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0. Introduction.

The development of Young measures Theory has a long story.
Obviously it goes back to L.C. Young, specially [Y1]. The first aim
was to give a description of limits of minimizing sequences in the
Calculus of Variations and further in the Optimal control Theory
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(see L.C. Young [Y4], J. Warga [W] and A. Ghouila-Houri [GH]; see
the 20th problem of Hilbert quoted in [Y2, p.84] and in I. Ekeland
& R. Temam’s book [ET, Comments to chapters 9 and 10]). More
recently H. Berliocchi & J.M. Lasry [BL] extended the theory so as
to make it work without compactness. Then E.J. Balder [Bd2, 4,
12] gave the parametric version of the Prohorov theorem and lower
semi-continuity theorems which make the theory very efficient and
applicable; he also developed many applications (note among them
the one to the Fatou lemma in several dimensions, see [Bd8, Bd15]
and his paper with C. Hess [BH]). For the use of Young measures in
PDE and Mechanics, see L.C. Evans [Ev], M. Chipot & D. Kinder-
lehrer [CK] and D. Kinderlehrer & P. Pedregal [KP1-2].

In Section 1 we present briefly and elementarily Young measures
and show that some frightening notions of Measure Theory (images,
weak convergence, disintegration) used in the theory of Young mea-
sures are rather natural. We give some examples of Young measures,
specially of limit Young measures which are not associated to func-
tions.

In Section 2 we develop the basic topological results of Young
measures Theory. In 1989 we gave a first course [Va6] on Young
Measures. Some technicalities of this course are avoided here and
some results not in it are given here. Sometimes we refer to [Va6],
but many results come from one of Balder’s numerous papers [Bd1-
18]. The exposition is limited to the R? case for simplicity.

In Section 3 we expound the Visintin-Balder theorem ([Vi],[Bd5]),
which gives sufficient conditions under which weak convergence in
L' implies strong convergence. Most of the properties of weakly
convergent sequences in L' which are not strongly convergent must
have been understood by C. Olech [O2] and L. Tartar [T1-2] many
years ago. Particularly L. Tartar showed the usefulness of Young
measures in this question. But the Visintin theorem [Vi] brought a
new result and its proof using Young measures, due to E.J. Balder
[Bd5], allows many extensions.

In Section 4 we show that the Young measures Theory permits to
give a direct proof of the weak-strong lower semi-continuity theorem
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which is fundamental in the Calculus of Variations.

1. Presentation.
INTRODUCTION.

Let r™ be the n-th Rademacher function on € := [0, 1], that is
r*(z) = +1if o € [£, ZE[ for any even k, u"(z) = —1 otherwise
(or r™(z) = sign[sin(2"*t!72)]). Let w™ be the primitive of r" null
at 0. The functions w™ belong to the Sobolev space W!?(]0,1])
(for any p € [1,400]). Since w™ tends uniformly to w™ = 0 and
Vuw"™ (Vw™ := (w")’) tends weakly ! to Vw™ = 0, one can say
“w™ tends to w™ = 0.” But this is not satisfactory if one wants to
retain something of the behavior of the gradients. It may happen
that (w"), is a minimizing sequence of an optimal control problem
and that w™ is not an optimal solution. A good limit would be
w™ but with another gradient. In this line L.C. Young introduced
generalized curves in 1937 [Y1] (see also [McS] Def.2.8 pp.515-516)
and generalized surfaces in 1942 [Y2]. We give an example. Minimize

[ X+ 0= uwa

where u is a measurable function from [0, 1] to [-1, 1] and X satisfies
the differential equation £ X (t) = u(t) with the initial condition
X (0) = 0. The infimum is 0 but cannot be reached. The Rademacher
functions form a minimizing sequence (r"),. Another formulation of
this problem is: minimize

/0 L X (1), X)) dt

with 2 f(t,z,v) = 2> + 1 — v* + 6(v|[_117), X(0) = 0. The non

existence of an optimal solution is connected to the non convexity

1  Even for o(L>, Ll)7 the strongest of all the weak topologies.

2 (.| A) is the indicator function of A which takes the value 0 on A, +oo
outside.
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of f with respect to the velocity v (see A. loffe [I] and C. Olech
[03]). There exists an optimal “generalized control”: ¢ — 3 (8;+6_1)
(note that the function w™ = 0 of the beginning has, at every z,
0 as gradient and that 0 is the barycenter of £(8; + 6_1) ). The
same phenomenon appears in Mechanics when the energy function
is not quasi-convex in the sense of C.B. Morrey [Mo]. The material
may appear in two phases (or more). Papers by J.L. Ericksen [Er],
M. Chipot & D. Kinderlehrer [CK], I. Fonseca [F] treat crystals.

DEFINITIONS.

We turn now to a precise definition of Young measures. We forget
the functions w™ and consider only integrable functions u™ (which
can be gradients). Let © be an open (or a Borel) subset of R™, u the
Lebesgue measure on €2. We assume p(Q) < +o0o. We will denote
by B(2), the o-algebra of all Lebesgue measurable subsets of .

DEFINITION. A Young measure on © x R?is a positive measure
7 on Q x R? such that for any Borel set A C Q , 7(A x RY) = p(A).
The set of all Young measures is denoted by Y(, u; RY).

All results extend to abstract measured spaces in place of € and
to rather general metric spaces in place of R%. About this second
point, one must note that a large part of the results do not involve
the linear structure of R

The formula 7(A x RY) = u(A) means that u is the image of 7
by the projection map (z,£) — z. (Recall that if A is a measure on
(X,F)and ¢: (X,F)— (X', F') is a measurable map, the image of
A by ¢ is the measure on F/; Ao ¢~! that is A’ — A(p~1(A")).)

DEFINITION. For any measurable function u : Q — R? the Young
measure v associated to u is the (unique) Young measure carried by
the graph of u. Another definition of v is: it is the image of u by the
map = — (z,u(z)), that is, for any Borel subsets A, B of respectively
Q and RL v(A x B) = p(Anu~Y(B)). And, for any ¢ : Q x R - R
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measurable and > 0 or v-integrable, one has

/medlﬁdl/ = /Qlﬁ(x, u(z)) p(dz) .

A natural property holds: v! = v? < u! = u? y-a.e. (reference
[Va6, p.155]).

The Young measure v associated to u represents the amount of
chalk (or ink) laid down when drawing the graph of u, but propor-
tionally to the abscissa: v(A x R?Y) = pu(A); see Figure 1. Maybe
a better analogy is the following: imagine a black television screen
and that white light appears along the graph of u with intensity v
obeying to v(A x RY) = p(A).

Figure 1 — Thickness according to v(A x R = u(A).

There exist Young measures non associated to functions. For
example

r= @ {6+ 5-0)

on [0,1] X R, which is also J(v' + v=!) where v (resp. v7!) is
associated to the constant function u! = 1 (resp. «=! = —1). (For
any Borel subset C of [0,1] x R, 7(C) is half of the sum of the
one dimensional measures of the intersections C' N ([0, 1] x {1}) and
C'n([0,1] x {=1}.) It will be proved that 7 is the limit (see a first
definition of convergence below) of the Young measures associated
to the Rademacher functions. Note that although r*(z) € {-1,1},
there does not exist an a.e. convergent subsequence (indeed if such
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a subsequence (r™*); would exist, it would be L!-convergent, hence
L'-Cauchy, but n # m = ||r™ — r™||;2 = 1).

The notion of weak convergence of Young measures is essential.
It is called the narrow convergence. If Q x R? was the rectangle
[a,b] x [c,d], this notion would be nothing else but convergence of
images (recall that a sequence (A™),, of measures on a compact metric
space K converges weakly to A if, for any real continuous function f
on K, [; fdN* — [; fdX). In the general setting (see Section 2),
Carathéodory integrands are used.

ABOUT DISINTEGRATION.

It is very useful to describe a Young measure 7 by its disintegration
which is a family, (7;).eq, of probabilities on R? characterized by
Ve : Q x RY - | measurable and > 0 or r-integrable,

/Mﬁdf = /Q[/Rd@b(w,f) 7 (d€)] p(de) .

When v is associated to u, one has v, = dy(,), 0u() denoting the
Dirac mass at u(z). Conversely when (7,;)zeq is a given family of

probabilities on R?, a measure 7 on Q x R%is defined by the formula
(consider C'= A x B is sufficient):

T(C) = /QTI(CQE) p(dz), where C, = {¢: (2,£) € C}

(this can also be written 7 = [;[8; @ 7] u(dz); for the integration of
Radon measures see [Bol]). Then (7;)eq is the disintegration of .

A Young measure 7 could represent a black and white photo-
graph. Above any z there is a conditional distribution 7, (which is
a probability measure on Rd). In some sense this corresponds to the
scanning of the image before TV transmission (exchange vertical and
horizontal). Then the television set builds the image line after line
(here vertical line after vertical line) in accordance to the formula:

r= [ o nlulde)!
Q



A COURSE ON YOUNG MEASURES 355

The measure 7 and the family (7;),eq are two ways of description
of the same image. The second way does not imply the existence of
stochastic events or of a player having a random strategy. In Figure
2, above z the image is dark in (z,£) because there is somebody, and
in (2,&') it is clear because there is the sky.

Figure 2

Y.G. Reshetnyak [Re] calls (7;)zeq a “layerwise decomposition”
of 7. For ashort proof of the existence of disintegration see L..C. Evans
book [Ev]. (See also references [Bo2], [C2], [CV, pp.216-218], [DM],
[Du], [Ed], [HJ], [N], [Sc], [Val-2], [Va6, Cor.A5 p.181].)

EXAMPLES.

In examples 1 and 2 below, © = [0,1] and g is the Lebesgue mea-
sure. They are particular cases of the following (see Th.4). Let u be a
measurable periodic function on R with period 1 and u”(z) = u(nz).
Then the Young measures v” converge to a limit 7 whose “disinte-
gration” T, is constant. It is the image by u, A, of the Lebesgue
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measure y on [0, 1]: for any real bounded Borel function f on R?

