GEOMETRICAL STRUCTURES
ON DIFFERENTIABLE MANIFOLDS (*)

by ADRIANO TOMASSINI (in Firenze)(**)

SOMMARIO. - Si studiano le (X,G)-varieta e si danno alcuni esempi:
quando il modello geometrico é la coppia (G/H, H), si danno condizioni
necessarie e sufficienti affinché ad una riduzione del fibrato degli r-getti

su una varieta differenziabile M corrisponda una (X, G)-struttura sopra
M.

SUMMARY. - We study (X, G)-manifolds and we give examples: when the
geometric model is the couple (G/H, H), we give necessary and suffi-
cient conditions ensuring that a reduction of the r-frames bundle on a
differentiable manifold M gives rise to o (X,G)-structure on M.

1. Introduction.

The study of further structures on a differentiable manifold ap-
pears as one of the general frameworks in geometry.

Clearly, a very interesting situation is represented by those struc-
tures for which uniformization theorems are available. This is the
case of (X, G)-manifolds, i. e. those manifolds locally modelled on
geometric spaces (see [9]). Typical examples are locally conformally
flat manifolds (see [8], [12]), spherical manifolds (see [4]), quater-
nionic coordinate manifolds (see [13]) and Riemannian manifolds lo-
cally modelled on homogeneous space (see [2]).

In the present paper we investigate (X, G)-structures and discuss
several basic examples; moreover, when the model space is a homoge-
neous manifold, we describe (X, G)-structures as special reductions
of the bundle of r-frames (see Propositions 3.1 and 3.2).

(*) Pervenuto in Redazione il 24 Novembre 1995.
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tomassin@udini.math.unifi.it
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We recall some facts about (X, G)-structures. Let X be a differ-
entiable manifold and G be a formally analytic subgroup of Diff(X),
i. e. such that if ¢ € G coincides with idx in some open subset of X,
then ¢ = idx. The couple (X, G) is the geometric model. A (X,G)-
structure on a differentiable manifold is given by an open covering
{Ua}aca of M and diffeomorphisms ¢, : U, — X onto open sets of
X such that, for every pair (o, 3) with U, N Up # 0, the change of
coordinates map @, © @El is the restriction of an element of G. A
map f : M — N between two (X, G)-manifolds is a (X, G)-map
if for every p € M there exist a local chart (U, ¢) around p and a
local chart (V, 1) around f(p) for the (X, G)-geometries of M and N
respectively such that 9o fo ™! : o(U) — (V) is the restriction
of an element of G. A (X,(G)-map is a local diffeomorphism. Let
M be a simply connected (X, G)-manifold and pg € M and (Uy, ¢o)
be a (X, G)-chart around py: we set ® = ¢y onUy. Then we can
analitically continue @ on every curve for py and since M is simply
connected, we get a (X,G)-map ® : M — X, that is unique up
to left composition with elements of G. @ is the developing map of
the (X, G)-structure. If M is not simply connected, then we take the
universal covering M of M, that is still a (X, G)-manifold: the devel-
oping map ® : M — X induces a homomorphism p : m (M) — G,
such that

o ] =p(l]) o ®, ()

where 71 (M) is viewed as the group of the deck transformations of
M. The homomorphism p is called holonomy representation of the
(X, G)-structure.

Vice versa, (X, G)-structures on M are determined by a homo-
morphism p : 71 (M) — G and an equivariant immersion ® : M —»
X (i. e. such that the (x) holds). A (X, G)-structure on M is said to
be complete if the developing map is a covering map on its image; it
is said to be uniformizable if the developing map is injective. Note
that in the latter case p is injective and M = ®(M)/p(m1(M)).

I wish to thank Paolo de Bartolomeis for his helpful suggestions
and valuable advice.
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2. Examples.
In this section we give a list of examples of (X, G)-manifolds.

