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SOMMARIO. - In questo articolo consideriamo un problema al bordo non-
lineare periodico com un termine forzante discontinuo. Assumendo che
loperatore alle derivate parziali soddisfi le condizioni di Leray-Lions, il
termine di perturbazione discontinua sia localmente a variazione limi-
tata e che esistano una soprasoluzione ¢ ed una sottosoluzione v tali
che ¥ < ¢, proviamo lesistenza di una soluzione periodica massimale
e minimale all’interno dell’intervallo ordinato [, ] di un problema
multivoco appropriatamente definito. Il nostro approccio é basato sulla
decomposizione di Jordan nel caso di termine a perturbazione discon-
tinua dovuta a Stuart [21] e su di un teorema di punto fisso per mappe
monotone in strutture ordinate.

SUMMARY. - In this paper we consider a nonlinear periodic boundary value
problem with o discontinuous forcing term. Assuming that the partial
differential operator satisfies the Leray-Lions conditions, that the dis-
continuous perturbation term is locally of bounded variation and that
there exist an upper solution ¢ and a lower solution ¢ such that ¢ < ¢,
we prove the existence of a maximal and a minimal periodic solution
within the order interval [1, @] of an appropriately defined multivalued
problem. Our approach is based on a Jordan-type decomposition for the
discontinuous perturbation term due to Stuart [21] and on a fized point
theorem for monotone maps in order structures.
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1. Introduction.

In a series of interesting papers Stuart [19], [20], [21] and Stuart-
Toland [22] studied ordinary differential equations and semilinear
elliptic boundary value problems involving discontinuous nonlinear-
ities. It is well-known that such problems need not have a solution
even under restrictive hypotheses. The paper of Stuart [19] contains
some characteristic examples illustrating this. It is then a good idea
to replace the original equation by a multivalued version of it. In [21]
Stuart isolated a broad class of nonlinearities which lead to multi-
valued problems obtained by filling only the downward jumps of the
original function. So if all the jumps are upward (i. e. f(r~) < f(r*)
for every r € R) then the single-valued and multivalued versions of
the problem produce the same set of solutions. In his main exis-
tence theorem Stuart [21, Theorem 3.1] proved the existence of a
maximal and a minimal solution located in the order interval de-
termined by an upper and a lower solution. In [22] Stuart-Toland
developed a variational method to deal with such problems based on
the nonconvex duality theory of Toland [23]. We should also men-
tion the relevant works of Rauch [18] and Chang [5] who also deal
with semilinear elliptic systems involving discontinuities. Rauch [18]
used mollification techniques to establish the existence of a solution
between an upper and a lower solution for problems in which the
discontinuous nonlinearity is not monotone and we only assume that
f(-) ultimately increases (i. e. limy_,—oo f(t) < lim, , . f(¢)). Chang
[5] used critical point theory for nondifferentiable functionals to deal
with such problems. Finally we should also mention the more recent
important works of Ambrosetti-Badiale [25] and Ambrosetti-Turner
[26], which use an approach based on a dual variational principle,
which yields a functional which is more regular than that arising
from a direct variational principle involving the Dirichlet integral.

The study of analogous dynamic (parabolic) problems is lagging
behind. Only recently some special semilinear initial-boundary value
problems were considered by Carl-Heikkila [4] and Feireisl-Norbury
[9].

In this paper using the discontinuities introduced by Stuart [21],
we examine nonlinear periodic parabolic boundary value problems
and with the help of an upper solution ¢ and a lower solution v, we
establish the existence of a maximum and a minimum periodic solu-
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tion located in the order interval [1, ¢] (assuming ¥ < ).

2. Mathematical preliminaries.

Let 7 = [0,b] and Z C RN be a bounded domain with a C?-
boundary I'. We consider the following periodic parabolic boundary
value problem:

N
— — Y Dyay(t, 2, Dx) = f(x(t,z)) inTxZ (1)
k=1

z(0,z) = z(b,z) a.e.onZ, z|rxr =0

where Dy, = % k=1,2,...,Nand D = (Dk),];]:l.