/Rdfd.rx:/RdfdA:/[m]f(u(m))dx,

ExaMpPLE 1. Let Q@ =[0,1], d =1 and «"(z) = sin nz. Then v
converges to 7 where 7 is carried by Q2x] — 1, 1] and has the density
(see Figure 3)

1

O e

Figure 3 — Limit of sin nz.

ExaAMPLE 2. The Young measures associated to the Rademacher
functions on © = [0, 1] converge to a limit 7 which has not a density.
Its disintegration is:

1
Ty = 5(51 —|—(S_1) .



A COURSE ON YOUNG MEASURES 357

Figure 4 — Rademacher functions (here n = 3) and their limit.
The two dotted lines converge to grey ones.

ABOUT RELAXATION.

At the beginning of this Section we have considered the control prob-
lem: minimize

[ X+ - uw)a

where u is a measurable function from [0, 1] to [—1,1] and X sat-
isfies the differential equation %X () = u(t) with the initial con-
dition X (0) = 0. J. Warga [W], A. Ghouila-Houri [GH] and some
others (see the rather “a la Bourbaki” definition of P. Michel [Mi])
introduced generalized controls which are nothing else but Young
measures. Here there exists an optimal generalized control: ¢ —
2(81 4+ 6_1). Relaxation in the Calculus of Variations and the Op-
timal Control Theory have a very long story (see references [Bd2,
6-7], [BL], [Bu], [Dal-2], [Ek], [ET], [Gm], [GH], [ITi], [McS], [Va3—
4], [W], [Y1,Y4]). In my opinion, in most problems, the direct study
of the integral representation of the lower semi-continuous hull of
the original functional is the best (as in G. Buttazzo’s book [Bu]).
But the efficiency of Young Measures in the proof of the fundamen-
tal theorem of the Calculus of Variations will appear in Section 4
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(Th.12) (see also the proof by C. Castaing of the weak compact-
ness of {v € L'(Q,u;FE) : v(z) € K a.e.}, where E is a Banach
space and K a convex weak compact set [CV, Th.V.2 pp.126-127
and Coroll.V.4 p.130]). And they are used in problems where the
lacking property is not convexity but quasi-convexity (see Comment
2 before the proof of Th.12 and Comment 1 after its proof).

2. Topological Properties.
THE NARROW TOPOLOGY.

DEFINITION. The narrow topology on Y(S2, u; R?) is the weakest
topology for which the maps 7 — [ pa¢ dr are continuous, where
@ runs through the set Cth®(Q;R%) of all bounded Carathéodory
integrands 2 on Q x R,

CoMMENT. This topology is Hausdorff [Va6, 2b page 180]. In
[BL] H. Berliocchi & J.M. Lasry used (when €2 is a locally compact
space) integrands which are continuous functions on © x R% Then
they went to Carathéodory integrands using the Scorza-Dragoni the-
orem. The fact that Carathéodory integrands are more directly ap-
plicable appears in the following proposition.

ProprosIiTION 1. Ifv™ and v™° are the Young measures associated
to the measurable functions v and u®, then

v" = v narrowly <= u" — u™ in measure .

Proof. 1) First suppose u” — u* in measure and v" —» v,
Then there exist € > 0, a bounded Carathéodory integrand ¢ and
infinitely many n such that

| g.odl/”—/ pdv™| > ¢.
QxR4 QxR4

3 A Carathéodory integrand is a function which is B(Q), ® B(Rd)—measurable
in (z,€) and continuous in ¢.
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Extracting a subsequence one may assume that this holds for every
n and that 4" — u® almost everywhere. Then, since

et = | e @) ).

the Lebesgue dominated convergence theorem gives a contradiction.
2) For the converse implication it is sufficient to use the integrand

p(2,€) = min(L, ]| - (@) -

For any € €]0,1[, p({z € Q : [|[u™(z) — u™(2)]| > €}) is
< (e)7! foxga s dv™ which tends to 0. &

LEMMA 2. Let T be a topology on Y(Q, u;RY) and G a class of
integrands * with > 0 values such that Vi € G, T +— Jaxga® dr is
l.s.c. for T. LetV be a linear space of integrands such that Vi € V,
Jo € LY (Q, ) such that (z,§) — (x, &) + a(z) belongs to G. Then
Vip €V, T [qugatdT is finite valued and T -continuous.

Proof. Let ¥ € V and o € L (Q, pt) such that (z,&) — ¢(z,&) +
a(z) belongs to G. Then [ patdr = [q ga(¥+a)dr— [ aduisa
T-l.s.c. and ]—o00, +oo]-valued function of 7. But, since V is a vector
space, the same is true for —1, hence [, a0 d7 is also a T-u.s.c.
and [—oo, +oo[-valued function of 7. &

REMARK. The version without parameter is: let 7 be a topology
on Prob(R? and T a class of Borel > 0 functions such that Vf € Z,
A [RAfd) is Ls.c. for T. Let U be a linear space of functions
such that Vg € U, Ja € [0, +oo[ such that g + o belongs to Z. Then
Vg €U, A — [ragdXis finite valued and T-continuous.

THEOREM 3. 1) Let A be an algebra of subsets of Q generating
B(Q). In the definition of the narrow topology on the set Y(, u; R%)
of Young measures, the bounded Carathéodory integrands can be re-

4  For us integrands are always B(f), ® B(Rd)—measurable functions of the
couple (z,¢§).
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placed without changing the topology by the integrands:
p(z,8) =) 1a,(2) fil§) (1)
=1

where f; is the restriction to R? of a function of C(R%) ® and (A4, ...,
A,) is an A-partition of .

2) When Q is an open subset of RN (more generally a locally
compact Polish space), the topology remains the same replacing
Cth® (Q;RY) by C.(QxRY), the space of continuous functions on QxR?
with compact supports.

COMMENT. Such an algebra A will be useful in the proofs of
Th.4 and Prop.8. The space C(R9) is useful to embed Y(€, u; R?) in

the dual of L'(Q, u;C(R%)). This is used again in the proof of Th.7
(Prohorov’s theorem).

Proof. 1) First recall how one can prove that the narrow topol-
ogy on the set Prob(R?) of all probabilities on R? coincide with the
topology 7 defined as the weakest topology making the maps (g

belonging to C(R?))

A / [glxa] dX
]Kd

continuous (here g|za denotes the restriction of g to R9). See Bour-
baki [Bo3] or Dellacherie-Meyer [DM] for the general case of com-
pletely regular spaces. In our case, or more generally for metrizable
spaces, this relies on the following. If f € C*(R%) is > 0, set for
¢er?,

gn(§) =inf{F(C) +nd((, ) : C € R
(here d is a compatible metric on Ié\d, hence d is bounded). Then

gn 18 > 0, n-lipschitzean and bounded on R9. The sequence (g,), is
increasing in n and pointwise convergent to f on R% The maps

/\b—>/ g ld] dA
]Rd

5 Here R¢ denotes the Alexandrov one point compactification of R?; C(IR)

denotes the Banach space of real continuous functions on R4,
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are T—COHtiHUOUS. By monotone convergence
Aes | fdA
Rd

is 7-l.s.c. Thus Lemma 2 (its version without parameter) implies its
T -continuity for any f € C*(R9).

This extends to Y(Q, u;R%) and the restrictions to Q x R? of
bounded Carathéodory integrands on €2 x I@, thanks to the following
formula (here ¥ is a > 0 bounded Carathéodory integrand on Q2xR):

Ya(,€) = inf{y(z,¢) +nd(C, &) : ¢ € R}

Then %, is > 0, n-lipschitzean in & and bounded on Q x R< The
sequence (1), is increasing in n and pointwise convergent to @ on
Q x R Moreover 9, is measurable because for any € € R4 and any
a € R,

{z € Q:9Y,(z,8) < a} =prg{(z,¢) : ¥(z,{) + nd((,§) < a}.

By the von-Neumann-Aumann-Sainte-Beuve projection theorem ([SB],
[CV, Th.lIL. 23]) the latter set belongs to B(2),. Since %, is sep-
arately measurable and continuous, by Lemma III.14 of [CV], it is
globally measurable.

2) The Carathéodory integrands of Cth®(%; H@) may be identified
with some elements of L'((, M;C(H@)) 6. Then Y(Q, u; RY), which is
a subset of Y(, u;ﬂ@l), may be identified with a subset of the dual

S

of LY(Q, u;C(RY)) (for an integral representation of elements of this

dual see [ITu]). The set of linear forms on Ll(Q,u;C(H@)) defined
by the elements 7 of Y(, u; RY):

v [ war,
QxR

is equicontinuous. The subset of elements of L(£, u; C(f&ﬁ)) defined

by (1) is dense in the L'-norm. So by a classical result the weakest

6 The elements of Cl(Q,H;C(H@)) correspond to “integrable” Carathéodory
integrands, that is Carathéodory integrands ¢ such that Ja € £}|_ such that
V(@,8), [¥(z,§)| < a(z).
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topology making the maps 7+ [ ra?% dT continuous (¢ defined by
(1)) coincides with the narrow topology.

3) Finally when p is a measure on the locally compact Pol-
ish space €2, the fact that the topology on Y(f, u;R?) defined by
C.(Q x B coincides with the narrow topology has been proved by
Berliocchi-Lasry [BL]. This can be explained as follows. From above
the narrow topology is the weakest topology making the maps

T La(z) f(§) 7(d(2,€)) (2)
QxR
continuous, where A is a Borel subset of Q and f € C’(R?). By
equicontinuity and denseness in L'(€, u) of C.(Q) (for the L'-norm),
one may replace 14 by ¢, where ¢ € Cc(R2), ¢ > 0: indeed there
exists a sequence (cpn)n convergent to 14. If the maps

T pn(2) f(§) T(d(2,8)) (2n)

QxRkd

are continuous, (2) is continuous as the uniform limit of the (2n)
(one has

[ entdr— [ tafdr
QxRd QxRd

Now we prove that we may replace f by g € C.(RY). Let ¢ € C.(9),
@ > 0. Since f is minorized by a constant, we may assume f > 0. Let
(K,.)n be asequence of compact subsets of R?increasingly convergent
to R? (for example the closed balls B(0,n)). Set

gn(§) = (&)1 — d(&, Kn)]" .

Then g, belongs to C.(R%). If the maps

<l [ len(e) = 1a@)] (d)).

