ON DANIELL INTEGRALS
AND COMPACT SUPPORTS (*)

by FRANCO CHERSI (in Trieste)(**)

SOMMARIO. - Un integrale di Daniell definito su tutto C(X,R) equivale
ad una misura di Radon a supporto compatto.

SUMMARY. - A Daniell integral defined on all of C(X,R) is a Radon mea-
sure with compact support.

Let X be a completely regular Suslin space (e.g. a Polish space),
and C(X,R) be the vector lattice of all real continuous functions on
X.

THEOREM. Let p be a bounded linear form on C(X,R). Then
the following conditions are equivalent:

(a) u* and p~ are Daniell integrals.

(b) the finite, signed Radon measure m = m™* —m™, corresponding
to p = put — u~, has compact support.

(¢) ut and p~ are continuous relative to the topology of compact
convergence.

Lavoro eseguito nell’ambito dei progetti di ricerca del MURST.

(*) Pervenuto in Redazione il 20 Settembre 1995.
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Proof. (b)) = (c). Let the net f, converge to f uniformly on
every compact, in particular on supp (m); since m*(X) and m~(X)
are finite, the standard argument holds.

(¢) = (a). Let f, be a net of continuous functions, having a first
element f1, decreasing and converging to zero, therefore converging
uniformly on every compact set; then

limp™(fa) =0  and  limp (fo) =0.

(a) = (b). It is sufficient to deal with u™ and the corresponding
measure ™", defined at least on the Baire o—algebra A(X); p*(1) <
+00. Since X is a Suslin space and the continuous functions separate
the points, A(X) = B(X) and u* is a Radon measure (see [4] p.41
and [3] chap. II, Theorem 10). If supp(m™) were not compact, by the
facts that m™ is Radon and X is completely regular there would be a
sequence of functions f,, € C(X,R) , positive, with disjoint compact
supports, such that >, f, € C(X,R), for all n [f,dm™ = 1 and
therefore p* (Y, fn) = +00, against the assumptions (as in [2], vol.
III, p. 177, where X was locally compact).

REMARK. The equivalence between ”having compact support”
and "being continuous in the topology of uniform convergence ... on
compact sets” is well-known for Schwartz distributions on R” . Is it
true also for distributions on R¥ (i.e. in countably many variables)?
See [1], Problem 2.

I am grateful to dr. P. Celada and prof. A. Vol¢i¢ for some useful
conversations.
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