Here f : R — R is discontinuous nonlinear perturbation term.
We impose the following conditions on the data of (1):

H(): ap: TxZxRY — R k€ {1,2,...,N} are functions
such that
(1) (t,z) — ag(t,z,&) is measurable,
(ii)) & — ag(t, 2z,£) is continuous,

(iii) |ax(t,2,&)| < Bi(t, 2) + c1||l€]|P™" a. e. on T x Z for every
¢ € NV and with 8, € LYT x Z), ¢, > 0, 2 < p <
1 1

0, — +-= ]-7
rp q
N
(lV) Z(ak(tazag) - Gk(t,z,gl))(é-k _g;c) >0a.e. onT x Z for
k=1
every ¢, & € RV with € # ¢/, and
N
(v) Zak(t,z,ﬁ)fk > &léllby — Ba(t,2) a. e. on T x Z with
k=1

co>0and B € LT x Z).

REMARK. These are the standard Leray-Lions conditions on the
coefficient function ag(t, z,§); cf. Lions [15].
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H(f): f:R — R is a function of bounded variation on every
compact interval in R and f(r) € f (r) for every r € R, where
f(r) = conv{f(r*), f(r™)} with f(r*) = lim, o+ f(r+¢) and
f(r7) = lim._,o+ f(r — ).

The following decomposition property of f(-) will be crucial in our
subsequent considerations and can be found in Stuart [21, Lemma
2.1].

LEMMA 1. If f : R — R satisfies hypothesis H(f) and I is
a bounded open interval in R, then there exist two nondecreasing
functions g: I — R and h : I — R such that

(a) f(r)=g(r) — h(r) for every r € I;
(b) g(-) is continuous on {r € I: f(r™) >

f
(c) h(-) is continuous on {r € I: f(r~) < f(r1)}.

REMARK. According to Lemma 1 a function f : R — R sat-
isfying H(f), when restricted to a bounded open interval I admits
a decomposition as the difference of two nondecreasing functions
g(+) and h(-) (Jordan decomposition), with g(-) continuous at those
points where a downward jump occurs and h(-) continuous at those
points where an upward jump occurs.

_ Lemma 1 leads us to a convenient expression for the multifunction
f(r) at those points where a downward jump occurs (cf. Stuart [21,
Lemma 2.2]).

LEMMA 2. If f : R — R satisfies hypothesis H(f), I is a
bounded open interval and f = g — h is the decomposition of f(-)
established in Lemma 1, then f(r) = g(r) — h(r) for every r € I for
which we have f(rt) < f(r™).

So for a function f : R — R satisfying H(f), we can define:

F(r) = { {f(r)} if f(r=) < f(rt)
F6) =176, £6)) 76 < 76)
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~

and observe that by virtue of Lemma 2, F(r) = g(r) — h(r) for every
r € R. Then we replace problem (1) by the following multivalued
version of it:

‘9—"’—%17 au(t, 2, Dz) € F(a(t,2)) inT x Z

ot Pt kWE\L, <, ’ (2)

z2(0,2z) = z(b,z) a.e.onZ, zlrxr =0

It is this problem that we will study in the sequel. Let W'P(Z) be
the usual Sobolev space and W1P(Z)* its dual. Then the spaces
WP(Z) C L?(Z) C WYP(Z)* form an evolution triple with all em-
bedding being continuous, dence and compact (cf. Zeidler [24]). Also
by WO1 P(Z) we denote the subspace of W!(Z) whose elements have
zero trace (i. e. Wy*(Z) = keryy with () being the trace opera-
tor). As usual by W~14(Z) we denote the dual of W,*(Z). Then
W, ?(Z) C L*(Z) C W~14(Z) is also an evolution triple with all
embeddings being again continuous, dense and compact. Then we
introduce the following function spaces:

qu(T) = {f e LP(T,W'P(Z)) : % € LY(T, Wl’p(Z)*)}
and
Wye(T) = {f € LP(T, WOI”’(Z)) : % € LY(T, W‘l’q(Z))}.

Here the derivative % 1s understood in the sense of vector-valued

distributions. Both spaces endowed with the obvious norm || f||,q =
Il fllp+]|fllg: become Banach spaces which are separable reflexive due
to the separability and reflexivity of the Lebesgue-Bochner spaces
LP(T, W'P(Z)), LT, W'P(Z)*) and L (T, W;*(Z)), LYT, W 14
(2). "’

Moreover, we know that both Wy, and Wp,(T) embed contin-
uously in C(T, L%(Z)) and compactly in LP(T x Z) (cf. Lions [15,
Theorem 5.1, p. 58], and Zeidler [24, Proposition 23.23, p. 422 and
p. 450]).