T = Y(z,8) 7(d(z,8)),

QxRd

where ¥ € C.(Q x RY), are continuous, then, as a consequence, so are
the

T ©(z)ga(§) T(d(2,€)),

QxR4
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and

SN e(z) (&) T(d(z,8))

QxR

is l.s.c. Then, as in Lemma 2,

SN e(z) f(€) T(d(z,))

QxRd

is continuous for any f € C°(RY). ¢

PERIODIC FUNCTIONS.

THEOREM 4. Let u be a measurable R%valued periodic function
on R with period 1 and set u™(z) = u(nz). Then the Young measures
v™ (which belong to Y([0,1], u;R%Y) associated to u™ converge to a
limit 7 whose disintegration T, is constant. This measure X is the
image by u of the Lebesgue measure p on [0,1]: for any real bounded
Borel function f on R®

/Rdfd/\ - /[071]f(u($)) dz |

Hence T = p ® A and, as soon as u is not a.e. constant, A is not a
Dirac measure and T is not associated to a function.

Proof. Let, for each p € N, A, denote the finite algebra of subsets
of [0, 1] generated by the intervals {2%, ]“2%1[ (0 < k < 2P). The union
of the A, generates the Borel tribe of [0, 1[. So, by Theorem 3, it is
sufficient to prove the convergence

©dv” — o dr
/[0,1]><11&d¢ [0,1]><1Rd¢

when ¢ has the form ¢(z,&) = 14(z) f(£) where A = {zﬁp, kzipl{ and f
is bounded continuous on R?. Let [r] denote the integer part of r €
[0, +0o[. When n is large, u” has approximately [(1/27)/(1/n)] ~
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n/2P periods over A. Hence

/[0,1]x]1&d¢

12
~~
3
~
DN
=
e
B
Z
3
~
~~
=
3
o~~~
=
g
e
A
=

0

= Ay fdx
R’

= f[o,l]xﬂ&d‘fodT-

Finally 7 = p®A is carried by a graph if and only if A is a Dirac mass,
say d,. But this happens if and only if u(z) = @ almost everywhere.

&

LOWER SEMI-CONTINUITY RESULTS.

LEMMA 5. Let 7" (n € NU {c0}) be Young measures satisfying
" — 7% narrowly. Let 1 : QxR? — [0, +00] be measurable in (z,€)
and l.s.c. in &. Then

More generally T — [q, gat dT is narrowly l.s.c.

Proof. Set
P (2, €) = min(n, inf{e(2,¢) + nd(¢,€) : ¢ € RY),

where d is a compatible metric on R? for example the euclidean
metric. Then 1, is bounded measurable in (z,£) (see the argument
at the end of Part 1 of the proof of Th.3), continuous in £ (even
n-lipschitzean) and increasingly convergent to . Since each map

T U, dT
QxR4



A COURSE ON YOUNG MEASURES 365

is narrowly continuous, the result follows from the monotone conver-
gence theorem. &

THEOREM 6. Let (u"), be a sequence of measurable functions
from Q to R, v" the associated Young measures and suppose that
V" — 1 narrowly where T is some Young measure. Let 1 : Q x R —
R be measurable in (z,€) and l.s.c. in {. Assume that the sequence
of negative parts ((¢(.,u"(.))7), is uniformly integrable. Then

/ Pdr <lim inf/ Pz, u"(z)) p(de) .
QxR4 n—eo JQ
Moreover the right-hand side member belongs to [—oo, +o0] and

liminf [ ¥(z,u"(2)) p(dz) < +o00 = YTdr < +o0.

n—oo Q QxR

CoMMENTS. 1) In applications (u"), is often a weakly conver-
gent sequence of functions in L'(€2, u;R?). Then the negative parts
(#(.,u"(.))” are Ul as soon as a minoration hypothesis such as

¥(z,€) > a(z) — bl|€||, where @ € £ and b € [0, +00],

is assumed. This holds when ¢ (z, &) = (p(x), &) for p € L2 (2, u; RY).

2) Note that E.J. Balder has used in [Bd16] and some other pa-
pers the Komlés theorem [K] to get this type of results.

3) For examples showing the utility of the uniform integrability
of the negative parts and that foRd PTdr = fQX]Rd Y~ dr = oo is
possible, see after the proof.

4) Theorem 6 admits some nicely formulated mathematical con-
sequences (see J.M. Ball [Ba], [Va6, Th.17 and Cor.18 pp.167-168]),
which are in the spirit of Part 1a of the proof of Th.9:

THEOREM. Let (u"), be a sequence of measurable functions from
Q to R, v" the associated Young measures and suppose v — T.

1) Let ¢ : Q@ x R — R be measurable in (z,&) and continuous in
&. Assume that the sequence of functions (¥ (., u"(.))n is uniformly
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integrable. Then

[ @)udn [ var.

QxR4

2) Let ¢ : RY — R be continuous. Assume that the sequence
ou™), is uniformly integrable. Then
¥

LU 1©1 m (@) utde) < +oo rae.,

and @ o u™ (L', L>)-converges to v, where

o(w) = [ ol€) malde) rae.

To illustrate Part 2, consider v = r” or u™(z) = sin(nz) and
©(€) = &. More generally the images of a weakly convergent se-
quence of functions by a non-linear map do not converge weakly.
For another example of the bad behavior of non-linear maps (even
bilinear) see the comment after the statement of Lemma 11. When
all the functions u™ take their values in a same compact subset of R
(asin B. Dacorogna [Dal, Th.6.1 p.52] and L. Tartar [Tal]), uniform
integrability is automatic.

Proof of Theorem 6. If 1» was > 0, the result would be a particular
case of Lemma 5 applied to the Young measures associated to the u”.
A technical trick is the introduction, for r € [0, +o0[, of the positive
integrand ¢, = sup(—r, ) +r. Let also ¥? denote sup(—r, ). Since
¥, is > 0, Lemma 5 implies

/ P, dr < lim inf/ Pp(z,u"(2)) p(de) .
QxR Q

n—o0

Subtracting [o,gardT = [ordu, one gets

/ YPdr < lim inf/ V2 (z,u"(x)) p(dz).
QxR Q

n—00
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Now let A, = {z : ¢(z,u"(z)) < —r}. For any n,

[ ble (@) uda)
Anr

is < 0 and, for r large enough, is > —e. Note that for r = 0,
[4, ¥z, u*(z)) p(dz)is > —M, where M is a bound of the L'-norm
of the negative parts (¢ (., u"(. ))) Then

[ e @) = [ vear@)atde)t [ 6 (@) uld)

Q\Anr

:/Tw,u ) u(d +/¢0xu pu(de) -
-] e ) wtd
[, e +/ (e, u(2)) plde)
> [ e, 0 (@) o) -

Note that for r = 0, ¥? = ¥+, hence

v

/wxu p(dz) /¢+mu (z)) p(dz) — M,

and
/ prdr < liminf [ ¢t (z,un(2)) p(de)
< hminf/ (z, ' (z)) p(dz) + M.

This proves the last precision in the statement. Now return to r
corresponding to € > 0. One has

liminf [ o(z,u™(z)) p(dz) lim inf 5 POz, u™(z)) p(dz) —

n—oo Q n—oo

v

v

Pldr — €.
QxRr?

Since 9 < 90, one has

liminf [ (2, u"(z)) p(dz) > / Pdr — ¢,
QxR

n—oo Q
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and the statement follows from the fact that € is arbritarily small.

%

ExampLE 1. Even without parameter the negative parts must be
controlled. Letd =1, f(§) = —¢%* and, forn > 1, 6" = (1—%)50—%%5”

which converges to 8% := §;. Then

/fd@”:—n, but /fd.0°°:0.
R R

ExaMPLE 2. Even if for all n € N, [, ¥ (z,u"(z)) p(dz) € R and
if the negative parts ¢(.,u™(.))” are uniformly integrable, one may

have
/ ¢+dr:/ b= dr = +o0o.
QxRd QxRd

Let © = [0, 1], u the Lebesgue measure, d = 1 and ¥(z,£) = —oo if
¢ € [-o0,—1], 0if £ € ]-1,0], % if £ € ]0,400[. Let u”(z) = z on

H, ﬂ ,= —1+ % elsewhere. Then u”™ converges in measure to u®
where 4™ (z) = = on [O, %} ,= —1on {%, 1}. Then (note that the
negative parts (¢(.,u"(.))” are null)

/ P(z,u"(z)) dz =logn —log2 — 400,
[0,1]

but, with 7 = v*°,

/ ¢+dr:/ b= dr = 4oo.
QxRd QxRd

PrROHOROV’S THEOREM.

THEOREM 7. (Prohorov with parameter). Let (u"),, be a norm-
bounded sequence in L'(2, u;RY). There exist a strictly increasing
sequence (ng)y and a Young measure T such that v — 1 narrowly.
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CoMMENTS. 1) This compactness result extends to tight subsets
of the set of Young measures. A subset H of ,')/(Q,,u;Rd) is tight if
Ve > 0, 3K compact, K C R? such that

VreH, 7(Qx (RI\K)) <e.

2) The subset H is tight if and only if [Va6, Prop.8 p.161] there
exists an inf-compact function A : R? — [0, 4+-0c] such that

sup [ (€ m(d(x,€)) < +oo.

The converse holds: if #H is relatively narrowly compact, then A is
tight [Va6, Prop.10 p.162]. In [Bd2] E.J. Balder introduced an inte-
grand in place of h, and A. Jawhar [J] proved that this is equivalent
to the tightness notion extended to a multifunction in place of K
(see the comments in [Va6, p.165]).

3) The classical Prohorov theorem says (without parameter): a
set of probabilities on a completely regular topological space which
is tight is relatively narrowly compact; the converse holds for Pol-
ish or locally compact space (Bourbaki [Bo3] or, for one implication,
Dellacherie-Meyer [DM]) but not for Q, see D. Preiss [P]. The tight-
ness hypothesis avoid the loss of mass by escape to infinity.

