ON X – ϑ – SPLITTING AND X – ϑ – JOINTLY CONTINUOUS TOPOLOGIES ON FUNCTION SPACES (*)

by D. N. Georgiou (in Volos)(**)

SOMMARIO. - In questo articolo definiamo una relazione su $\Theta(Y,Z)$, l'insieme di tutte le funzioni θ -continue di uno spazio topologico Y in uno spazio topologico Z. Studiamo inoltre la connessione di questa relazione con le nozioni di \mathbf{X} - θ -splitting e di topologie \mathbf{X} - θ -continue su questo insieme, in cui X è lo spazio di Sierpinski oppure $X = \mathbf{D}$.

SUMMARY. - In this paper we define a relation on the set $\Theta(Y,Z)$ of all ϑ -continuous functions of a topological space Y into a topological space Z and we study the connection of this relation with the notions of X- ϑ -splitting and X- ϑ -jointly continuous topologies on this set, where X is the Sierpinski space or $X = \mathbf{D}$.

1. Introduction.

Let Y, Z be topological spaces and let f be a map of Y into Z. Then f is $\vartheta-continuous$ at $y\in Y$ if for every open neighbourhood V of f(y) there exists an open neighbourhood U of y such that $f(Cl(U))\subseteq Cl(V)$. (Let Y be a topological space, then by Cl(A) we denote the closure of A in Y). The map f is $\vartheta-continuous$ on Y if it is $\vartheta-continuous$ at each point of Y. (See for example [F], [I-F] and [J]). A continuous function $f:Y\to Z$ is $\vartheta-continuous$, but the converse is true when Z is regular, that is the closed neighbourhoods of any point form a local base. In what follows by $\Theta(Y,Z)$ we denote the set of all $\vartheta-continuous$ maps of Y into Z. If τ is a topology on the set $\Theta(Y,Z)$, then the corresponding topological space is denoted

^(*) Pervenuto in Redazione il 10 Novembre 1995.

^(**) Indirizzo dell' Autore: University of Thessaly, Faculty of Technological Sciences, Department of Civil Engineering, 38334 Volos (Greece).

by $\Theta_{\tau}(Y, Z)$. Let (Y, τ) be a topological space. Then, by $\mathcal{N}_{Y}(y)$, where $y \in Y$ we denote the family of all open neighbourhoods of y in Y, that is $\mathcal{N}_{Y}(y) = \{U \in \tau : y \in U\}$.

A point x in a a space is in the ϑ -closure of a subset A of the space $x \in Cl_{\vartheta}(A)$ if each open subset V about x satisfies $A \cap Cl(V) \neq \emptyset$. A is ϑ -closed if $Cl_{\vartheta}(A) = A$. (See for example [J]).

Let X be a space and $F: X \times Y \to Z$ be a ϑ -continuous map. If F has ϑ -continuous restrictions to $\{x\} \times Y$ for any $x \in X$, then by F_x , where $x \in X$, we denote the ϑ -continuous map of Y into Z, for which $F_x(y) = F(x,y)$, for every $y \in Y$. By \widehat{F} we denote the map of X into the set $\Theta(Y,Z)$, for which $\widehat{F}(x) = F_x$, for every $x \in X$.

Let G be a map of the space X into the set $\Theta(Y, Z)$. By \widetilde{G} we denote the map of the space $X \times Y$ into the space Z, for which $\widetilde{G}(x,y) = G(x)(y)$, for every $(x,y) \in X \times Y$.

By **S** we denote the Sierpinski space, that is, the set $\{0,1\}$ equipped with the topology $\tau(\mathbf{S}) \equiv \{\emptyset, \{0,1\}, \{1\}\}, \text{ and by } \mathbf{D}$ the set $\{0,1\}$ with the trivial topology.

Let \mathcal{A} be a family of spaces. A topology τ on the set $\Theta(Y,Z)$ is called $\mathcal{A} - \vartheta - splitting$ (respectively, $\mathcal{A} - \vartheta - jointly \ continuous$) (see [G]) if and only if for every element X of \mathcal{A} , the ϑ -continuity of a map $F: X \times Y \to Z$ (respectively, a map $G: X \to \Theta_{\tau}(Y,Z)$) implies the ϑ -continuity of the map $\widehat{F}: X \to \Theta_{\tau}(Y,Z)$ (respectively, of the map $\widehat{G}: X \times Y \to Z$).