By virtue of hypothesis H(a) we can define the semilinear Dirich-
let form a : LP(T,W'P(Z)) x LP(T,W'P(Z)) — R, by

b N
a(we,y) = [ [ 3 axlt,z Da)Dyy(t, ) i,
k=1
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where as we already said Dy = % ke {1,2,...,N} and D =
(ch)kN:1-

In what follows by ((+,-)) we will denote the duality brackets be-
tween LP(T,W'P(Z)) and LI(T,W'P(Z)*) and also between LP (T,
W,?(Z)) and LI(T,W~19(Z)). Recall that if X is a reflexive Ba-
nach space (or even more generally if X* has the Radon-Nikodym
property) and 1 < p < oo, then LP(T, X)* = LI(T, X™*), % —I—% =1
(cf. Diestel-Uhl [8, Theorem 1, p. 98]).

DEFINITION 3. A function ¢ € qu(T) is said to be an “upper
solution” of (1) if

((%f’“)) +alpu) 2 /Ob/zf(w(t,Z))U(t,Z) dzdt

for all u € LP(T, Wy P(Z)) N LP(T x Z)., (0,z) > @(b,z) a. e. on
Z and @|rxr > 0.

Similarly a function ¢ € qu(T) is a “lower solution” to (1) if
the inequalities in the above definition are reversed.

Hj: there exist an upper solution ¢ and a lower solution v such that
P <@ and ,p € L®(T x Z).

REMARK. We can drop the requirement that 1, p € L*(T x Z)
at the expense of strengthening hypothesis H(f) by assuming that
f(-) is of bounded variation on all of R. Moreover in this case we
also need to assume that g(o(-,-)), g(4(,-)), h(e(:,-)), h(3(-,-)) all
belong in LY(T,L?(Z)). It should be pointed out that Deuel-Hess
[7], Mokrane [16] and Boccardo-Muart-Puel [3] incorporate in their
definition of upper and lower solutions the assumption that they
belong in L*®(T x Z).

Let us now introduce the notion of a (weak) solution for problem

2).

DEFINITION 4. A function z € W),(T) is said to be a solution
of (2) if there exists a function v € LY(T x Z) such that v(t,z) €
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F(z(t,z)) a. e.on T x Z and

((%’10) +a(z,u) = /Ob/zfu(t,z)u(t,z) dzdt

for all u € LP(T, Wy(Z)).

The standard pointwise partial ordering on LP(T'x Z) (i.e. z < y
if and only if y — z € LP(T x Z); = {the set of all nonnegative
elements in LP(T x Z)}) induces a corresponding partial ordering in
qu(T)- So we can define [, ¢] = {y € V/[?pq(T) rop <y < gl
the order interval determined by ¢ < . We will be looking for the
extremal solutions of (2) in [, ¢]. By this we mean the greatest
solution z* and the least solution z, of (2) within the order interval
[1,¢]. So if z is any solution of (2) in [¢, ], we have z, < z < z*.

3. An auxiliary periodic problem.

In this section with the help of a truncation and a penalization
functions (cf. Deuel-Hess [6]), we introduce and solve an auxiliary
problem which will be used in the sequel.

First we consider the truncation function. So givenz € LP(T, WP
(Z)) we define its truncation 7(z)(-,-) as follows:

<
T(z)(t,2) =< z(t,z) if P(t,2) <
<

PROPOSITION 5. 7 : LP(T,W'P(Z)) — LP(T,W'P(Z)) is con-
tinuous.