Proof (ideas of the). Consider the set Y(2, u; K) where K is
a compact metric space. There the Carathéodory integrands may
be identified with elements of L' (€2, u;C(K)) (C(K) denotes the Ba-
nach space of real continuous functions on K) and Y(Q, y; K) may
be identified with a weak® closed bounded subset of the dual of
LY(Q, 4;C(K)) (recall that an integral representation of this dual
is given in A. & C. lonescu Tulcea’s book [ITu]). So by the Alaoglu-
Bourbaki theorem, Y(€, u; K) is narrowly compact. Then the el-
ements of Y(Q, u;R%) can be considered as elements of Y, 1 K)

where K is some compact metric over-space of R? (K = R?is a
possible choice). The boundedness of (u"),, implies the tightness hy-
pothesis (which prevents to goin K \R?%): there exists an inf-compact
function A : RY — [0, +o0] (here h(€) = [|€]] ) and M < +oo such
that

Vo, [ () v () < M
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Let h be the extension of A to K defined by ?Lgf) = 4o if & ¢ RY
If v — 7 in Y(Q,p; K), by Lemma 5, [o, 5 h(§) 7(d(z,€)) < M,
hence 7 is carried by Q x R% By Theorem 3, 7 is the narrow limit

of (v )y in Y(, u; RY). &

DENSENESS.

ProprosITION 8. The set of Young measures associated to func-
tions is dense in the set of all Young measures Y(<2, M;Rd).

COMMENT. This denseness result extends to the case when p is
an abstract nonatomic measure. For a first version, see L..C. Young
[Y1, pp.226-228]). The following proof seems to be new.

Proof. We give the proof for Q = [0,1]. Let 7 € Y(Q, u; RY),
(¥1,...,%,) be a finite sequence in Cth®(Q;R%) and £ > 0. We have
to exhibit a measurable function % such that

Vie{1,...,n},/ mdr—/ b dy
QxRd QxRd

Thanks to Theorem 3 we may suppose, as in the proof of Th.4, that

for some p, each 1,; does not depend on z on {k kil{ x R% this

<e. (3)

2P 2P
for all k£ such that 0 < k < 2P, It is sufficient to work with the first
interval {0,2%{. Let f; € C°(RY) be such that v;(z,&) = f;(€) for

every = € {0, 2% { Let 7 be the measure on R? of total mass 1/27:

1/2P
?::/ Tedx .
0

It is known (see P.R. Halmos [H, Th.C Sec.41 p.173] and R.M. Dudley
[Du, Comment on §8.2 p.215]) that there exists a measurable function

1
u: [0, —] — R?
o

for which the image of the Lebesgue measure of {0, 2%} equals 7.

Then one has

1/2°
vie{l,... nl, /Rdfi(f)i-(df):/o filu(z)) dz .
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2P 2P
pasting the functions obtained to get a function u defined on [0, 1],
(3) is obtained with e = 0. o

So, repeating this for the intervals {i k"’—l} (1 <k < 27), and

3. Weak and Strong Convergence and Oscillations.

(GGENERAL OBSERVATIONS.

o0

In LY(, u;RY), u™ — u™ strongly implies u™ — u® weakly, that is

Vp e L, /(p,un—uoo>d.,u—>0.
Q

But the converse does not hold. If u* — u® weakly, it is possible
that u™ does not converge to u* strongly.

ExampLes. Let Q = [0,1], d = 1 and (r"),, be the sequence
or Rademacher functions. One has r* — 0, but Vn, ||r"||;1 = 1.
Another example is u"(z) = sin(nz). Then u” converges weakly to
u™ =0, but not strongly since [[u”||;1 — 2.

The following facts are useful. If ™ — u®, one can say:

1) (u™), is norm bounded in L' (this consequence of the Banach-
Steinhaus theorem holds because the index set is N, this is not valid
for generalized sequences). (For an example of a strange generalized
sequence, let H be an infinite dimensional Hilbert space, (€,),>1 an
orthonormal sequence in H and z, = y/ne,. Then there exist a
directed ordered set I and a map ¢ : [ — N* such that (,(q))aer
weakly converges to 0. But necessarily ||z, || tends to +oo.)

2) since the set {u" : n € NU{oo}} is weakly compact (this is
not valid for generalized sequences), (u™), is uniformly integrable.
This is stronger than 1). It is a consequence of the Dunford-Pettis
theorem (see Dunford-Schwartz [DS, Th.IV.8.9 p.292]). For the ex-
tension of this part of Dunford-Pettis theorem to Banach spaces, see
J.K. Brooks & N. Dinculeanu [BD] and J. Diestel [Di].

3) One knows (Lebesgue-Vitali’s theorem [DS, Th.I11.6.15 p.150])
that, if (u™), is uniformly integrable, its strong convergence is equiv-
alent to its convergence in measure, that is (recall that we assume
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H(Q) < +oo ):

Ve >0, p({z € Q:||u"(z) —u™(z)|| >€}) = 0.

PROPERTIES OF YOUNG MEASURES CONNECTED TO WEAK CON-
VERGENCE.

The following theorem gathers what Young Measures bring to the
study of weak convergent sequences in L'(€, ,u;}Rd). We enjoy par-
ticularly Part 2.

THEOREM 9. Suppose u™ — u™ in L'(Q, p; RY).

1) There exist a strictly increasing sequence (ng); and a Young
measure 7 such that ¥™* — 7. Then p-a.e. the disintegration 7, has
a barycenter bar(r,), u*(z) = bar(r;) p-a.e. and

s = =l = [ €= u @) r(d(z, )

Moreover, if 7. is a.e. a Dirac measure, then 7 = v and u"* — u*
strongly.

2) If u" does not converge strongly, there exist a sequence (ng)x
and a Young measure 7 as in 1) above such that 7 is not associated
to a function.

3) u™ — u®™ strongly <= v™ — v*>° narrowly.

REMARK. To see the necessity in Part 1 of the extraction of a
subsequence, consider u” = r” if n is even, = 0 if n is odd. In spite
of the weak convergence u” — u*, the sequence (v"), may have
several limit points.

Proof. 1) a) The sequence (u"), is bounded in L'(£, u;R%). So
by the Prohorov theorem (Th.7), there exist a strictly increasing
sequence (ng); and a Young measure 7 such that v — 7 . Let M
be a bound of the L'-norm of the u”. Since (z,&) — ||€|| is a > 0
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integrand l.s.c. in £ , one has (Lemma 5 or Th.6)

Jalalléll m=(dO)] n(dz) = Joygall€ll 7(d(2,€) <
< liminf fo €] 27 (d(2,€) = liminf [l 2 < M.
Hence bar(7,) exists for almost every . Now let p € L>(€, u; R%).

Consider the integrand ¥ (z,&) = (p(z),£). It is continuous in £&. The
negative parts

(¥ (2, u™(2)))” = (p(2), u"(2))~

are < ||p[|re ||[u"(z)||, hence uniformly integrable. By Theorem 6,

| o). & rde,e) <tmint [ (p(e), w7 (@) u(da).

k—=oo Jaxrd

Since this is also valid for —p, one has

| pene )= tim [ (o), @) pda).

k—oco Jaxrd

As

LU @)@ = [ (o), [ erlde))nda)
= [ (@), bar(r.) (da)

one has u®(z) = bar(7,) a.e.

b) Now consider the integrand continuous in &, ¥(z,&) = || —
u®(z)||. The sequences of negative parts (¢(.,u"(.)))” = 0 and
(= (., u™())” = ||lu"™(.)—u>(.)] are still uniformly integrable. Hence
by application of Theorem 6, we get the formula of the statement.

c) If 7, is a.e. a Dirac measure, then 7, = Ouoo(z) and 7 = v,
Moreover the formula of the statement implies

[|[u"* — u™||;1 — 0.

2) Suppose that 4™ does not converge strongly and that for every
convergent subsequence (v”?), of the sequence (v"),, its limit is
associated to a function. Then, up to the extraction of a subsequence
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one may assume Vn, [[u" —u™||f1 > € where € is > 0. By Part 1 there
exists a convergent subsequence (v"*)j. Its limit 7 is associated to
a function v, i.e. 7, is a.e. a Dirac measure. By Part lc, we get the
contradiction u"* — u®™.

3) This results from Proposition 1 and the Lebesgue-Vitali theo-
rem. &

COMMENTS ABOUT OSCILLATIONS.

When v* — 4®™ and does not converge strongly, a limit measure
of a subsequence (v™*); contains information about the asymptotic
oscillatory behaviour of the subsequence (u"*); (recall that in appli-
cations the functions u” are the gradients of functions belonging to
some Sobolev space). This is specially meaningful in Mechanics when
the energy function is not quasi-convex in the sense of C.B. Morrey
[Mo] (see the Introduction of Section 1). Similar phenomena were
already studied in Control Theory (when some convexity is lacking)
under the name of Relaxation and L.C. Young was the first to speak
of oscillations and to introduce measures to describe them (see [Y1,
p.231]: “The direction of a sailing ship, or that of a mountain road,
is... constantly oscillating...”). From Part 2 of Th.9, if u" — u®,
u” - u™ there exists v — 7 with 7 non associated to a function
and there exists a Borel set © A with p(A) > 0 such that Vz € A, 7,
is not a Dirac measure. Then, above A, the functions u™* oscillate
with “frequencies tending to +00” (it would be valuable to give this
a more precise meaning). See Figure 5.

7  The biggest is A = {z € Q : I]Rd € — u®(z)]| 7=(d¢) > 0}. This formula

proves that A can be chosen measurable.
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Figure 5

THE VISINTIN-BALDER THEOREM.

DEFINITION. Let C be a convex subset of a linear space and
y € C. The point y is an extreme point of C if y is not barycenter
in a non trivial way of two points of C.

Equivalently “there does not exist a linear segment S contained
in C such that y is a relative interior point of S” or “there does not
exist y; # y2 in C such that y = %(yl + y2).”

When F is a normed linear vector space, an extreme point is a
boundary point but not all boundary points are extremal.

NOTATION. O.C for the set of extreme points of C.

NoOTATION. For a sequence (y,), in R? Ls(y,) denotes the set of
limit points of the sequence. It is the Painlevé-Kuratowski limit sup
of the sequence of singletons ({y,}), (see [At]).