1) LOCALLY CONFORMALLY FLAT MANIFOLDS. Let X = S"
be the unit sphere in R"*! and G = C, be the conformal group
of §™; we recall that an n-dimensional manifold M is called locally
conformally flat if there exists an atlas {(Uq, ¢a) taca such that, for
every a € A, ¢, : Uy, — S™ is an open diffeomorphism on the
image, and if U, N Ug # 0 then the change of coordinates map is
a conformal diffeomorphism (see [8], [12]). If n > 2, by Liouville’s
Theorem it follows that ¢, o (,051 is the restriction of an element of
Cp- Thus a locally conformally flat manifold is a (S™, C,)-manifold.

If M is compact and the conformal invariant d(M) (see [12] for
the definition) is less than ("_22)2 , then by a Theorem of [12] it follows
that the developing map @ is injective.

2) Take X = C and G = Aut Hol(C) = {f(2) = az+ b |a,b €
C, a # 0}; the compact (X, G)-manifolds are the complex tori. In
fact, let C/T" be a complex torus and {(Uy, o) }aca be the complex
atlas which defines the complex structure on C/T; if U, N Ug # 0,
then ¢, o @El is a translation. The converse is a consequence of the
following

THEOREM. ([3]) If M is compact and it is not a torus, then M

cannot be covered by any system (z}, :(;%) of local coordinates such

%

5 ?| is constant on Uy N Ug, for each pair of indeces (a, 3).

z
B

that | 2%

Note that in this case the (X, G)-structure is uniformizable and
complete.

3) Fix X = R” and G =Aff(R") = R” x GL(n,R), the affine
transformations of R”. In such a case the (X, G)-manifolds are the
locally flat manifolds (i. e., such that there exists a linear torsion free
connection whose curvature vanishes).
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4) Let X be a differentiable manifold and G = {e} be the trivial
subgroup of Diff(X). If M is a (X, G)-manifold it is possible to define
a global map ¢ : M — X in the following way: for every p € M
we take a (X, G)-chart (Uy, ¢q) around p and we set ¥(p) = @q(p)-
Since G = {e}, the map 1 is well defined.

If M is compact, then v : M — X is a covering projection.
In such a case the (X, e)-structure is complete but not necessarily
uniformizable.

Vice versa, a covering space (M,) of X is a (X, G)-manifold:
this is immediate because 1 is an equivariant immersion of M in X.

5) SPHERICAL MANIFOLDS. A connected real hypersurface M in
the complex manifold N of complex dimension (n + 1) is said to be
spherical if, at every point p € M, there exists a local holomorphic
coordinate system (z1,...,2,+1) of N such that M is defined by

lz12 4.z P =1

(see [4]). For example, the unit sphere S?"*!1 C C**! is a spherical
manifold. Let B, be the unit ball in C**!; we recall that the group
SU(n+1, 1) acts transitively on B,, 1 and on $?"*! by the fractional
linear transformations

Az+ B
Cz+D’

where A € M, ,(C), B € M, 1(C), C € M;,(C), D € C satisfy the
following identities:

taa-tcc=1, 'AB='CD, DD-'BB=1.

Further the automorphisms group of By, 1, Aut(B,+1) and the CR-
automorphisms group of $?"*! Autcg(B,,1) are given by the quo-
tient

SU(n + 1, 1)/ center.

We have the following

THEOREM. ([1]) Let f be a biholomorphic map from a connected
neighbourhood U of p € S?"1. If f(U N §?2tL) € §27+L ) then f is
the restriction to U of a fractional linear transformation.
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Let M be a spherical manifold and U = (U, , ¢a)aca be a spher-
ical atlas: if Uy, NUg # 0, then the change coordinate map

Yo © 5" 1 s(Ua NUp) — @a(Ua NUp)

is a local biholomorphism from an open set in C**! intersecting
§?ntl to §?7+1. By the previous Theorem it follows that (g o gogl
is the restriction of a linear fractional transformation. Therefore
spherical manifolds are (S?"*1, Autcr (52" *!))-manifolds.