Proof. First observe by virtue of Lemma 7.6, p. 145 of Gilbarg-
Trudinger [10] we have that for almost all t € T, 7(z)(t,-) € WP (Z)
(indeed just note that given any two functions z1, z2, max(x1,x2) =
To + (71 — x2)* and min(z1,23) = 22 — (71 — 22)~ and then apply
the aforementioned result of Gilbarg-Trudinger). Therefore 7(z) €
LP(T,W'P(Z)). Next let z, — = in LP(T,W'P(Z)). Then by pass-
ing to a subsequence if necessary we may assume that z,(t,z) —
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z(t,z) a. e.on T'x Z, Dyxy(t,z) — Dypx(t, z) a. e. on T'x Z for every
k € {1,2,...,N} and by virtue of Theorem 2.8.1, p. 74 of Kufner-
John-Fuéik [14], we can find 0,60, € LP(T'x Z) k € {1,2,..., N} such
that |z, (¢,2)| < 0(t,2) and |Dgxy(t, 2)| < 0(t,2) a.e.on T x Z.

Observe that 7(zy,)(t,2) — 7(z)(t,2) a.e. on T'x Z and |7(zy,)(t,
z)| < max{0(t, z), |¢(t, 2)|, |1(t, 2)|} a. e.on T x Z. So via the domi-
nated convergence theorem we get that 7(x,) — 7(x) in LP(T X Z).
Also using once again Lemma 7.6, p. 145 of Gilbarg-Trudinger [10]
we see that for every y € LP(T, W?(Z)) we have

Dy(t,z) if o(t,z) <yt 2)
Dr(y)(t,z) = Dy(t,z) if o(t.2) <y(t,2) <ot 2)
Dy(t,z) if y(t,z) <P(t,2)
In the light of this we have that D7 (zy)(t,2) — D7(x)(¢,2) a. e.
on T x Z and moreover

|Dp7(z0)(t, 2)] < 6k(t,2) + |Dre(t, z)|+

+ |Dpyp(t,z)] a.e.onT x Z

for every k € {1,2,...,N}. Thus by the dominated convergence
theorem we have that D7(z,) — D7(z) in LP(T x Z) and so we
finally conclude that 7(z,) — 7(z) in LP(T,W'P(Z)) establishing
the continuity of z — 7(z). &

Also we introduce a penalty function v : T'X Z X R — R, defined
by
(z—t,2)P" it ptz) <z
u(t, z,x) = 0 if YP(t,z) <z <tz) .
_(w(taz) - x)pil if z < w(taz)
A straightforward elementary calculation reveals that the following
is true about the penalty function:

PROPOSITION 6. u : T X Z X R —> R is a Caratheodory func-
tion (i. e. measurable in (t,z) and continuous in z), |u(t,z,z)| <
B3(t,z) + c3|z[P~! a. e. on T x Z with B3 € LI(T x Z), c3 > 0 and

/ob /Z u(t, z,z(t, 2))2(t, 2) dzdt

-1
> C4||a:||1£p(TXz) — C5||ac||"£p(TXz) for some cq,c5 > 0.
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Now let K = {y € LT x Z) : 4(t,z) <y(t,z) < p(t, z) a. e. on
T x Z}. So K is the order interval in L?(T x Z) determined by the
functions ¥ < . Given y € K we consider the following periodic
boundary value problem:

( \

gf ZDkak (t, 2, Dz) € gly(t, 2)) — h(r(z)(t 2))+
k=1

—u(t,z,z(t,z)) inT x Z

z(0,2) = z(b, z) a.e. on Z, z|pxr =0

PROPOSITION 7. If hypotheses H(a), Hy and H(f) hold, then
problem (3) has unique solution R(y)(-,-) € Wye(T).

Proof. In what follows we consider the evolution triple X =
W, P(Z), H = L*(Z) and X* = W~ 14(Z) (recall that all the embed-
dings are continuous dense and compact). Let L: V C LP(T, X) —
LYT,X*) be defined by L(z) = ‘9“ for z € V = {y € Wp(T) :
y(0) = y(b)} (as before 2 5t is to be understood in the sense of vector-
valued distributions). From Zeidler [24, Proposition 32.10, p. 855]
we know that L(-) is maximal monotone.

Next let G : LP(T, X) — 22/(1X7) be defined by

((G(z),y)) = a(m,y)—l—/b/ v(t, 2)y(t, z) dzdt+
+// (t, 2, 2(t, 2))y(t, 2) dzdt -
h(r(z)(t,2)) a. e. onT X Z,
v € L4(T, H) C Lq(T,X*)}.