THEOREM 10 (Visintin-Balder). Let v (n € NU {oo}) be a
sequence of functions in L'(Q, u;R?Y) such that v — u™ weakly.
Consider the hypotheses:
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(H1 - Visintin’s hypothesis) for every z there exists a closed con-
vex subset of RY, I'(z), such that ¥n, p-a.e. u*(z) € ['(z) and p-a.e.
u™® () € Oextl'(2).

(H2) for every x there exists a closed convex subset of RY, T'(z),
such that d(u"(z),I'(z)) — 0 in measure and p-a.e. u™ (z) € Oextl'(z).
(H3 - Balder’s hypothesis) p-a.e. u®(z) € Oextco(Ls(u"(z))).
Then one has always p-a.e. u™(x) € @(Ls(u™(z))) and, under the
hypothesis “there exist I'(z) closed convex subsets of R?, such that

Vn, p-a.e. u"(z) € I'(z),” one has p-a.e. u™(z) € I'(z). Moreover

(H1) = (H3) = u" — u™strongly

and
(H2) = u™ — u™ strongly.

COMMENT. This theorem comes from Visintin and Balder works
[Vi], [Bd5]. It gives only sufficient conditions under which the weak
convergence implies the strong convergence (see the examples after
the proof). For a necessary and sufficient condition see M. Girardi
[Gil-2], [Va8], Balder-Girardi-Jalby [BGJ], V. Jalby [Jb]. The fol-

lowing statement is proved in [Va8]:

THEOREM. Suppose u™ — u in L' (2, u;RY). Then ™ — u
strongly if and only if the following criterion is satisfied: Ve >
0, VA C Q with u(A) > 0, IN € N, 3B C A with u(B) > 0,
such that Yn > N,

5 .

Proof of Theorem 10.

1) First we prove p-a.e. u™(z) € @(Ls(u"(z))). For any Young
measure 7 limit of a subsequence (v" ), the 7, are carried by Ls(u"(z)).
Indeed, consider the integrands (recall that the indicator function of

Cisé(&|C)=0if £ € C, = 400 otherwise)
Pp(z,8) = 6(& | cl{uP(z) : p > n}).

u™(z) — ﬁ /B u” duH p(de) < e.
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For k > n, one has

/ o dv™ =0,
OxR4

hence by the lower semi-continuity property (Lemma 5 or Th.6)

/ by dr =0,
QxR4

Then 7, (cl{u?(z) : p > n}) = 1 p-a.e. Soin the limit 7,(Ls(u"(z))) =
1, that is 7, is carried by Ls(u”(z)). By Part 1 of Th.9, «*(z) equals
bar(r;). Consequently u*(z) € @o(Ls(u"(z))). If moreover Vn, u-
a.e. u”(z) € I'(z) one has Ls(u™(2)) C I'(z), hence the inclusion

co(Ls(u"(z))) C I'(z) .

2) The implication (H1) = (H3) results from the elementary fact
that if & (:= u®(z)) is an extreme point of I'(z) and belongs to
co(Ls(u™(z))), then £ is still an extreme point of the smaller set
co(Ls(u"(z))).

3) Now we prove (H3) = u” — u®™ strongly. Suppose that u"
does not converge strongly. Then, up to the extraction of a subse-
quence one may assume Vn, ||[u” — u™||;1 > ¢ where € is > 0. Let
(v )k be a convergent subsequence of the sequence (v"),,, and 7 its
limit. Since bar(r;) (= u™(z)) is an extreme point of €6(Ls(u"(z))),
it is rather easy to prove (for details see [Va6, pp.172-173]; surely this
has been proved by G. Choquet [Ch] in the case of convex compact
sets) that 7, = duoo(z)- By Part 1 of Th.9 we get the contradiction
u™ — u*> strongly.

4) Now we prove (H2) = u™ — u® strongly. Suppose that u”
does not converge strongly. Then, up to the extraction of a subse-
quence one may assume that Vn, [[u" — u®||;1 > ¢ where ¢ is > 0
and that d(u"(z),I'(z)) — 0 a.e. Then outside of a negligible set,
one has Ls(u"(z)) C I'(z) and (H3) holds for this subsequence. So,
by 3) above, we get the contradiction ||u" — u>||;1 — 0. &

REMARK. The fact that, under the hypothesis “for every z there
exists a closed convex subset of R, I'(z), such that Vn, y-a.e. u*(z) €
['(z),” one has u™ (z) € ['(z) p-a.e. can be proved directly using the
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strong closedness and the convexity of the set {v € L'(,u; R?) :
v(z) € I'(z) a.e.}. The relation

u™(z) € co(Ls(u"(z))) p-a.e.

is easier to prove with Young measures, but a proof without Young
measures has been given by Amrani-Castaing-Valadier [ACV2,
Th.8]. (Recall that Z. Artstein obtained in [Ar, Prop. C] the formula
u®(z) € co(Ls(u"(z))) p-a.e.) The original proof of Visintin devel-
oped in [Vab] does not use Young Measures. For a quick presentation
of the ideas, see [Va9, Th.3] and for a proof of Balder’s result [Bd5]
without Young measures see [ACV1-2] (and also T. Rzezuchowski
[Rz2]).

ExaMPLE 1. (this example and the following come from [Va9]).
Let Q=1[0,1],d =1 and for k € N, p € {0,...,2%F — 1},

vt =1 1 if n:2k—|—p.
(% 2]

P

2k 2
Then ||v"||;1 = 27% tends to 0 and it is easy to see, and classical (this
is the most usual example of a sequence converging in measure but
not a.e.), that for any z in Q, Ls(v"(z)) = {0,1}. Then if u?" = v",
w?" ! = ™ ||u®||;p — 0 and Ls(u™(z)) = {-1,0,1}. So, with

u*® =0,

Vo € Q,u™(z) ¢ Oextco(Ls(u"(2))) .

Note that if u* — u® there exists a subsequence such that
u™ (z) = u*™(z) p-a.e. Then Ls(u"*(z)) = {u*(z)}, hence Balder’s
condition is satisfied for such a subsequence: u™(z) € 0extCO
(Ls(u™(z))). But this condition is not necessary for the whole se-
quence.

ExampLE 2. Even for subsequences the Visintin condition is
not a necessary condition. Let r™ be the Rademacher functions,
a, € 10,4o00[, a, — 0, and
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Then u” — 0 strongly but, for any subsequence, 0 € int[co{u"*(z) :
k € N}] because

sup u™*(z) > 0 p-a.e.

keEN
(consider the Lebesgue measure on [0, 1] as a probability. The events
{u™ < 0} have probability 1/2 and are independent so have a neg-
ligible intersection) and, symmetrically,

inf u"* 0 p-a.e.
jnf u (z) < 0 p-a.e

A CONSEQUENCE OF THE VISINTIN THEOREM.

One can recover from the Visintin theorem in L' the following result
(proved in [Vi] and, with more details, in [Va5]).

Suppose p € |1, +oo[, R? is equipped with a strictly convex norm,
u" — w® in L? and [|[u*||f» > lim sup ||u"||re, then «" — u™
strongly in L?. The proof does not use uniform convexity arguments.
One of the arguments is: if ¢(z,.) is finite valued and strictly convex
on R?, then for any & € RY, (&, p(z,€)) is an extreme point of the
epigraph of ¢(z,.) (here the epigraph is {(£,7) € R x R : p(z,&) <
r}).

For other similar results and proofs see Y.G. Reshetnyak [Re,
Th.3], A. Visintin [Vi], E. Balder [Bd16], H. Benabdellah [Bn1-3],
H. Brezis [Br].

4. Applications to the Calculus of Variations.

A FIBER PRODUCT LEMMA.

First we give a kind of fiber product type limit result.

LEMMA 11. Let 6" (n € NU{oco}) denote Young measures on
Q xR% and let 7° (n € NU{cc}) denote Young measures on  x R%
such that ¢” — ¢* and 7" — 7 narrowly. Let " (n € NU {oo})
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be the Young measures on © x R4+% defined by
0 =0, 1, .
If 0°° is associated to a function, then 6" converges narrowly to 8.

COMMENT. In the next theorem the result is applied with "
and 7" associated (for n € N) to functions " and v" (then for
n € N, 07 = dun(z)wn(a)), that is 67 is associated to the function
(u"(.),v™(.))). Without the hypothesis “o* is associated to a func-
tion,” the result is false: take o™ and 7" both associated to the
Rademacher functions. Then 6" converge to the Young measure
whose disintegration is —(5(1 1)+ d(-1,-1)), but

1
02" = 70001+ 0(1,—1) + 0-1,1) +0(-1,-1)) -

Proof. 1) Tf ¢ € Cth®(Q;R™), one has

/ S p(x,€) 0™ (d(2,€,¢)) =
‘/ / p(,€) [op © 771(d(€, O))] p(de)
= / Q[/ I CEACIIC)

= / pdo™.
QxR

Similarly for ¢’ € Cth®(9;R%) the following formula holds:

[ 0= [ o
QxR xXR%2 QxR%2

2) a) The set of points of a convergent sequence and its limit
being a compact set, by the Prohorov theorem, there exists h; (resp.
hsy) a positive inf-compact function on R (resp. R%) such that

M= sup [ hi(€)o"(d(a,€)) < +oc
neENU{co} J QxRN



A COURSE ON YOUNG MEASURES 381

Myi= sup [ ha(Q)r(d(z,0)) < +oo.
neNU{co} QxR %2

(Note that in applications the Young measures ¢” and 7" are as-
sociated to functions of L! which form bounded sequences, so one
can choose hq(€) = ||| and ho(C) = ||€]].) Since (&,¢) — hi(§) and
(&,¢) — ha(Q) are Ls.c., their sum (h(&,¢) = h1(€) + h2(C) ) is also
l.s.c. Hence, for all r € [0,+oo[, {h < 7} = {(£,¢) € R x R :
h(&,¢) < r}isclosed. Since hy and hy are > 0, {h < r} is a subset of
the compact set {hy < r} x{hy <r}. So the set {h < r} is compact.
By Part 1 above,

sp | h(E, Q) 8" (d(2,£,C)) < My + M.
neNU{co} J QxR xR 2

Hence the sequence (6™),¢y is tight and, by the Prohorov theorem,
admits a convergent subsequence.