Obviously, if \mathcal{A} is the family of all spaces, then the notions $\mathcal{A} - \vartheta$ —splitting and $\mathcal{A} - \vartheta$ —jointly continuous coincide with the notions ϑ —splitting and ϑ —jointly continuous, respectively. (See [C₁] and [C₂]). Also, these notions coincide with the notions \mathcal{A} —splitting and \mathcal{A} —jointly continuous topologies, respectively if Z is a regular space. (See [G-I-P₁]).

If $\mathcal{A} = \{X\}$, then instead of " $\mathcal{A} - \vartheta$ -splitting" and " $\mathcal{A} - \vartheta$ -jointly continuous" we write " $X - \vartheta$ -splitting" and " $X - \vartheta$ -jointly continuous".

In the present paper we define a relation on the set $\Theta(Y, Z)$ of all ϑ -continuous functions of a topological space Y into a topological space Z and we study the connection of this relation with the notions of $X - \vartheta$ -splitting and $X - \vartheta$ -jointly continuous topologies on this set, where X is the Sierpinski space or $X = \mathbf{D}$.

2. The relation " \prec " on $\Theta(Y, Z)$.

2.1. Definition and notations.

For every space Y with a topology τ we define a relation $\overset{\tau}{\sim}$ " on Y as follows: if $x, y \in Y$, then we write $x \overset{\tau}{\sim} y$ if and only if $x \in \operatorname{Cl}_{\vartheta}(\{y\})$ and $y \in \operatorname{Cl}_{\vartheta}(\{x\})$, that is for every $U \in \mathcal{N}_Y(x)$ we have $y \in \operatorname{Cl}(U)$ and for every $V \in \mathcal{N}_Y(y)$ we have $x \in \operatorname{Cl}(V)$. Clearly this relation is reflexive and symmetric. Also, if the space Y is regular, then the relation " $\overset{\tau}{\sim}$ " is an equivalence relation.

We define a relation \prec on $\Theta(Y,Z)$ as follows: if $g, f \in \Theta(Y,Z)$, then we write $g \prec f$ if and only if $g(y) \stackrel{\tau}{\prec} f(y)$, for every $y \in Y$, where τ is the topology of the space Z.

2.2. Theorem.

The following propositions are true:

- (1) If a topology τ on $\Theta(Y,Z)$ is $\mathbf{S} \vartheta$ -splitting then from the condition $g \prec f$ it follows that $g \prec f$, where $f,g \in \Theta(Y,Z)$ and Z regular.
- (2) If from the condition $g \prec f$ it follows that $g \stackrel{\tau}{\prec} f$, then the topology τ on $\Theta(Y, Z)$ is $\mathbf{S} \vartheta$ -splitting.

Proof. (1) Let τ be an $\mathbf{S} - \vartheta$ —splitting topology on $\Theta(Y, Z)$ and let $g \prec f$, where $g, f \in \Theta(Y, Z)$. We prove that $g \stackrel{\tau}{\prec} f$.

Let $F: \mathbf{S} \times Y \to Z$ be a map for which F(1,y) = f(y) and F(0,y) = g(y), where $y \in Y$. We prove that F is ϑ -continuous.

Let F(1,y) = f(y) and $U \in \mathcal{N}_Z(f(y))$. Since f is ϑ -continuous, there exists an open neighbourhood V of y in Y such that $f(Cl(V)) \subseteq Cl(U)$. We prove that $F(Cl(\mathbf{S} \times V)) \subset Cl(U)$.

Indeed, if $(1, y_1) \in Cl(\mathbf{S} \times V) = \mathbf{S} \times Cl(V)$, then $F(1, y_1) = f(y_1) \in Cl(U)$. If $(0, y_1) \in Cl(\mathbf{S} \times V)$, then $F(0, y_1) = g(y_1)$. Since $g \prec f$ we have $g(y_1) \in Cl_{\vartheta}(\{f(y_1)\})$ and $f(y_1) \in Cl_{\vartheta}(\{g(y_1)\})$. Hence, $g(y_1) \in Cl(U)$.

