ON X — §—SPLITTING AND X — ¢—JOINTLY
CONTINUOUS TOPOLOGIES
ON FUNCTION SPACES (*)

by D. N. GEORGIOU (in Volos)(**)

SOMMARIO. - In questo articolo definiamo una relazione su ©(Y, Z), l’insi-
eme di tutte le funzioni 8-continue di uno spazio topologico Y in uno
spazio topologico Z. Studiamo inoltre la connessione di questa relazione
con le nozioni di X-0-splitting e di topologie X—-0—continue su questo
isieme, in cui X ¢é lo spazio di Sierpinski oppure X = D.

SUMMARY. - In this paper we define a relation on the set O(Y,Z) of all
J— continuous functions of a topological space Y into a topological space
Z and we study the connection of this relation with the notions of X —
—splitting and X — 3—jointly continuous topologies on this set, where
X is the Sierpinski space or X = D.

1. Introduction.

Let Y, Z be topological spaces and let f be a map of Y into Z.
Then f is 9—continuous at y € Y if for every open neighbourhood
V of f(y) there exists an open neighbourhood U of y such that
F(CLU)) C CI(V). (Let Y be a topological space, then by CI(A)
we denote the closure of A in Y'). The map f is 9—continuous on Y
if it is Y—continuous at each point of Y. (See for example [F], [I-F]
and [J]). A continuous function f : Y — Z is ¥—continuous, but the
converse is true when Z is regular, that is the closed neighbourhoods
of any point form a local base. In what follows by O(Y, Z) we denote
the set of all 9—continuous maps of Y into Z. If 7 is a topology on
the set ©(Y, Z), then the corresponding topological space is denoted
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by O.(Y,Z). Let (Y,7) be a topological space. Then, by Ny (y),
where y € Y we denote the family of all open neighbourhoods of y
inY, that is Ny (y) ={U er:yeU}.

A point z in a a space is in the ¥—closure of a subset A of the
space x € Cly(A) if each open subset V about z satisfies ANCI(V') #
0. A is 9—closed if Cly(A) = A. (See for example [J]).

Let X be aspace and F : X XY — Z be a 9—continuous map. If
F has 9—continuous restrictions to {z} x Y for any z € X, then by
F, where z € X, we denote the J—continuous map of Y into Z, for
which Fp(y) = F(x,y), for every y € Y. By F we denote the map of
X into the set O(Y, Z), for which F(z) = F, for every = € X.

Let G be a map of the space X into the set O(Y, Z). By G we
denote the map of the space X x Y into the space Z, for which
G(z,y) = G(z)(y), for every (z,y) € X x Y.

By S we denote the Sierpinski space, that is, the set {0,1}
equipped with the topology 7(S) = {0,{0,1},{1}}, and by D the
set {0,1} with the trivial topology.

Let A be a family of spaces. A topology 7 on the set O(Y, Z) is
called A — 9—splitting (respectively, A — 9—jointly continuous) (see
[G]) if and only if for every element X of A, the ¥—continuity of a
map F : X XY — Z (respectively, a map G : X — 0,(Y, Z)) implies
the ¥—continuity of the map F : X — 0,(Y, Z) (respectively, of the
map G: X xY — Z).

Obviously, if A is the family of all spaces, then the notions A —
¥—splitting and A — 9—jointly continuous coincide with the notions
J—splitting and J—jointly continuous, respectively. (See [Ci] and
[Ca]). Also, these notions coincide with the notions A—splitting and
A—jointly continuous topologies, respectively if Z is a regular space.
(See [G-I-P4]).

If A = {X}, then instead of “A—9¥—splitting” and “A—9—jointly
continuous” we write “X —¢d—splitting” and “X —4¥—jointly continuo-
us”.
In the present paper we define a relation on the set (Y, Z) of all
¥ —continuous functions of a topological space Y into a topological
space Z and we study the connection of this relation with the notions
of X — ¥—splitting and X — 9—jointly continuous topologies on this
set, where X is the Sierpinski space or X = D.
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2. The relation ” <” on O(Y, Z).