3) Suppose that there exist 19 € Cth®(Q, u; R% x R%) and £ > 0
such that, for infinitely many n,

de” —/ de™| > ¢ . 4
/Qxﬂ&dl xR 942 Yo QxR xR Yo ( )

Extracting a subsequence one may suppose that (4) holds for every n
and that 8" converges to A € Y(Q, ;R4 xR%). Let u be the function
to which 0 is associated. Set ¥(z,&,() = ¢(2,€) = min(1, || —
u(z)||ga ). By Part 1, one has

[ @608 = [ edon
OXR% xXR%*2 QxR

— pdo™ =0.
QxR

Hence

0= [ &0 Md(6,0) =
QXR xR %2

:/[/d L o2& Ald(€, )] uld) .
Q JR% XR%2

Consequently, A, is p-a.e. carried by

{(6,Q) e RY x R : p(2,€) = 0} = {u(e)} x R®.
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Hence A; has the form d,(,) ® a; with o € Prob(R%) (for any Borel
subset B of R%, «a,(B) = A\, ({u(z)} x B) = A\, (R% x B)). For
@' € Cth®(Q; r%)
/ #'(2,6) Md(2,6,6)) =
QxR XR92

~ lim / ¢ (2,¢) 6(d(x,&,0))
QxR xR

= lim/ o dr"
QxR %

= / o dree.
QxR

Moreover by Part 1,

/ d d QD/($7C) /\(d(ﬂj,f,C)) :/ QO’dOA.
QxR xR 92

QxR

This proves @ = 7, hence A = ° which contradicts (4). &

THE WEAK-STRONG LOWER SEMI-CONTINUITY THEOREM.

Now the weak-strong lower semi-continuity theorem which is funda-
mental in the Calculus of Variations follows easily.

THEOREM 12. Let ¢ : Q x RH x R — R measurable in (z,&,()
and l.s.c. in (§,(). Let (u"), be a sequence of measurable func-
tions from Q to R% such that u" — u™ in measure and (v"), a
sequence in L'(Q, u;R%) such that v* — v™® weakly. Assume that
Va, ¥(z,u™(z),.) is conver and that the sequence of negative parts

(z = ¢(z, u"(2),v™(2)) 7 )n

is uniformly integrable. Then
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CoMMENTS. 1) This theorem holds for a metrizable Suslin space
in place of R% and a Banach space in place of R%. See [Va7, Th.3 p.6]
for a precise statement, a shorter proof than the one of C. Castaing &
P. Clauzure [CC], historical comments (specially references to some
E.J. Balder’s papers) and a correction to [Va6, Th.21 p.171].

2) Theorem 12 is often applied when €2 is an open subset of RV,
u™ € WHP(Q;R) and v™ = Vu". Thend; = 1,dy = N. It still applies
if u* € WP(Q;RY) and v* = Vu”, with d; = N and dy = N x N
(v™(z) is a N X N matrix). But then the convexity of ¥ (z, u*(z),.)
is a too restrictive hypothesis, not appropriate to physical problems.
The good one is quasi-convexity (see especially B. Dacorogna [Da2]).

3) Theorem 12 requires some strong convergence of u”. For ex-
ample, with Q = [0,1], dy = dy = 1, " = —r", v = " and
(e, €,¢) = €, one has

/ Pz, u™(z),u™(z))dz =0
Q

but, for all n € N,

/ Pz, u"(z),v"(z))de = —1.
Q

Proof. One can extract a subsequence such that

fim [ (e, 0 (@), 07 (2)) i d) =

k— o0

n—oo

= lim inf /Q Pz, u"(z),v"(z)) p(dz) .

One may suppose that the Young measure 77 associated to v"™* con-
verges to a Young measure (a priori non associated to a function)
7. With 6" defined in Lemma 11, 8™ converges to §°°. More-
over, Yn € N, 8" is associated to (u"(.),v"(.)). By the lower semi-
continuity theorem (Th.6),

/ P df>” <liminf [ ¥(z,u"*(z),v"*(z)) p(dz) .
QXRUXE %2 k—oo JQ
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But v*(z) is the barycenter of 72° (Th.9). Then thanks to the Jensen
inequality applied to the convex function ¥ (z,u™(z),.)

[t = [ ] (e,6,0) 8 O)alde)
= [ v @), ) )

> [ a0 (@), 0% () u(da).
¢

CoMMENTS. 1) The case when ¢ is a matrix and ¥(z, u*(z),.)
is quasi-convex is not so easy. The Jensen inequality does not hold
for quasi-convex functions at any point {. The only hope is that
for Young measures 7% which are limits of gradients, the Jensen in-
equality is satisfied at bar(7.°). Papers by D. Kinderlehrer & P. Pe-
dregal [KP1-2] give some results in this line. Note that the Morrey-
Acerbi-Fusco theorem ([AF], [Da2, Th.2.4 p.166]) needs control of
negative and positive parts. For some strange behavior of vectorial
problems see, in B. Dacorogna’s book [Da2, pp.158-159], the Tartar-
Ball-Murat example.

2) Young measures have all the same projection measure on €2,
the given measure p. So they do not allow variations of mass on Q.
When such variations have to be considered, it may be valuable to
use the Y.G. Reshetnyak result [Re] (see also J. Jacod & J. Memin
[IM]). Y. Reshetnyak associates to a vector measure m € M (Q;R?)
the positive measure p on Q x S%=! defined as the image of |m| by
z — (z, %(m)) When u € L'(Q, ;R%) and m = uy, the Young
measure v associated to u is connected to p by the following: if 4 is
an integrand on Q x R? positively homogeneous in &, then

[ pdv= [ e u@)atds)= [ dp.
QxR4 Q Qxsd-1
(It is well known since C. Goffman & J. Serrin’s paper [GS] that, if

1 is positively homogeneous in &, then, for any positive measure 6
such that |m| < 6, one has

dm dm
v @) Iml(an) = [ (e G @) 0ta) )
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In my opinion, Reshetnyak’s result is specially well adapted to prob-
lems where the integrand is positively homogeneous. For its appli-
cation to the Calculus of Variations see M. Giaquinta, G. Modica
& J. Soucek [GMS] and more recently, for a problem where positive
homogeneity is a data, C. Castaing & V. Jalby [CJ].

BOUNDED SEQUENCES IN L.

There are several possibilities for handling bounded sequences in L'.
One may embed L' in its bidual (L*°)’ (see C. Castaing & M. Val-
adier [CV, chapter VIII], V.L. Levin [Le]). Another possibility (when
Q has some topological properties, for example is locally compact)
is to embed L' in ML, working with the o(L',C) or the a(ML,C)
topology (see among many references C. Olech [O1] and G. Bouchitté
& M. Valadier [BV]). The Komlés theorem [K] may also be useful.
Here we state the following biting lemma (or its Slaby’s formula-
tion) and we will show in Theorem 14 how the biting lemma allows
us to understand what is the barycenter bar(r;) of the limit 7 of a
convergent subsequence (v"*); when starting from a bounded, but
not uniformly integrable, sequence (u™), in L'(2, u; R%). For these
sequences the Prohorov theorem (Th.7) still applies (the simplest
example is surely v =n 1[07%]).

THEOREM 13 (biting lemma). Let (u"),, be a bounded sequence in
LY(Q, ;RY). There exist a subsequence (u™ )y and a sequence (Ap),
in B(Q) which decreases to () such that the sequence (1g\ 4, u™* )y is
uniformly integrable.

We do not prove this technical result (recently used by K. Zhang
[Z] and J.M. Ball & K. Zhang [BZ]).

REFERENCES. [Gp], [BC], [Eg], [Sb], [BM], [C8], [Va6, Th.23
p.173].

THEOREM 14. With the notations of Theorem 13, for any sub-
sequence (V"™ which converges to a Young measure T (here k :
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N — N is a strictly increasing map), then p-almost everywhere 7, has
a barycenter u(z), u is integrable and the sequence (1Q\Ak(m) ukm)),,
weakly converges to u.

Proof. Since the sequence (1Q\Ak(m) u™km)) . is uniformly inte-
grable, it is sufficient to prove, as in Part la of the proof of Th.9,
that the Young measure 7™ associated to 1Q\Ak(m) u"k(m) converges

to 7. Let ¢ € Cth®(;R%) and M be a uniform majorant of [¢(z, &)].
Then

fQX]Rdzdem — fgxmdlbdljnk(m)

- ‘fAk(m) [w(xv 0) - T/)(:Cv unk(m))] ,u(dx)
< 2fAk(m) M p(dz) — 0.

With v"k(m) — 7 this proves the result. &

REFERENCES

[AF]  AcEersI E. and Fusco N.,| Semicontinuity problems in the calculus
of variations, Arch. Rational Mech. Anal. 86 (1984), 125-145.

[ACV1] AMRANI A., CasTAING C. and VALADIER M., Convergence forte
dans L' impliquée par la convergence faible. Méthodes de troncature,
C. R. Acad. Sci. Paris Sér. T 314 (1992), 37-40.

[ACV2] AMRANI A., CASTAING C. and VALADIER M., Méthodes de tronca-
ture appliquées a des problémes de convergence faible ou forte dans
L', Arch. Rational Mech. Anal. 117 (1992), 167-191.

[Ar] ARTSTEIN Z., A note on Fatou’s lemma in several dimensions, J.
Math. Econom. 6 (1979), 277-282.

[At] ArroucH H., Varwational Convergence for Functions and Opera-
tors, Pitman, London (1984).

[Bdl] BALDER E.J., On a useful compactification for optimal control prob-
lems, J. Math. Anal. Appl. 72 (1979), 391-398.

[Bd2] BALDER E.J., A general approach to lower semicontinuity and lower
closure in optimal control theory, STAM J. Control Optim. 22 (1984),
570-598.

[Bd3] BALDER E.J., A general denseness result for relazed control theory,
Bull. Austral. Math. Soc. 30 (1984), 463-475.