6) Let X = 5! = {z € C"t! : |2z| = 1} and G = Zp,
be the m-cyclic group generated by g = €*™™, acting on S?"t!

by scalar multiplication; then the lens space is defined as L?ﬁ)’l =

S?HY 7. Set p = idy, and ® = idgent1 Zy, being isomorphic to
T (L?:;L')"l);therefore it follows that L?:TLL')H) is a (X, G)-manifold and,
by definition, is both uniformizable and complete.

7) COORDINATE QUATERNIONIC MANIFOLDS. We recall the defi-
nition of quaternionic structure in the sense of Sommese (see [13]). A
quaternionic manifold is a differentiable manifold with an open cover
{U;} of M and diffeomorphisms ¢; : U; — R*" such that ; o <,0j_1
is a quaternionic map with respect to the standard right quater-
nionic structure on R*" ~ H". By Proposition I of [13] it follows
that the change of coordinates map is the restriction of a quater-
nionic affine map and therefore coordinate quaternionic manifolds
are (H", Aff (H"))-manifolds.

By a result of [5] it follows that the compact (H, Aff (H))-mani-
folds are uniformizable.

8) Let X = S™ = O(n+1)/O(n) be the unit sphere in R**! and
H = O(n) be the orthogonal group as a subgroup of O(n +1); let Z,
be the cyclic group of order two generated by a and P™(R) = S™/Z»
be the real projective space. P™(R) is a (S", O(n))-manifold. It
is sufficient to give the holonomy representation p : 71 (P"(R)) —
O(n) and the equivariant immersion ® : S™ — S™, S™ being the
universal covering of P"(R). Since 71 (P"(R)) is isomorphic to Zs,
we set

ple) =1 , pla)=-1I

and ® = idgn, where I is the identity in O(n).
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9) Let X = S = {x € ImCay | | z ||= 1} and G =Aut
(Cay). We recall that

G2 ={9€0(7) : g°(w) = w},
where w € ®3(Im Cay)* is given by

w(z,y,2) = (2,y2) .

REMARK 2.1. If T' C O(7) is a group acting freely on S® then
I' >~ Zs. In fact, let g € I'; g has at least one real eigenvalue A that
is1or —1. If A\ =1 (= —1) then g (respectively ¢g?) has fixed points
and consequently g = I (g? = I). Therefore, if g # I then all the
eigenvalues of g are —1 and since g is diagonalizable, g = —1I.

Since I' ¢ G, the previous remark implies that the only compact
(8%, G2)-manifold is S°.

3. (X, G)-structures as special reductions.

Let G be a Lie group and H be a closed subgroup. In this section
we consider the (X, G)-manifolds whose geometric model is given by
an n-dimensional homogeneous space X = G/H and by the subgroup
H. Let us denote by o the origin of X, (i. e. the coset H) and
fix a linear frame u, € L(X),; we assume that the linear isotropy
representation of H, « : H — GL (n,R) defined by

a(h) =uy* o hy o u,

h. being the differential of h in o, is faithful.

REMARK 3.1. If the subgroup H is compact, then this hypothesis
is satisfied. In such a case the Lie algebra g of G admits an ad(H)-
invariant scalar product which corresponds to a G-invariant metric
on the homogeneous space X = G/H. If h €Ker(a), then we have
h«[o] = idr,x and h(o) = o, h being in H. Therefore h fixes the
geodesics starting from 0 € X. Let N be a normal neighbourhood
ofoinXandU ={z € N : h(z) =z} # 0: U is open and closed in
X and consequently h = e, i. e. « is faithful.
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Vice versa: if the linear isotropy representation of H is faithful
and G admits a bi-invariant Riemannian metric, then H is compact.
This fact is a consequence of the following

THEOREM. ([10]) Let G be a connected Lie group; G has a bi-
invariant metric if and only if

G=FR x K,

where K is a compact Lie group.

In particular we have that
H=R xK'.