2.1. Definition and notations.

For every space Y with a topology T we define a relation ” <
on Y as follows: if z,y € Y, then we write = -<Ty if and only if
z € Cly({y}) and y € Cly({z}), that is for every U € Ny (z) we have
y € CI(U) and for every V' € Ny (y) we have z € CI(V'). Clearly this
relation is reflexive and symmetric. Also, if the space Y is regular,

then the relation ”<" is an equivalence relation.
We define a relation < on ©(Y, Z) as follows: if g, f € ©(Y, Z),

then we write g < f if and only if g(y) <Tf(y), for every y € Y,
where 7 is the topology of the space Z.

2.2. Theorem.

The following propositions are true:

(1) If a topology T on ©(Y, Z) is S — 9—splitting then from the con-
dition g < f it follows that g < f, where f,g € ©(Y,Z) and Z
reqular.

(2) If from the condition g < f it follows that g <Tf, then the topology
T on O(Y, Z) is S — 9—splitting.

Proof. (1) Let 7 be an S — 9J—splitting topology on O(Y, Z) and
let g < f, where g, f € O(Y, Z). We prove that g %Tf

Let F : SXY — Z be a map for which F(1,y) = f(y) and
F(0,y) = g(y), where y € Y. We prove that F is ¥—continuous.

Let F(1,y) = f(y) and U € Nz(f(y)). Since f is ¥—continuous,
there exists an open neighbourhood V of y in Y such that f(Cl(V)) C
Cl(U). We prove that F(CI(S x V)) C CI(U).

Indeed, if (1,41) € CI(S x V) = S x CIl(V), then F(1,y1) =
f(y1) € CUU). If (0,y1) € CI(S x V), then F(0,y1) = g(y1). Since

g < f we have g(y1) € Cly({f(y1)}) and f(y1) € Cly({g(y1)})-
Hence, g(y1) € Cl(U).
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Now, let F(0,y) = g(y) and U € Nz(g(y))- Since g is #—continu-
ous there exists an open neighbourhood V of y in Y such that
g(Cl(V)) C CI(U). As the above we can prove that F(CI(SxV)) C
Cl(U). Thus, the map F is ¥—continuous.

Since 7 is S—1—splitting the map F:S— 0, (Y, Z) is ¥—continu-
ous. We have that F(1) = f and F(0) = g.

Let W be an open neighbourhood of g in ©,(Y,Z). Since F
is J—continuous there exists an open neighbourhood V' of 0 in S
such that F(CI(V)) C CI(W). Obviously, Ci(V) = S. Hence we
have F(S) C CI(W). Thus, F(1) = f € CI(W) and g € Cly({f}).
Similarly we can prove that f € Cly({g}). Hence g < f.

(2) Let 7 be a topology on ©(Y, Z) such that from the condition
g < f it follows that g —gf. We prove that 7 is S — 9J—splitting.

_ Let F: SXY — Z be a 9—continuous map. Consider the map
F:8S— 0,(Y,Z). Let F(1) = f and F(0) = g. We prove that g < f.

Indeed, let y € Y and let U € Nz(g(y)). We must prove that
f(y) € CI(U). Since F is 9—continuous and F(0,y) = g(y) there
exists an open neighbourhood W = O x V of (0,y) in S X Y such
that

F(CI(OxV))=F

Hence F(1,y) = f(y) € CI(U). Similarly we can prove that if U
is an open neighbourhood of f(y) in Z, then g(y) € CI(U). Thus,
g=<1r i

By assumption g < f. Let U be an open neighbourhood of g in

0.,(Y, Z). Since g —<Tf we have that g € Cly({f}) and f € Cly({g})-
Thus f € CI(U). Hence

—~

S x CI(V)) C CL(U).

~—

F(CI(S)) = F(S) C Cl(U).

Let U be an open neighbourhood of f in ©,(Y, Z). Similarly we
can prove that g € Cl(U) and F(CI(S)) = F(S) C CI(U). Thus the
the map F is ¥—continuous and the topology 7 is S — ©#—splitting.

2.2.1. Corollary.

If Z is a discrete space, then the discrete topology and, hence,
every topology on ©(Y, Z) is S — 9—splitting.
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Proof. Indeed, suppose that Z is a discrete space, then by the
condition g < f, where g, f € O(Y, Z), it follows that g = f. Hence,

g <Tf, for every topology 7 on ©(Y, Z). Thus, by Theorem 2.2, every
topology on ©(Y, Z) is S — J—splitting. O

2.3. Theorem.

The following propositions are true:

(1) If a topology T on O(Y, Z) is S—9—jointly continuous then from
the condition g < f it follows that g < f.