[Bd4]

[Bd5]
[Bd6]

[Bd7]

[BdS]
[Bd9]
[Bd10]
[Bd11]
[B12]
[Bd13]
[Bd14]
[Bd15]

[Bd16]

[Bd17]

[Bd18]

[BGJ]

A COURSE ON YOUNG MEASURES 387

BALDER E.J., An extension of Prohorov’s theorem for transition
probabilities with applications to infinite-dimensional lower closure
problems, Rend. Circ. Mat. Palermo Serie IT 34 (1985), 427-447.
BALDER E.J., On weak convergence implying strong convergence in
L1-spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368.

BALDER E.J., On seminormality of integral functionals and their
integrands, STAM J. Control Optim. 24 (1986), 95-121.

BALDER E.J., Seminormality of integral functionals and relazed
control theory, in Fermat days 85: Mathematics for Optimization,
Toulouse, ed. J.-B. Hiriart-Urruty, Math. Studies 129, North—Holland,
Amsterdam (1986), 43-64.

BALDER E.J., More on Fatou’s lemma in several dimensions, Cana-
dian Math. Bull. 30 (1987) 334-339.

BALDER E.J., A short proof of an existence result of V.L. Leuvin,
Bull. Polish Acad. Sci. Math. 37 (1989), 655-658.

BALDER E.J., Infinite-dimensional extension of a theorem of Komlds,
Probab. Theory Related Fields 81 (1989), 185-188.

BALDER E.J., New sequential compactness results for spaces of sca-
larly integrable functions, J. Math. Anal. Appl. 151 (1990), 1-16.
BALDER E.J., On Prohorov’s theorem for transition probabilities,
Sém. Anal. Convexe 19 (1989), 9.1-9.11.

BALDER E.J., Generalized equilibrium results for games with in-
complete information, Math. Oper. Res. 13—-2 (1988), 265-276.
BALDER E.J., On uniformly bounded sequences in Orlicz spaces,
Bull. Austral. Math. Soc. 41 (1990), 495-502.

BALDER E.J., Fatou’s lemma in infinite dimensions, J. Math. Anal.
Appl. 136 (1988), 450-465.

BALDER E.J., On equivalence of strong and weak convergence in L1 -
spaces under extreme point conditions, Israel J. Math. 75. (1991),
21-47.

BALDER E.J., From weak to strong L, -convergence by an oscillation
restriction criterion of BMO type, info preprint no. 666 (10 pages),
Dept. of Math., University of Utrecht, The Netherlands (1991).
BALDER E.J., On weak convergence implying strong convergence
under extremal conditions, J. Math. Anal. Appl. 163 (1992), 147-
156.

BALpDER E.J., GIRARDI M. and JALBY V., From weak to strong
types of LkL-convergence by the Bocce-criterion, info preprint no.
826. Dept. of Math., University of Utrecht, The Netherlands (1993)
(to appear in Studia Math.)

BALDER E.J., and HEss C., Fatou’s lemma for multifunctions with
unbounded values, info preprint no. 728 (13 pages), Dept. of Math.,



388

MICHEL VALADIER

University of Utrecht, The Netherlands (1992) (to appear in Math.
Op. Res.)

BaLL J.M.. A version of the fundamental theorem for Young mea-
sures, in Partial differential equations and continuum models of phase
transitions, eds. M. Rascle, D. Serre and M. Slemrod, Lecture Notes
in Physics 344, (Springer Verlag, Berlin, 1989), 207-215.

BarL J.M. and MuraAT F., Remarks on Chacon’s biting lemma,
Proc. Amer. Math. Soc. 107 (1989), 655-663.

BaLr J.M. and ZHANG K.W., Lower semicontinuity of multiple
integrals and the biting lemma, Proc. Royal Soc. Edinburgh 114A
(1990), 367-379.

BENABDELLAH H., Contribution aux problémes de convergence fort-
faible, a la géométrie des espaces de Banach et aux inclusions diffé-
rentielles, These de Doctorat (Montpellier, 1991).

BENABDELLAH H., Extrémalité, stricte convexité et convergence dans
LL, Sém. Anal. Convexe 21 (1991), 4.1-4.18.

BENABDELLAH H., Extrémalité et entaillabilité sur des convexes
fermés non nécessairement bornés d’un espace de Banach. Car-
actérisation dans le cas des espaces intégrauz, Sém. Anal. Convexe
21 (1991), 5.1-5.44.

BeRrLIOoCcHI H. and Lasry J.M., Intégrandes normales et mesures
paramétrées en calcul des variations, Bull. Soc. Math. France 101
(1973), 129-184.

BoucHITTE G. and VALADIER M., Integral representation of conver
functionals on a space of measures, J. Funct. Anal. 80 (1988), 398-
420.

BOURBAKI N., Intégration, Chap. 5: Intégration des mesures, (deu-
xieme édition), Hermann (Paris, 1967).

BOURBAKI N., Intégration, Chap. 6: Intégration vectorielle, (Her-
mann, Paris, 1959).

BourBAKI N., Intégration, Chap. 9: Intégration sur les espaces
topologiques séparés, (Hermann, Paris, 1969).

Brrzis H., Convergence in D' and in L' under strict converity,
(1993) (to appear).

Brooks J.K. and CHAcON R.V., Continuity and compactness of
measures, Adv. in Math. 37 (1980), 16-26.

Brooks J.K. and DINCULEANU N., Weak Compactness in space
of Bochner integrable functions and applications, Adv. in Math. 24
(1977), 172-188.

BurTazzo G., Semicontinuity, Relazation and Integral Representa-
tion in the Calculus of Variation, Longman Scientific and Technical

(Harlow, 1989).



[CK]

[Ch]
[Dal]

A COURSE ON YOUNG MEASURES 389

CAsTAING C., Quelques résultats de compacité liés a lintégration,
C.R. Acad. Sci. Paris. Ser. A 270 (1970), 1732-1735.

CasTAING C., Application d’un théoréme de compacité a la désinté-
gration des mesures, C.R. Acad. Sci. Paris. Ser. A 273 (1971), 1056~
1059.

CASTAING C., A propos de l’existence des sections séparément mesu-
rables et séparément continues d’une multiapplication séparément
mesurable et séparément semicontinue inférieurement, Sém. Anal.
Convexe 6 (1976), 6.1-6.6.

CAsTAING C., Compacité dans ’espace des mesures de probabilité de
transition, Atti Sem. Mat. Fis. Univ. Modena 34 (1985-86) 337-351.
CAsTAING C., Quelques résultats de convergence des suites adaptées,
Acta Math. Vietnam. 14 (1989), 51-66 (first published in Sém. Anal.
Convexe Montpellier (1987), 2.1-2.24).

CasTAING C., Validité du théoréme de Reshetnyak dans les espaces
hilbertiens, Sém. Anal. Convexe 17 (1987), 8.1-8.9.

CasTAING C., Convergence faible et sections extrémales, Sém. Anal.
Convexe 18 (1988), 2.1-2.18.

CasTAING C., Méthode de compacité et de décomposition applica-
tions: minimisation, convergence des martingales, lemme de Fatou
multivoque, Ann. Mat. Pura Appl. 164 (1993), 51-75.

CAsTAING C. and CLAUZURE P., Semicontinuité des fonctionnelles
intégrales, Acta Math. Vietnam. 7 (1982), 139-170 (first published
in Sém. Anal. Convexe Montpellier (1981), 15.1-15.45).

CasTAING C. and JALBY V., Integral functionals on the space of
measures. Applications to the sweeping process, in Nonlinear and
Conver Analysis in Economic Theory, Tokyo (to appear).
CasTAING C. and VALADIER M., Conver Analysis and Measur-
able Multifunctions, Lecture Notes in Math. 580 (Springer-Verlag,
Berlin, 1977).

CHipoT M. and KINDERLEHRER D., Equilibrium configurations of
crystals, Arch. Rational Mech. Anal. 103 (1988), 237-277.
CHOQUET G., Lectures on Analysis, Benjamin, New York (1969).
DacoroGNA B., Weak continuity and weak lower semicontinuity
of non-linear functionals, Lecture Notes in Math. 922 (Springer
Verlag, Berlin, 1982).

DACOROGNA B., Direct methods in the calculus of wvariations,
(Springer Verlag, Berlin, 1989).

DeLLACHERIE C. and MEYER P.A., Probabilités et Potentiel, Cha-
pitres I-TV (Hermann, Paris, 1975), (English edition: North-Holland,
Amsterdam, 1978).

DiesTEL J., Uniform integrability: an introduction, School on Mea-



390

(Gp]

[GH]

[GMS]

[Gil]

[Gi2]

MICHEL VALADIER

sure Theory and Real Analysis, Grado (Ttaly), October 14-25, 1991
Rend. Istit. Mat. Univ. Trieste XXIIT (1991), 41-80.

DiPERNA R.J., Measure-valued solutions to conservation laws, Arch.
Rational Mech. Anal. 88 (1985), 223-270.

DiPERNA R.J. and MaAJDA A.J., Oscillations and concentrations
i weak solutions of the incompressible flurd equations, Commun.
Math. Phys. 108 (1987), 667-689.

DUDLEY R.M., Real analysis and probability, (Wadsworth and
Brooks/Cole Mathematics Series, California, 1989).

DuNForRD N. and ScHwARTZ J.T., Linear Operators, Part T (In-
terscience, New York 1964).

EnGar G.A., Disintegration of measures and the vector-valued
Radon-Nikodym theorem, Duke Math. J. 42 (1975), 447-450.
EGGHE L., Stopping time techniques for analysts and probabilists,
Cambridge University Press (Cambridge, 1984).

EXKELAND 1., Sur le contréle optimal des systéemes gouvernés par des
équations elliptiques, J. Funct. Anal. 9 (1972), 1-62.

EKELAND I. and TEMAM R., Convezr Analysis and Variational Prob-
lems, North-Holland (Amsterdam, 1976) (French edition: Dunod
Gauthier-Villars, Paris, 1974).

ERICKSEN J.L., Some phase transitions in crystals, Arch. Rational
Mech. Anal. 73 (1980), 99-124.

Evans L.C., Weak convergence methods for nonlinear partial dif-
ferential equations, C.B. M.S. 74 Amer. Math. Soc. (1990).
FonsiEcA 1., The lower quasiconver envelope of the stored energy
function of an elastic crystal, J. Math. Pures Appl. 67 (1988), 175—
195.

