ON BOUNDED POSITIVE SOLUTIONS OF SEMILINEAR SCHRÖDINGER EQUATIONS (*)

by Adrian Costantin (in New York)(**)

- SOMMARIO. L'equazione semilineare di Schrödinger $\Delta u + f(x,u) = 0$ viene considerata in un dominio esterno di \mathbb{R}^n , $n \geq 3$. Vengono date condizioni su f sufficienti affinchè l'equazione abbia soluzioni positive u(x) con $u(x) \to 0$ quando $|x| \to \infty$.
- SUMMARY. The semilinear Schrödinger equation $\Delta u + f(x, u) = 0$ is considered in an exterior domain of R^n , $n \geq 3$. Conditions on f are given which are sufficient for the equation to have positive solutions u(x) with $u(x) \to 0$ as $|x| \to \infty$.
- 1. Let us consider the semilinear Schrödinger equation

$$Lu = \Delta u + f(x, u) = 0, \qquad x \in G_A, \tag{1}$$

in an exterior domain $G_A = \{x \in \mathbb{R}^n : |x| > A\}$ (here A > 0), $n \geq 3$, subject to the assumptions

- (i) $f \in C_{loc}^{\lambda}(G_A \times R, R)$ for some $\lambda \in (0, 1)$ (local Hölder continuous) with f(x, u) odd in u, i.e. f(x, -u) = -f(x, u);
- (ii) $0 \le f(x,t) \le a(|x|)w(t)$ for all $x \in G_A$ and all $t \ge 0$ for some $a, w \in C(R_+, R_+)$ with w nondecreasing, w(0) = 0.

A solution of (1) in $G_B = \{x \in R^n : |x| > B\}$ for $B \ge A$ is a function $u \in C^2(G_B, R)$ such that Lu(x) = 0 for all $x \in G_B$.

AMS Subject Classification: 35J10

Key Words and Phrases: Schrödinger equation.

^(*) Pervenuto in Redazione il 21 Giugno 1995.

^(**) Indirizzo dell' Autore: Courant Institute of Mathematical Sciences, 251 Mercer Street, 10012 New York, USA.

We will give conditions which guarantee that (1) has a positive solution in G_B (for some $B \ge A$) that satisfies $u(x) \to 0$ for $|x| \to \infty$.

2. Let us denote $S_B = \{x \in \mathbb{R}^n : |x| = B\}$ for $B \ge A$. In the sequel we will need the following

Lemma 1. [1]. Let L be the operator defined by (1) where f is nonnegative for $u \geq 0$ and satisfies assumption (i) in an exterior domain G_A . If there exists a positive solution v_1 and a nonnegative solution v_2 of $Lv_1 \leq 0$ and $Lv_2 \geq 0$, respectively, in G_B for some $B \geq A$ such that $v_2(x) \leq v_1(x)$ throughout $G_B \cup S_B$, then equation (1) has at least one solution u(x) in G_B satisfying $u(x) = v_1(x)$ on S_B and $v_2(x) \leq u(x) \leq v_1(x)$ throughout G_B .

Consider now the differential equation

$$y'' + F(t, y) = 0 (2)$$

where F(t, u) is continuous on $\{(t, u): t \geq T, u \in R\}$ where T > 0. We have that

Lemma 2. [2]. Suppose that for each p > 0 there is a continuous function $\mu(s)$ such that

$$|F(s,y)| \le \mu(s), \qquad |y| \le p, \quad s \ge T,$$

and

$$\int_{T}^{\infty} s\mu(s)ds < \infty.$$

Then every point $y_0 \in R$ is the limit of some solution of (2) as $t \to \infty$.

3. Let us now prove the following

THEOREM. If for every p > 0,

$$\int_{A}^{\infty} sa(s) \, w \, \left(\frac{p}{s^{n-2}}\right) \, ds < \infty \tag{3}$$

then there is a positive solution u(x) of (1) in G_B (for some $B \ge A$) with $u(x) = O(|x|^{2-n})$ as $|x| \to \infty$.