(2) If from the condition g %Tf it follows that g < f and Z regular,
then the topology T on O(Y, Z) is S—I9—jointly continuous.

Proof. (1) Let 7 be an S — 9—jointly continuous topology on
O(Y,Z) and let g -gf, where g, f € O(Y, Z). We prove that g < f.

Let G : S— ©,(Y, Z) be a map for which G(1) = f and G(0) = g.
We prove that G is 9—continuous. Let U be an open neighbourhood
subset of f in ©,(Y, Z). Since g -;f we have that g € CI(U). Hence

G(CI(S)) = G(S) C Cl(U).
Similar if V € Ng_(v,z)(g), then
G(CI(S)) = G(S) C CI(V).

Hence, the map G is —continuous. Since 7 is S —1J—jointly contin-
uous, the map G : SxXY — Z is also ¥—continuous.

Let y € Y and let W € Nz(g(y)). We must prove that f(y) €
Cl(W). Indeed, since the map G is 9—continuous at the point
(0,y) € S x Y there exists an open neighbourhood V x U of (0,y) in
S x Y such that

G(CUV xU)) =G(S x CL(U)) C CUW).

Thus G(1,y) = f(y) € CL(W).
Similar, if W € Nz(f(y)), then g(y) € CI(W). Hence g < f.
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(2) Let 7 be a topology on ©(Y, Z) such that from the condition

g -<Tf it follows that ¢ < f. We prove that 7 is S — J—jointly
continuous.

Let G : S— ©,(Y, Z) be a ¥—continuous map and let G(1) = f
and G(0) = g. We prove that g -<Tf

Indeed, let U be an open neighbourhood of g in ©,(Y, Z). Since
G is ¥—continuous, there exists V € Ng(0) such that

G(CUV)) = G(S) C CI(U).

Hence f € CI(U). Similar, if U € Ng_(v,z)(f), then g € CI(U).
Thus, g <Tf By assumption g < f. N
Consider the map G : SxXY — Z. Then we have G(0,y) = g(y)
and G(1,y) = f(y). We prove that the map @ is ¥—continuous.
Indeed, let W be an open neighbourhood of ¢g(y) in Z. Since g is
©¥—continuous there exists an open neighbourhood V of y in Y such
that g(Cl(V)) C Cl(W). We prove that

G(CI(S x V) = G(S x CL(V)) C CLW).

Let (0,71) € CI(S x V). Then G(0,y1) = g(y1) € CI(W). Now, let
(1,y1) € CI(S x V). Then G(1,y1) = f(y1). Since g < f, we have
that f(y1) € CI(W). This means that the map G is 9—continuous
at the point (0,y). Similarly the map G is Y—continuous at the
point (1,y). Thus the map G is 9—continuous and the topology 7 is
S—9—jointly continuous. O

2.3.1. Corollary.

If Z is a regular space, then the discrete topology T on the set
O(Y, Z) is S — 9—jointly continuous.

Proof. Let 7 be the discrete topology on O(Y, Z). Then from

the condition g < f it follows that ¢ = f and hence g < f. Thus by
Theorem 2.3 the topology 7 is S — ¥—jointly continuous. &
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2.4. Theorem.

A topology T on ©(Y, Z), where Z is a regular space, is simulta-
neously S — 9—splitting and S — 9—jointly continuous if and only if

g
the relations "<" and "<" coincide.

Proof. The proof of this theorem follows by Theorems 2.3 and
3.3. O

2.5. Remarks.

(1) Relevant results for continuous functions there exist in [G-I-P3].

(2) The Theorems 2.2, 2.3 and 2.4 are also true if we replace the
space S by the space D.

2.6 Problems.

We give some problems concerning topologies on O(Y, Z).
Let A be an arbitrary family of spaces.

(1) Does there exist a characterization of the A — 9—splitting and
A — 9—jointly continuous topologies with the relations “<” and
“_; ” ?

(2) Does there exist the finest A —9—splitting topology on ©(Y, Z)?

It is known that on the set C(Y, Z) of all continuous maps of a
space Y into a space Z there exists the finest A-splitting topology.

(See [G-I-Pq]).
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