By the faithfulness of the linear isotropy representation, the factor
RP cannot occur in the last decomposition.
Let V and V' be two neighbourhoods of o and

f:V—M,f:VN—M

be two diffeomorphisms onto their images such that f(o) = /(o) =
p; f and f’ define the same r-jet at p if the have the same partial
derivatives up to the order r at 0. The equivalence class of f is called
an r-frame at p and is denoted by j;(f). We set

G"(n) = {r— framesatoe€ X}
My = i) s fe H)
L" (M), = {r— framesatpe M}
LL(M), = {ji(f) € L'(M), : fVis a(X,G) — chart
aroundp € M}

) = | L'm),
pEM

Lg(M) = L (M),
peEM

The set G"(n) is a group with the product given by j57(f) j7(g) =
Jo(f og). It acts on L"(M) on the right in the following way: if
u = jy(f) € L"(M) and a = jg(g9) € G"(n), then ua = j;(fog). Let
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7 : L'(M) — M be the projection defined by n(j,(f)) = p; then
(L"(M), m,G"(n)) is a principal G"(n)-bundle, called the bundle of
r-frames. If n = 1, then L'(M) is the bundle of linear frames. We
remark that L;(X) = G and that the subgroup I'}; is isomorphic to
H.

A H-reduction P C L"(M) is said to be integrable if for every
p € M there exists a neighbourhood U of p and a diffeomorphism
¢ : U — X onto its image such that

Px : P|U — G|(p(U)a

where . (jz(f)) = i) (¢ o f). We have the following

PROPOSITION 3.1. Let M be a (X, H)-manifold; then LL(M) is
an integrable H-reduction of L'(M).

Proof. The subgroup H acts on L (M) on the right in the fol-
lowing way: for u = j;(f) € L (M) and a = jl(h) € H, then

ua=ji(f o h).

Since an element h € G belongs to H if and only if k(o) = o, then
(foh) !isa (X, H)-chart such that (foh)(o) = p. Let j(f), 75(f")
be in 7 1(p); by the definition of (X, H)-manifold it follows that

(f o M) prwnery = bl p—r o)

where h € H. Thus j;(f’) = j; (foh),i.e. H is transitive on the fibre
7! (p). Therefore L{;(M) is a subbundle of L(M) whose structural
group is H.

Let p be a point of M, (Uy, ¢a, Vo) be a local (X, H)-chart
around p and j;(f) € L;(M)|y,; set

P (Gq(F)) = G109 (Pa 0 f)-

This definition does not depend on the local coordinates: if (U, ¢g,
Vp) is another local (X, H)-chart around p, we have

-1
Pa © ('pﬂ |<pﬂ(UaﬁUﬁ) = haﬁ|(p[3(UaﬂUﬁ)?
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hap € H. Therefore, if ¢ € U, N Up, we get

Pax(Gg(F)) = Ji-19)(Pa o f) = dj-1(Pao @ 0 ppof) =
j}v—l(q)(haﬂ opgof)= j,lv—l(q)(@,@ o f)
= 0p:(ig (f))-
This shows that Lg(M) is integrable. &

PROPOSITION 3.2. Let P be an integrable H-reduction of L?(M),
the bundle of the 2-frames over M; then M is a (X, H)-manifold.

Proof. We shall construct an atlas of (X, H)-geometry. Since P
is integrable, for every p € M there exists a neighbourhood U, and
a diffeomorphism ¢, : U, — V, C X, such that

Pax * P‘Ua — Lé’(X)|Va = G‘Va .

Then if (Ug, ¢g, V3) is another diffeomorphism, for ¢ € U, NUg, we
obtain
Pax (G2 (05")) = J2(pa 0 05") = ja(hip),

where z = ¢3(q), hy s € H. We shall prove that hg 5 does not depend
on z. The last relation implies that for every z € ¢g(U, N Up) the
change coordinate map ¢4 © @El and the linear transformation hg g
have the same partial derivatives up to the order 2; thus if (U, 1, V)
is a local chart around o the diffeomorphism ¢, o cpEl is linear and
consequently hg g = hog. Therefore

-1
Pa © (10,8 |(p5(UaﬂU5) = haﬁltpﬁ(UaﬁUﬂ) )

A = (Uy, 0o, Va) is an atlas of (X, H)-geometry and M is a (X, H)-
manifold. ¢

If we consider as the model space the couple (G/H, H) such that
the subgroup H can be embedded into the group G"(n) via the -
representation of isotropy, (i. e. the elements of H are known when
we give the partial derivatives up to the order r at the point o) , then
the previous Propositions can be generalized in the following way:

PrOPOSITION 3.3. If M is a (X, H)-manifold, then Ly,(M) is
an integrable H-reduction of L™ (M).
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As for the case r = 1 an integrable H-reduction of L"t! deter-
mines a (X, H)-structure on M. We have the following

PROPOSITION 3.4. If P is an integrable H-reduction of the bundle
of (r+1)-jets L™, then M is a (X, H)-manifold.