Now, let F(0,y) = g(y) and $U \in \mathcal{N}_Z(g(y))$. Since g is ϑ -continuous there exists an open neighbourhood V of y in Y such that $g(Cl(V)) \subseteq Cl(U)$. As the above we can prove that $F(Cl(\mathbf{S} \times V)) \subseteq Cl(U)$. Thus, the map F is ϑ -continuous.

Since τ is $\mathbf{S} - \vartheta$ —splitting the map $\widehat{F} : \mathbf{S} \to \Theta_{\tau}(Y, Z)$ is ϑ —continuous. We have that $\widehat{F}(1) = f$ and $\widehat{F}(0) = g$.

Let W be an open neighbourhood of g in $\Theta_{\tau}(Y, Z)$. Since \widehat{F} is ϑ -continuous there exists an open neighbourhood V of 0 in \mathbf{S} such that $\widehat{F}(Cl(V)) \subseteq Cl(W)$. Obviously, $Cl(V) = \mathbf{S}$. Hence we have $\widehat{F}(\mathbf{S}) \subseteq Cl(W)$. Thus, $\widehat{F}(1) = f \in Cl(W)$ and $g \in Cl_{\vartheta}(\{f\})$. Similarly we can prove that $f \in Cl_{\vartheta}(\{g\})$. Hence $g \prec f$.

(2) Let τ be a topology on $\Theta(Y, Z)$ such that from the condition $g \prec f$ it follows that $g \stackrel{\tau}{\prec} f$. We prove that τ is $S - \vartheta$ -splitting.

Let $F: \mathbf{S} \times Y \to Z$ be a ϑ -continuous map. Consider the map $\widehat{F}: \mathbf{S} \to \Theta_{\tau}(Y, Z)$. Let $\widehat{F}(1) = f$ and $\widehat{F}(0) = g$. We prove that $g \prec f$.

Indeed, let $y \in Y$ and let $U \in \mathcal{N}_Z(g(y))$. We must prove that $f(y) \in Cl(U)$. Since F is ϑ -continuous and F(0,y) = g(y) there exists an open neighbourhood $W = O \times V$ of (0,y) in $\mathbf{S} \times Y$ such that

$$F(Cl(O \times V)) = F(\mathbf{S} \times Cl(V)) \subseteq Cl(U).$$

Hence $F(1,y) = f(y) \in Cl(U)$. Similarly we can prove that if U is an open neighbourhood of f(y) in Z, then $g(y) \in Cl(U)$. Thus, $g \prec f$.

By assumption $g \stackrel{\tau}{\prec} f$. Let U be an open neighbourhood of g in $\Theta_{\tau}(Y,Z)$. Since $g \prec f$ we have that $g \in Cl_{\vartheta}(\{f\})$ and $f \in Cl_{\vartheta}(\{g\})$. Thus $f \in Cl(U)$. Hence

$$\widehat{F}(Cl(\mathbf{S})) = \widehat{F}(\mathbf{S}) \subseteq Cl(U).$$

Let U be an open neighbourhood of f in $\Theta_{\tau}(Y, Z)$. Similarly we can prove that $g \in Cl(U)$ and $\widehat{F}(Cl(\mathbf{S})) = \widehat{F}(\mathbf{S}) \subseteq Cl(U)$. Thus the the map \widehat{F} is ϑ -continuous and the topology τ is $\mathbf{S} - \vartheta$ -splitting. \diamondsuit

2.2.1. Corollary.

If Z is a discrete space, then the discrete topology and, hence, every topology on $\Theta(Y, Z)$ is $S - \vartheta - splitting$.

Proof. Indeed, suppose that Z is a discrete space, then by the condition $g \prec f$, where $g, f \in \Theta(Y, Z)$, it follows that g = f. Hence, $g \stackrel{\tau}{\prec} f$, for every topology τ on $\Theta(Y, Z)$. Thus, by Theorem 2.2, every topology on $\Theta(Y, Z)$ is $\mathbf{S} - \vartheta$ —splitting.

