ON DANIELL INTEGRALS AND COMPACT SUPPORTS (*)

by Franco Chersi (in Trieste)(**)

Sommario. - Un integrale di Daniell definito su tutto $C(X,\mathbb{R})$ equivale ad una misura di Radon a supporto compatto.

Summary. - A Daniell integral defined on all of $C(X, \mathbb{R})$ is a Radon measure with compact support.

Let X be a completely regular Suslin space (e.g. a Polish space), and $C(X, \mathbb{R})$ be the vector lattice of all real continuous functions on X.

THEOREM. Let μ be a bounded linear form on $C(X,\mathbb{R})$. Then the following conditions are equivalent:

- (a) μ^+ and μ^- are Daniell integrals.
- (b) the finite, signed Radon measure $m=m^+-m^-$, corresponding to $\mu=\mu^+-\mu^-$, has compact support.
- (c) μ^+ and μ^- are continuous relative to the topology of compact convergence.

Lavoro eseguito nell'ambito dei progetti di ricerca del MURST.

^(*) Pervenuto in Redazione il 20 Settembre 1995.

^(**) Indirizzo dell'Autore: Dipartimento di Scienze Matematiche, Università di Trieste, I 34100 Trieste. E-mail: Chersi@univ.trieste.it

- *Proof.* (b) \Longrightarrow (c). Let the net f_{α} converge to f uniformly on every compact, in particular on $supp\ (m)$; since $m^+(X)$ and $m^-(X)$ are finite, the standard argument holds.
- $(c) \Longrightarrow (a)$. Let f_{α} be a net of continuous functions, having a first element f_1 , decreasing and converging to zero, therefore converging uniformly on every compact set; then

$$\lim_{\alpha} \mu^{+}(f_{\alpha}) = 0 \quad \text{and} \quad \lim_{\alpha} \mu^{-}(f_{\alpha}) = 0.$$

 $(a) \Longrightarrow (b)$. It is sufficient to deal with μ^+ and the corresponding measure m^+ , defined at least on the Baire σ -algebra $\mathcal{A}(X)$; $\mu^+(1) < +\infty$. Since X is a Suslin space and the continuous functions separate the points, $\mathcal{A}(X) = \mathcal{B}(X)$ and μ^+ is a Radon measure (see [4] p.41 and [3] chap. II, Theorem 10). If $supp(m^+)$ were not compact, by the facts that m^+ is Radon and X is completely regular there would be a sequence of functions $f_n \in C(X, \mathbb{R})$, positive, with disjoint compact supports, such that $\sum_n f_n \in C(X, \mathbb{R})$, for all $n \int f_n dm^+ = 1$ and therefore $\mu^+(\sum_n f_n) = +\infty$, against the assumptions (as in [2], vol. III, p. 177, where X was locally compact).

REMARK. The equivalence between "having compact support" and "being continuous in the topology of uniform convergence ... on compact sets" is well-known for Schwartz distributions on \mathbb{R}^n . Is it true also for distributions on \mathbb{R}^ω (i.e. in countably many variables)? See [1], Problem 2.

I am grateful to dr. P. Celada and prof. A. Volčič for some useful conversations.

REFERENCES

[1] CHERSI F. and GUARRERA S., A Kolmogorov-like extension theorem for distributions with compact supports, Rivista di Matematica Pura ed Applicata (Univ. of Udine, Italy), n. 20 (to appear).

- [2] Choquet G., Lectures on Analysis, W. Benjamin, 1969.
- [3] Schwartz L., Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute, Oxford University Press, 1973.
- [4] Thomas E.G.F. and Volčič A., Daniell integrals represented by Radon measures, Rend. Circolo Mat. Palermo, ser. II, **XXXVIII** (1989), p. 39-59.