To finish this Section, we give a description of the group G2(n).
We may suppose X = R". By definition

G%(n) = {j2(f)| f : U — R" is a diffeomorphism f(0) = 0}

and the group operation is defined by j2(f) j2(f') = j2(fo f'). Every
2-frame u = JZ(f) has a unique polynomial representation given by

n n n
g(z) = Z ( u;mj + Z u;kazja:k> ei
j=1

i=1 jk=1

{e1,...,e,} being the canonical basis of R*, z = Zn:l z'e; and u;k =
i=

ul ;- The (u;, u;k) define a coordinate system in G2(n). Therefore,

we may identify every 2-jet u = j2(f) with the couple (4, «), where

A is the Jacobian matrix (u;) and « is the Hessian matrix, i. e. @ is a

bilinear form on R" x R” taking its values in R"”. Thus, the product

expression has the following form

(4, @) (B, B) = (4B, 7)

where AB denotes the matrices product and +y is defined by v(z,y) =
a(Bz, By) + AB(z,y). The identity element is the couple (7,0) and
the inverse of (A, «) has the following representation

(4,0t =41 p),
3 being defined by B(z,y) = —A"ta(A™ 1z, A~ 1y).

4. The Riemannian case.

In this section we take as the model space a simply connected
Riemannian homogeneous space (X , k), k being an invariant metric
on X. We recall the well known
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THEOREM. ([11]) The group Iso(M) of isometries of a Rie-
mannian manifold M is a Lie transformation group with respect to
the compact-open topology. For each x € M, the isotropy subgroup
Isoy (M) is compact. If M is compact, Iso(M) is also compact.

Therefore X = G/H, where G=Iso(X) and H is the isotropy
group at the origin o of X; moreover, the linear isotropy representa-
tion of H

a: H— GL(n,R)

is faithful, H being compact and «(H) C O (n, R).

Let M be a (X, H)-manifold; by Proposition 3.1 it follows that
the bundle L*(M) = L(M) reduces to H C O (n,R) and this gives a
Riemannian structure on M. Since the reduction is integrable, the
(X, H)-manifold M is locally isometric to the model space X. In
particular M is locally homogeneous.

Let us consider now a Riemannian manifold (M , g) locally iso-
metric to the model space (X , k). We recall the following result

THEOREM. Let M and M’ be connected and simply connected,
complete analytic Riemannian manifolds. Then every isometry be-
tween connected open subsets of M and M’ can be uniquely extended
to an isometry between M and M’ (see [7]).

Since a Riemannian homogeneous space is analytic and complete,
the previous Theorem implies that if f : V — X, f': U — X
are two local isometries onto their images, with U NU’ # @, then the
local isometry of X

(f' o f D pwony : FUNTU') = FUNT)

can be extended to a global isometry. Thus we have the following

PROPOSITION 4.1. If (M, g) is locally isometric to a simply

connected Riemannian homogeneous space (X = G/H , k), then M
is a (X, G)-manifold.

We recall that if (M, g) is a connected Riemannian manifold,
then any isometry f : M — M is determined by the value which
f and its differential df take in p € M. Therefore in the case of
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a Riemannian homogeneous model, Propositions 3.1 and 3.2 can be
collected in the following

PROPOSITION 4.2. Let (X = G/H, k) be a homogeneous Rie-
mannian manifold; M is a (X, H)-manifold if and only if there
exists an integrable H-reduction of the bundle of the linear frames
on M.
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