2.3. Theorem.

The following propositions are true:

- (1) If a topology τ on $\Theta(Y,Z)$ is $\mathbf{S}-\vartheta$ -jointly continuous then from the condition $g \prec^{\tau} f$ it follows that $g \prec f$.
- (2) If from the condition $g \stackrel{\tau}{\prec} f$ it follows that $g \prec f$ and Z regular, then the topology τ on $\Theta(Y, Z)$ is $\mathbf{S} \vartheta jointly$ continuous.

Proof. (1) Let τ be an $\mathbf{S} - \vartheta$ -jointly continuous topology on $\Theta(Y,Z)$ and let $g \stackrel{\tau}{\prec} f$, where $g,f \in \Theta(Y,Z)$. We prove that $g \prec f$. Let $G: \mathbf{S} \to \Theta_{\tau}(Y,Z)$ be a map for which G(1) = f and G(0) = g. We prove that G is ϑ -continuous. Let U be an open neighbourhood subset of f in $\Theta_{\tau}(Y,Z)$. Since $g \stackrel{\tau}{\prec} f$ we have that $g \in Cl(U)$. Hence

$$G(Cl(\mathbf{S})) = G(\mathbf{S}) \subseteq Cl(U).$$

Similar if $V \in \mathcal{N}_{\Theta_{\tau}(Y,Z)}(g)$, then

$$G(Cl(\mathbf{S})) = G(\mathbf{S}) \subset Cl(V).$$

Hence, the map G is ϑ -continuous. Since τ is $\mathbf{S} - \vartheta$ -jointly continuous, the map $\widetilde{G}: \mathbf{S} \times Y \to Z$ is also ϑ -continuous.

Let $y \in Y$ and let $W \in \mathcal{N}_Z(g(y))$. We must prove that $f(y) \in Cl(W)$. Indeed, since the map \widetilde{G} is ϑ -continuous at the point $(0,y) \in \mathbf{S} \times Y$ there exists an open neighbourhood $V \times U$ of (0,y) in $\mathbf{S} \times Y$ such that

$$\widetilde{G}(Cl(V \times U)) = \widetilde{G}(\mathbf{S} \times Cl(U)) \subseteq Cl(W).$$

Thus $\widetilde{G}(1,y) = f(y) \in Cl(W)$.

Similar, if $W \in \mathcal{N}_Z(f(y))$, then $g(y) \in Cl(W)$. Hence $g \prec f$.

(2) Let τ be a topology on $\Theta(Y,Z)$ such that from the condition $g \prec f$ it follows that $g \prec f$. We prove that τ is $\mathbf{S} - \vartheta$ -jointly continuous.

Let $G: \mathbf{S} \to \Theta_{\tau}(Y, Z)$ be a ϑ -continuous map and let G(1) = f and G(0) = g. We prove that $g \stackrel{\tau}{\prec} f$.

Indeed, let U be an open neighbourhood of g in $\Theta_{\tau}(Y, Z)$. Since G is ϑ -continuous, there exists $V \in \mathcal{N}_{\mathbf{S}}(0)$ such that

$$G(Cl(V)) = G(\mathbf{S}) \subset Cl(U).$$

Hence $f \in Cl(U)$. Similar, if $U \in \mathcal{N}_{\Theta_{\tau}(Y,Z)}(f)$, then $g \in Cl(U)$. Thus, $g \stackrel{\tau}{\prec} f$. By assumption $g \prec f$.

Consider the map $\widetilde{G}: \mathbf{S} \times Y \to Z$. Then we have $\widetilde{G}(0,y) = g(y)$ and $\widetilde{G}(1,y) = f(y)$. We prove that the map \widetilde{G} is ϑ -continuous.