From Krasnoselskii’s theorem we see that G(-) is a bounded set-
valued operator with closed and convex values. Moreover since h(-)
is upper semicontinuous as a multifunction (cf. Klein-Thompson [13,
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p. 75]), we see at once that G(-) is upper semicontinuous from each
finite-dimensional subspace of Wy, (T') into L(T, X*).

Also let {z,}n>1 € Wye(T'), wy € G(2,) and assume that z, 2
z in LP(T,X), (wp,y)) — ((w,y)) for every y € Wpe(T) and
Iim((wy,Ty)) < ((w,z)). Note that

((wn, zn)) = a(wn, zn) + ((vn, zn)) + (U(zn), z0))

with v, € LY(T, H), va(t,2) € h(t(z,)(t,2)) a. e. on T x Z and
U(zn)(t, z) = u(t,z,z,(t,2)). Since |v,(t,2)| < h(p(t,2)) a. e. on
T x Z, by passing to a subsequence if necessary, we may assume that
vy — v in LI(T x Z) and v(t,z) € h(r(z)(t,2)) a. e.on T x Z
(cf. Papageorgiou [17]). So ((vp,zn)) — ((v,z)) with v(t,2) €
h(7(z)(t, 2)) a. e. on T X Z. Also let A : L?(T, X) — L4(T, X*) be
defined by

~

((A(z),y)) = a(z,y) + (U(=),y))

for every z, y € LP(T, X).

It is well-known (cf. Lions [15] or Berkovitz-Mustonen [2, Propo-
sition 1, p. 615]) that because of hypothesis H(a) and because of
Proposition 6, A(-) is pseudomonotone with respect to Wy (T), in
particular then has property (M) with respect to Wy, (T') (cf. Lions
[15, pp. 173 and 179]).

Since lim((wy, z,)) < ((w, 7)), we get

lim((A(zn), zn)) < ((A(2), 2))

and so by property (M) we conclude A(z,) - A(z) in LY(T, X*).
Therefore w = A(z)+v with v(t, z) € h(r(z)(t,2)) a. e. on T x Z and
so w € G(z). Thus we have checked that the set-valued operator G(:)
is generalized pseudomonotone with respect to Wpe(T') (cf. Gupta
[11, Definition 1]).

Next we claim that G(-) is coercive; i. e.

((w, z))

lim — = 400.
w € G(x) ||‘,E||L1’(T,X)
Ix[lLe (T,x) —* o0
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To this end, because of hypothesis H(a)-(v) we have

b N b

/ Z a(t, z, Dx)Dyxdz > 02/ / |Dx(t, 2)||P v dzdt

S =i 0 Jz (4)
= éQH'THI[)/p(T’)() > co >0

(recall that || Dz(t,)||1»(z) is an equivalent norm on Wol’p(Z)). Also
from Proposition 6 we know that

b
/ /u(t,z,x(t,z))x(t,z) dzdt >
0 Jz
A S (5)

In addition for every v € LI(T, H), v(t,z) € h(r(z)(t,z)) a. e. on
T x Z, from Holder’s inequality we have that

/Ob /Z o(t, 2)x(t, 2) dzdt

for some M7 > 0, and so

< Mi||2||lLp(rxz)

b
[ ot 2)att,2) dedt > —Mallell o) (©
Combining (4), (5) and (6) we get that for every w € G(z) we have

(w,2)) = eallallly iy + callalllpr +
—1
—esl# b zy — Millzl o).

from which it follows easily that G(-) is coercive as claimed.
Now rewrite the periodic boundary value problem (3) in the fol-
lowing abstract operator equation form

L(z) + G(z) 3 —g(y) (7)

Applying Theorem 1.2 p. 319 of Lions [15] (see also Theorem 1 of
Gupta [11]), we get that this problem has a solution z € Wyy(T).
Since A(-) is strictly monotone (see hypothesis H (a)-(iv) and recall
the definition of the penalty function u(t, z, z)) and because h(-) is a
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monotone multifunction (the function A(-) being monotone), we have
that G(-) is strictly monotone and so we conclude that (7) (hence
(3) too) has a unique solution z = R(y) € Wy, (T). &

4. Existence of extremal periodic solutions.

In this section we establish the existence of extremal solutions for
problem (2). Our approach is based on the following result essentially
due to Amann [1, Corollary 1.5] (see also Heikkila-Hu [12, Corollary
3.2]):

PROPOSITION 8. If [z, yo] is a nonempty order interval in a reg-
ularly ordered metric space, then every increasing map R : [zg, yo] —
[zo,y0] has the least and the greatest fized points.