Proof. We consider the differential equation

$$\frac{d}{dr}\left\{r^{n-1}\frac{dy}{dr}\right\} + r^{n-1}a(r)w(y) = 0, \quad r \ge A,\tag{4}$$

where we extended w to R by defining w(-y) = -w(y) for y > 0. The change of variables

$$r = \beta(s) = \left\{\frac{1}{n-2}s\right\}^{\frac{1}{n-2}}, \qquad h(s) = sy(\beta(s),$$

transforms (4) into

$$h''(s) + \frac{\beta'(s)\beta(s)}{n-2} a(\beta(s)) w\left(\frac{h(s)}{s}\right) = 0, \quad s \ge \beta^{-1}(A).$$
 (5)

In view of Lemma 2, condition (3) guarantees that (5) has a bounded solution h(s) which is positive in some interval $[b, \infty)$ with $b \ge \beta^{-1}(A)$. Returning to (4), this yields a solution y(r) of (4) which is positive in $[B, \infty)$ where $B = \beta(b) \ge A$.

Let us define $v_1(x) = y(r), |x| = r \ge B$. Observe that

$$r^{n-1} Lv_1(x) = \frac{d}{dr} \{r^{n-1} \frac{dy}{dr}\} + r^{n-1} f(x, v_1(x))$$

$$\leq \frac{d}{dr} \left\{r^{n-1} \frac{dy(r)}{dr}\right\} + r^{n-1} a(r) w(y(r))$$

and hence $Lv_1(x) \leq 0$ for all $x \in G_B$. If we define $v_2(x) = 0$ for $|x| \geq B$ we clearly have that $Lv_2(x) \geq 0$ in G_B and so an application of Lemma 1 yields a solution u(x) of (1) in G_B with $0 \leq u(x) \leq y(r)$ for $|x| = r \geq B$ and u(x) = y(B) for |x| = B.

Since $u(x) \ge 0$ in $G_B \cup S_B$ satisfies $\Delta u \le 0$ in $G_B \cup S_B$, we have that (see [3, page 917])

$$u(x) \ge \left\{\frac{B}{|x|}\right\}^{n-2} \inf_{|x|=B} \left\{u(x)\right\} = L_0|x|^{2-n} > 0, \quad |x| \ge B,$$

for some constant $L_0 > 0$. On the other hand, we have that $u(x) \le y(r)$ for $|x| = r \ge B$ and since $y(r) = \frac{h(\beta^{-1}(r))}{\beta^{-1}(r)} \le Lr^{2-n}$ for some constant L > 0 (the solution h(s) of (5) is bounded), we have that the solution u(x) of (1) satisfies

$$|L_0|x|^{2-n} \le u(x) \le L|x|^{2-n}, |x| \ge B.$$

To show the applicability of our theorem and the relation to the results of Swanson [4], let us have a look at the following

EXAMPLE. Consider (1) with

$$f(x,u) = \begin{cases} a(|x|) \sqrt{|u|} \ sgn(u), & 0 \le |u| \le 1, \\ a(|x|) \ u|u|, & |u| \ge 1, \end{cases}$$

where $a \in C(R_+, R_+)$.

The results from [4] are not applicable (it is not possible to majorize $\frac{f(x,u)}{u}$ above by a nonnegative function g(|x|,u) which is monotone in u for u>0) but, by our Theorem, we know that if

$$\int_{A}^{\infty} s^{2-\frac{n}{2}} a(s) ds < \infty$$

then the corresponding equation (1) has a positive solution u(x) in G_B (for some $B \ge A$) with $u(x) = O(|x|^{2-n})$ as $|x| \to \infty$.

REFERENCES

[1] NOUSSAIR E. S. and SWANSON C. A., Positive solutions of quasilinear elliptic equations in exterior domains, J. Math. Anal. Appl. **75** (1980), 121-133.

- [2] Serrin J. and Zou H., Asymptotic integration of second order systems, Amer. J. Math., 116 (1994), 1241-1264.
- [3] SWANSON C. A., Oscillation of semilinear elliptic inequalities by Ricatti transformations, Canad. J. Math., **32** (1980), 908-923.
- [4] SWANSON C. A., Bounded positive solutions of semilinear Schrödinger equations, SIAM J. Math. Anal., 13 (1982), 40-47.
- [5] SWANSON C. A., Criteria for oscillatory sublinear Schrödinger equations, Pacific J. Math., 104 (1983), 483-493.