Indeed, let W be an open neighbourhood of g(y) in Z. Since g is ϑ -continuous there exists an open neighbourhood V of y in Y such that $g(Cl(V)) \subseteq Cl(W)$. We prove that

$$\widetilde{G}(Cl(\mathbf{S} \times V)) = \widetilde{G}(\mathbf{S} \times Cl(V)) \subseteq Cl(W).$$

Let $(0, y_1) \in Cl(\mathbf{S} \times V)$. Then $\widetilde{G}(0, y_1) = g(y_1) \in Cl(W)$. Now, let $(1, y_1) \in Cl(\mathbf{S} \times V)$. Then $\widetilde{G}(1, y_1) = f(y_1)$. Since $g \prec f$, we have that $f(y_1) \in Cl(W)$. This means that the map \widetilde{G} is ϑ -continuous at the point (0, y). Similarly the map \widetilde{G} is ϑ -continuous at the point (1, y). Thus the map \widetilde{G} is ϑ -continuous and the topology τ is $\mathbf{S} - \vartheta$ -jointly continuous.

2.3.1. Corollary.

If Z is a regular space, then the discrete topology τ on the set $\Theta(Y,Z)$ is $\mathbf{S} - \vartheta - jointly$ continuous.

Proof. Let τ be the discrete topology on $\Theta(Y, Z)$. Then from the condition $g \stackrel{\tau}{\prec} f$ it follows that g = f and hence $g \prec f$. Thus by Theorem 2.3 the topology τ is $\mathbf{S} - \vartheta$ -jointly continuous. \diamondsuit

2.4. Theorem.

A topology τ on $\Theta(Y, Z)$, where Z is a regular space, is simultaneously $S - \vartheta - splitting$ and $S - \vartheta - jointly$ continuous if and only if the relations " \prec " and " \prec " coincide.

Proof. The proof of this theorem follows by Theorems 2.3 and 3.3.

2.5. Remarks.

- (1) Relevant results for continuous functions there exist in [G-I-P₂].
- (2) The Theorems 2.2, 2.3 and 2.4 are also true if we replace the space **S** by the space **D**.

2.6 Problems.

We give some problems concerning topologies on $\Theta(Y, Z)$. Let \mathcal{A} be an arbitrary family of spaces.

- (1) Does there exist a characterization of the $\mathcal{A} \vartheta$ -splitting and $\mathcal{A} \vartheta$ -jointly continuous topologies with the relations " \prec " and " $\overset{\tau}{\prec}$ "?
- (2) Does there exist the finest $\mathcal{A} \vartheta$ —splitting topology on $\Theta(Y, Z)$? It is known that on the set C(Y, Z) of all continuous maps of a space Y into a space Z there exists the finest \mathcal{A} -splitting topology. (See [G-I-P₁]).

REFERENCES

[A-D] Arens R. and Dugundji J., Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31.

- [C₁] DI CONCILIO ANNA, On ϑ -continuous convergence in function spaces, Estratto da Rendiconti di Matematica 1 (1984), Vol. 4, Serie VII, 85-94.
- [C₂] DI CONCILIO ANNA, Exponential law and ϑ -continuous functions, Quaestiones Mathematicae, 8 (1985), 131-142. tex dim15
- [F] Fomin S., Extensions of topological spaces, Ann. Math. 44 (1943), pp. 471-480.
- [G] Georgiou D. N., A few remarks concerning ϑ -continuous functions and topologies on function spaces, Journal of Institute of Mathematics and Computer Sciences (Mathematics Series), to appear.
- [G-I-P₁] GEORGIOU D. N., ILIADIS S. D. and PAPADOPOLOUS B. K., Topologies on function spaces, Studies in Topology VII, Zap. Nauchn. Sem. S.-Peterburg Otdel. Mat. Inst. Steklov (POMI) 210 (1992), 82-97.
- [G-I-P₂] GEORGIOU D. N., ILIADIS S. D. and PAPADOPOLOUS B. K., Topologies and orders on function spaces, Publ. Math. Debrecen, 46/ 1-2 (1995), 1-10.
 - [I-F] ILIADIS S. D. and FOMIN S., The method of centred systems in theory of topological spaces, Uspekhi Mat. Nauk. 21 (1966), 47-76=Russian Math. Surveys, 21 (1966), 37-62.
 - [J] JOSEPH J., ϑ closure and ϑ -subclosed graphs, Math. Chronicle 8 (1979), 99-117.