Note that because of the dominated convergence theorem the pos-
itive cone in L2(T, H) = L>(T x Z), L2(T x Z), = {y € LA (T x Z) :
0 <y(t,z)a. e. onT x Z} is regular, i. e. every order bounded (hence
pointwise bounded by an L*(T x Z)-function) sequence {yn}n>1 in
L?(T x Z), converges in the L?(T x Z)-norm.

To apply Proposition 8 we take K as our order interval in L?(T" x
Z) and as R(-) the single-valued map obtained in Proposition 7.

PROPOSITION 9. If hypotheses H(a), H(f) and Hy hold, then
R(K) C K.

Proof. Let y € K and set z = R(y). From Gilbarg-Trudinger [10]
as before we get that (1) —2)" € Wpe(T) N LP(T x Z)4. Since (-, -)
is a lower solution of (1) according to Definition 3 with (¢ — z)™ as
our test function, we have:

B ((Z—f,(«/} o))~ el - 0)") >

[ ] sttt ) ) ®
0 JZ

%(0,2) <(b,z) a.e.on Z.
Also since x = R(y), we have for some v € LT, H) with v(t,z) €
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h(r(z)(t,2)) a. e. on T x Z:
(5t~ )+))+a< (-2 =
// +(t, 2) dzdt +
—/0 /Z'ut,z — ) (t, 2) dzdt +
—/b/ (t,z,2(t,2))(p — x)T(t, 2) dzdt

//g (t,2)) *(t,2) dzdt + (9)

_/0 /Z 7(x)(t,2) ") (¢ — 2) (¢, 2) dzdt +
_/Ob/zu(t,z,x(t,z))(zp—x)+(t,z) dzdt

Adding inequalities (8) and (9) above and recalling that f(r) =
g(r) — h(r), we get that

((6(%; 1/))’(1/) _x)+>) N

N
/ ’ / S (ax(t, 2, D) — a(t, 7, D)) Dy — 2)* (t, 2) dadt >
0 12—

/b/ - ,2))) (¥ — )T (¢, 2) dzdt +
/ / h(ip(t, 2))) (¢ — 2)* (8, 2) dzdt +
_/0 /Zu t,z,x(t, 2)) (v — )T (¢, 2) dzdt. (10)

From the integration by parts formula for functions in Wp,(T) (cf.
Zeidler [24, Proposition 23.23, p. 423]), we have that

((aom)) = (o)

= S, ) — (b ) s +
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+ %Il(w(o, ) = 2(0,)) ¥ 1172 ()-

Note that (¢ —2)(0,-) = 4(0,-) —z(0,-) < ¢(b,-) —z(b,-) = (¢ -
z)(b,) in L?(Z) and so we have (¢ — ) 0,)) < (v —z)™(b,-), from
which we deduce that ||(4p—2)*(0)|z2(z) < (¥ —)" (0)||12(z)- Thus
we get that
(%2 w-a7)) <0 )
Since
Dy - | PO I ot <t

(cf. Gilbarg-Trudinger [10, p. 145]), and using hypothesis H (a)-(iv),
we get that

/ /ZZ ax(t, 2, Dx) —ay(t, z, D)) Dy (o —)* (£, 2) dzdt < 0 (12)

k=1

Also because y € K and g¢(-) is nondecreasing (see Lemma 1), we
have that

[ [ 6.2 - ot )@ -2 @ dsdt 20 13

Finally because of the fact that 7(x)(¢,2) = (¢, 2) on the set {z <
¥}, we have

[ [ e B 2) (6 — o) (L) dedt =0 (14
Using inequalities (11)-(14) in (10) we get

/ob/zu(t’z’x(t’ 2)) (¢ —x)*(t,2) dzdt > 0

hence

/Ob/Z —((t,z) — x(t,z))l’—l(w _ :C)+(t, 2)dzdt > 0
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and so

/~/{wa} (4 — z)(t, 2)]P dzdt = /Ob/Z (4§ — 2)*(t, z)]p dadt = 0

t,z) a.e.onT x Z. In a
< ¢(t,z) a. e.on T x Z.
K. o

from which we conclude that (¢, z) < z(
similar manner we can show that z(t, z)
Therefore we finally conclude that R(K) C

PROPOSITION 10. If hypotheses H(a), H(f) and Hy hold, then
R(-) is nondecreasing on K.