GAMKRELIDZE R.V., On sliding optimal states, Dokl. Akad. Nauk
SSSR 143 (1962), 1243-1245 (in Russian. In English: Soviet Math.
Dokl. 3 (1962), 559-561).

GAPOSHKIN V.F., Convergence and limit theorems for sequences
of random variables, Theory Probab. Appl. 17-3 (1972), 379-400
(translated from Russian).

GHOUILA-HOURI A., Sur la généralisation de la notion de com-
mande d’un systéeme guidable, Rev. Fr. Inf. Rech. Op. 4 (1967),
7-32.

GIAQUINTA M., MobicAa G. and SOUCEK J., Functionals with lin-
ear growth in the calculus of variations. I, Comment. Math. Univ.
Carolin. 20 (1979), 143-156; I1, 20 (1979), 157-171.

GIRARDI M., Compactness in L1, Dunford-Petlis operators, geome-
try of Banach spaces, (1991), 767-777 111 Proc. Amer. Math. Soc.
GIRARDI M., Weak vs. norm compactness in Li: the Bocce crite-



[1Ti]

[ITu]

[IM1]

[IM2]

[KP1]

[KP2]

A COURSE ON YOUNG MEASURES 391

rion, Studia Math. 98 (1991), 95-97.

GorFFMAN C. and SERRIN J., Sublinear functions of measures and
variational integrals, Duke Math. J. 31 (1964), 159-178.

HaLmos P.R., Measure Theory, (tenth edition) (Van Nostrand,
Princeton, 1965).

HOFFMANN-JBRGENSEN J., Ezistence of conditional probabilities,
Mat. Scand. 28 (1971), 257-264.

TorrE A.D., On lower semicontinuity of wntegral functionals. I,
STAM J. Control Optim. 15 (1977), 521-538; II, 15 (1977), 991-
1000.

Torre A.D., and TimHoMmIROV V.M., Eztension des problémes en
calcul des variations, Trudy Moskov. Mat. Obsc. 18 (1968), 188-
246.

ToNEscU TULcEA A. and ToNEscU TULCEA C., Topics in the the-
ory of lifting, (Springer Verlag, Berlin, 1969).

Jacon J. and MEMIN J., Sur un type de convergence intermédiaire
entre la convergence en lot et la convergence en probabilité, Séminaire
de Probabilités XV 1979/80, eds. J. Azéma and M. Yor, Lecture
Notes in Math. 850 (Springer-Verlag) Berlin 529-546 (1981).
Jacop J. and MEMIN J., Rectification a “Sur un type de conver-
gence ntermédiaire entre la convergence en lot et la convergence
en probabilité”, in Séminaire de Probabilités XVII 1981/82, eds.
J. Azéma and M. Yor, Lecture Notes in Math. 986 (Springer-Verlag,
Berlin) 509-511 (1983).

JALBY V., Contribution aux probléemes de convergence des fonc-
tions vectorielles et des intégrales fonctionnelles, These de Doctorat
(Montpellier, 1993).

JAWHAR A., Compacité dans l’espace des mesures de transition et
applications: étude de quelques problémes de controle optimal, These
de 3e cycle (Montpellier, 1985), (chapter 1 was published in Sém.
Anal. Convexe Montpellier (1984), exposé 13 (62 pages)).
KINDERLEHRER D. and PEDREGAL P., Characterization of Young
measures generated by gradients, Arch. Rational Mech. Anal. 115
(1991), 329-365.

KINDERLEHRER D. and PEDREGAL P., Caractérisation des mesures
de Young associées a un gradient, C. R. Acad. Sci. Paris Sér. I 313
(1991), 765-770.

KoMmL6s J., A generalisation of a problem of Steinhaus, Acta Math.
Acad. Sci. Hungar. 18 (1967), 217-229.

LeEvIN V.L., Convexr analysis in spaces of measurable functions
and 1its application to mathematics and economics, Nauka, Moscow

(1985).



392

[O1]

[02]

[03]

[Rz1]

[Rz2]

MICHEL VALADIER

LuscHGy H., Integral representation in the set of transition kernels,
Probab. Math. Stat. 10 (1989), 75-92.

McSHANE E.J., Generalized curves, Duke Math. J. 6 (1940), 513—
536.

MicHEL P., Commandes généralisées dans un espace topologique
séparé, Bull. Sc. Math. 2e série 96 (1972), 237-262.

MoRrreEY C.B., Multiple integrals in the calculus of wvariations,
(Springer Verlag, Berlin, 1966).

NEVEU J., Mathematical Foundations of the Calculus of Probabulity,
(Holden-Day, San Francisco, 1965) (French edition: Masson, Paris,
1964).

OrecH C., The characterization of the weak* closure of certain sets
of integrable functions, STAM J. Control 12 (1974), 311-318.
OvLecH C., Emistence theory in optimal control. Control theory and
topics in functional analysis, International Atomic Energy Agency,
Vienna (1976), 291-328.

OLeEcH C., A characterization of Li-weak lower semicontinuity of
wntegral functionals, Bull. Acad. Polon. Sci. Math. Astr. Phys. 25
(1977), 135-142.

Piccinin L. and VALADIER M., Uniform integrability and Young
measures, Prépublication 1994/03 (10 pages) (Montpellier, 1994), to
appear.

PrEiss D., Metric spaces in which Prohorov’s theorem 1is not valid,
7. Wahrsch. Verw. Gebiete 27 (1973), 109-116.

RESHETNYAK Y.G., Weak convergence of completely additive vec-
tor functions on a set, Sibirsk. Mat. Zh. 9 (1968), 1386-1394 (in
Russian); English transl. Siberian Math. J. 9 (1968), 1039-1045.
RzezucHowsKl T., Strong convergence of selections implied by weak,
Bull. Austral. Math. Soc. 39 (1989), 201-214.

RzezucHowsKkl T., Impact of dentability on weak convergence in
L', Bolletino U.M.I. 7 (1992), 71-80.

SAINTE-BEUVE M.-F., On the extension of von Neumann-Aumann’s
theorem, J. Funct. Anal. 17 (1974), 112-129.

SCcHWARTZ L., Radon measures on arbitrary topological spaces and
cylindrical measures, Oxford University Press, London-Bombay
(1973).

SLABY M., Strong convergence of vector-valued pramarts and sub-
pramarts, Probab. Math. Statist. 5 (1985), 187-196.

TARTAR L., Une nouvelle méthode de résolution d’équations auz
dérées partielles non linéaires, in Journées d’Analyse Non Linéaire,
eds. P. Bénilan and J. Robert Lecture Notes in Math. 665 (Springer
Verlag, Berlin, 1978), 228-241.



[Val]
[Va2]
[Va3]
[Vad]

[Vab]

[Vab6]

[VaT7]

[Va8]

[Va9]

A COURSE ON YOUNG MEASURES 393

TArRTAR L., Compensated compactness and applications to partial
differential equations, in Nonlinear Analysis and Mechanics: Heriot-
Watt Symposium, vol.IV, ed. R.J. Knops, Research Notes in Math.
39 (Pitman, London, 1979), 136-212.

TARTAR L., The compensated compactness method applied to sys-
tems of conservation laws, in Systems of nonlinear partial differen-
tial equations, (Reidel, 1983), 263-285.

TARTAR L., H-measures and applications, in Proceedings of the In-
ternational Congress of Mathematicians, (Kyoto 1990) Math. Soc.
Japan (Tokyo, 1991), 1215-1223.

TARTAR L., H-measures, a new approach for studying homogeniza-
tion, oscillations and concentration effects in partial differential equa-
tions, Proc. Royal Soc. Edinburgh (1991).

VALADIER M., Désintégration d’une mesure sur un produit, C.R.
Acad. Sci. Paris Ser. A 276 (1973), 33-35.

VALADIER M., Structure des atomes conditionnels d’un espace de
probabilité, Sém. Anal. Convexe 10 (1980), 1.1-1.17.

VALADIER M., Quelques théorémes bang-bang, Sém. Anal. Convexe
11 (1981), 4.1-4.12.

VALADIER M., Régularisation sci, relaxation et théoremes bang-
bang, C.R. Acad. Sci. Paris Ser. T 293 (1981), 115-116.

VALADIER M., Différents cas o, grace a une propriété d’extrémalité,
une suite de fonctions intégrables faiblement convergente converge
fortement, Sém. Anal. Convexe 19 (1989), 5.1-5.20.

VALADIER M., Young measures, in Methods of Nonconver Analy-
sis, ed. A. Cellina, Lecture Notes in Math. 1446 (Springer-Verlag,
Berlin) (1990), 152-188.

VALADIER M., Applications des mesures de Young auzr suiles uni-
formément intégrables dans un Banach séparable, Sém. Anal. Con-
vexe 20 (1990), 3.1-3.14.

VALADIER M., Oscillations et compacité forte dans L1, (1991), 7.1-
7.10 21 Sém. Anal. Convexe.

VALADIER M., Young measures, weak and strong convergence and
the Visintin-Balder theorem, in Convergences en Analyse Multivoque
et Unilatérale, eds. H. Attouch and M. Théra (to appear in Set-
Valued Anal.).

VISINTIN A., Strong convergence results related to strict convezity,
Comm. Partial Differential Equations 9 (1984), 439-466.

WARGA J., Optimal control of differential and functional equations
(Academic Press, New York, 1972).

YounGg L.C., Generalized curves and the existence of an attained
absolute minimum in the Calculus of Variations, Comptes Rendus



394

MICHEL VALADIER

de la Société des Sc. et des lettres de Varsovie cl. TIT 30 (1937),
212-234.

Youna L.C., Generalized surfaces in the Calculus of Variations, 1.
Generalized Lipschitzian surfaces, Ann. of Math. 43 (1942), 84-103.
YounG L.C., Generalized surfaces in the Calculus of Variations, 11
Ann. of Math. 43 (1942), 530-544.

YounGg L.C., Lectures on the Calculus of Variations and Optimal
Control Theory, Saunders, New York (1969).

ZHANG K., Biting lemma for Jacobians and their applications, Ann.
Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 345-365.



