannian manifolds. Then every isometry between connected open subsets of M and M' can be uniquely extended to an isometry between M and M' (see [7]).

Since a Riemannian homogeneous space is analytic and complete, the previous Theorem implies that if $f:V\longrightarrow X$, $f':U'\longrightarrow X$ are two local isometries onto their images, with $U\cap U'\neq\emptyset$, then the local isometry of X

$$(f' \circ f^{-1})|_{f(U \cap U')} : f(U \cap U') \to f'(U \cap U')$$

can be extended to a global isometry. Thus we have the following

PROPOSITION 4.1. If (M, g) is locally isometric to a simply connected Riemannian homogeneous space (X = G/H, k), then M is a (X, G)-manifold.

We recall that if (M, g) is a connected Riemannian manifold, then any isometry $f: M \to M$ is determined by the value which f and its differential df take in $p \in M$. Therefore in the case of

a Riemannian homogeneous model, Propositions 3.1 and 3.2 can be collected in the following

Proposition 4.2. Let (X = G/H, k) be a homogeneous Riemannian manifold; M is a (X, H)-manifold if and only if there exists an integrable H-reduction of the bundle of the linear frames on M.

REFERENCES

- [1] ALEXANDER H., Holomorphic mappings from the ball and polydisc, Math. Ann. **209** (1974), 249-256.
- [2] Benoist Labourie, Sur le espace homogènes modèles de variété compact, Hautes Etudes Scientifique Publ. Math. **76** (1992), 99-109.
- [3] Benzecrí J. P., Variétés localment affines, Seminaire Ehresmann (May 1959).
- [4] Burns D. Jr. and Shnider S., Spherical hypersurfaces in complex manifolds, Invent. Math. 33 (1976), 223-246.
- [5] Kato M., Compact differentiable 4-folds with quaternionic structures, Math. Ann. 248 (1980), 79-96.
- [6] Kobayashi S., Transformation Groups in Differential Geometry, Springer-Verlag Berlin Heidelberg New York, 1972.
- [7] KOBAYASHI S. and NOMIZU N., Foundations of Differential Geometry, Vol. I and II, Interscience Publishers, New York, 1963, 1969.
- [8] Kuiper N., On conformally flat manifolds in the large, Ann. Math. 50 (1949), 916-924.
- [9] Kulkarni R. and Pinkall U., Uniformization of geometric structures with application to conformal geometry, Springer Lecture Notes in Math. 1209.
- [10] MILNOR J., Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329.
- [11] MYERS S. B. and STEENROD N., The group of isometries of a Riemannian manifold, Ann. Math. 40 (1939), 400-416.
- [12] SCHOEN R. and YAU S.-T., Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988), 47-71.
- [13] Sommese A., Quaternionic manifolds, Math. Ann. **212** (1975), 191-214.