Proof. Assume that y1,y2 € K, y1(t,2) < y2(t,z) a.e.onT X Z
and set 1 = R(y1), z2 = R(y2). We need to show that z1(t,z) <
T2(t,z) a.e.on T'x Z. As before let (z1—z2)t € Wy (T)NLP(T'X Z) 4
be the test function.

Then we have:

<<%’ (o1 - $2)+)> +a(z1, (11 —22) ") =
/Ob/zg(yl(t,z))(:cl — 19) T (t, 2) dzdt +
_/()”/Zm(t,z)(an — 19) T (t, 2) dzdt (15)

and

(<_%, (z1 — w2)+)> — a(zs, (21 — 22)T) =

ot
/b/ ~9(ya(t, 2)) (w1 — 22) " (¢, 2) dzdt +
0 Jz
b
—i—/o /Z'UQ(t, 2)(z1 — x2) T (¢, 2) dzdt (16)

with v, ve € L4(T, L*(Z)) and vi(t,2) € h(zi(t,z)) a. e. on T x Z,
i = 1,2. Remark that because of Proposition 9, 7(z;) = z; and
u(t,z,z;(t,z)) =0 for i =1, 2.

Adding (15) and (16) we get that

(57 o))
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) )=

— a(z2, (1 — z2)

[ [ (n(62) ~ gttt D) — 2)* (1 2) ot +
+ /Ob/z(vg(t,z) —v1(t,2)) (21 — 22) 1 (¢, 2) dzdt (17)

+a(z1, (1 — z2)

As in the proof of Proposition 9 we can get that

and

) )=

a(zy, (1 — 22)") — a(z2, (1 — z2)

b N
/0 Z(ak(tazaDl‘l) _ak(t,Z,Dl‘Q)) X

Z k=1
X Dk(xl - w2)+(t,z) dzdt Z 0 (19)

On the other hand exploiting the monotonicity of g(-) and h(-) (see
Lemma 1), we get

[ [ 662 ~ gttt D1~ 22)* 1) s <0 (20)

and
/Ob/z(vg(t,z) o (t2) (@ — me) (2 dedt <O (21)

Combining (17)-(21) above, we readily see that A{(t,z) € T'x Z :
z1(t,z) > z2(t,z)} = 0, with A(-) being the Lebesgue measure on
T x Z. Therefore z; < z2 and so we have proved that R(-) is non-
decreasing. O

Propositions 9 and 10 permit the application of Proposition 8.
Note that a fixed point of R(-) is a solution of (2) and vice versa of
course. Moreover L?(T x Z), is regular. So we get:

THEOREM 11. If hypotheses H(a), H(f) and Hy hold, then prob-
lem (2) has a greatest solution x* and a least solution x, (extremal
solutions) in K = [1, ¢].
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If the discontinuous perturbation f(-) has only upward jumps,
then the extremal solutions of Theorem 11, also are extremal solu-
tions for the original single-valued problem (1).

COROLLARY 12. If hypotheses H(a), H(f), Ho hold and f(r—) <
f(rT) for every r € [—||¥]loo, l|©llco], then problem (1) has a greatest
solution z* and a least solution x, (extremal solutions) in K = [, ¢].

REMARK. In the terminology of Stuart [21] (used there in the
context of semilinear elliptic systems), a solution of problem (1) is
called “solution of type I”, while a solution of problem (2) is called
“solution of type II”. While clearly a solution of type I (i. e. of
problem (1)) is always a solution of type II (i. e. of problem (2)), the
converse need not be true. Stuart [19] produced some nice examples
of ordinary differential equations in R, illustrating this. This then
justifies the passage to the multivalued problem (2). Corollary (12)
tells us that when only upward jumps occur then the two solution
sets are equal and nonempty.
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