CHANGE OF VARIABLE FOR HAUSDORFF
MEASURE (from the beginning) (*)

by TiM TrAYNOR (in Windsor) (**)

1. Hausdorff Measure.

In many of the lectures of the Schools on Measure and Real Anal-
ysis, Hausdorff measure is used to discuss sets of fractional dimen-
sion. Here, instead, we wish to discuss sets of integral dimension:
curves, surfaces, solids, et cetera, and see how Hausdorff measure
makes it possible to discuss arc length, surface area (and surface
integral) and the like in a consistent manner.

The point of view taken is that (for integral dimension) Haus-
dorff measure is what Lebesgue measure would be if it were only
defined. Let us start with the set K = [0,1] x [0,1] x {1} C R?, a
surface in R3. It clearly has volume 0, area 1, and length 4+-00. The
reason it is “clear” that it has area 1 is that K is a “copy” of the
2-dimensional square [0, 1] x [0, 1] which has Lebesgue 2-dimensional
measure A*([0,1] x [0,1]) = 1. It has length 400 because it con-
tains infinitely many disjoint copies of the interval [0, 1] which has
1-dimensional Lebesgue measure 1. And, of course, its volume is its
3-dimensional Lebesgue measure, which is 0.

Let A™ be Lebesgue outer measure in R™. It is Borel regular
in the sense that Borel sets are measurable and each A C R” is
contained in a Borel set B of the same measure. The other (outer)
measures which we discuss will be also of this type. We will identify
the measure on the Borel sets with the corresponding outer measure.

A basic property of Lebesgue (outer) measure A" in R” — and
the basis for this entire article — is that it is translation invariant:
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Basic THEOREM. For any a € R”, X'(a + A) = A"(A), for
all A C R™ PFvery other translation invariant measure on Borel
subsets of R™ giving a finite value ¢ to a unit cube is of the form

p(A) = cA”(A).

Hence, also every translation invariant Borel regular outer mea-
sure giving a finite value to a unit cube is a multiple of Lebesgue
outer measure.

What do we mean, when we say “copy”? If A C R", and B C R™,
to say that B is a copy of A (for the purposes of length and area, and
the like) surely means that there is a one-to-one function 7" mapping
A onto B, and at the very least, that for two points z,y € A the
FEuclidean distance between the corresponding points Tz and Ty is
the same as the distance between z and y; that is, 7' is an isometry.
One might also want lines and planes to be preserved, but this is
automatic.

1.1. THEOREM. A map T on R"™ to R™ is an isometry iff it is
an orthogonal (linear) transformation, followed by a translation.

By definition, U : R® — R™ is orthogonal if Uz- Uy = z - y,
for all z,y € R™. Linearity is a consequence of this, for if we let
= U(sa+b) and y = sUa + Ub, we find that |22 = |y|? = z - y,
hence z = y from the identity |z — y|? = |z|* + |y|* — 2z - y.

Proof. Since an orthogonal transformation is linear and preserves
length, it preserves distance; since translations also do so, any T of
the stated form is an isometry.

Conversely, let T be an isometry and put Uz = Tz — T0, for all
x. Then U is still an isometry, and U0 = 0. Thus,

22y = |z[*+[y|* — |z —y* = [Uz|* +|Uy|* = |Uz - Uy|* = 2Uz - Uy,

so U preserves inner products and Tz = T0+ Uz, is of the required

form. &

Consequently:



CHANGE OF VARIABLE FOR HAUSDORFF MEASURE 329

1.2. THEOREM. Lebesgue measure is invariant under isometries
of R™ with itself.

Proof. If T : R™ — R"™ is an isometry then it is the composition
of a linear map with a translation, hence p(A) = A*(T'A) defines a
translation invariant measure. Thus, A" (T'A) = cA"(A). If B is a
ball centered at 0, then T'B is just the translate 70+ B. Since A" is
translation invariant, A" (T'B) = A"(B), which shows ¢ = 1. &

The program, then, is to produce a measure h™ in R™ which
gives the measure A" (A) to each isometric copy T'A of a (Borel) set
A C R". And then to investigate its behaviour under a change of
variable.

Producing h”

(The reader who already knows something about Hausdorff mea-
sure may prefer to skip the rest of this section.)

Since such a measure also must be invariant under isometries, one
makes its definition depend only on diameters of sets. In a metric
space, we will use the letter d to denote both distance and diameter:
d(A) = inf{d(z,y) :z,y € A}.

Consider the case n = 1, first. Lebesgue measure on the line
satisfies

AL(A) = inf{z d(B) : C is countable, UC D A}
BeC
This is because the diameter of a finite interval is its length and each
bounded set B is covered by an interval of the same diameter. Thus,
we might expect the same formula
p(A) = inf{z d(B) : C is countable, UC D A}
BeC
would give the right concept of length (1 dimensional measure) in
higher dimensions. But, if K is [0, 1]x{0,}, the union of two parallel
line segments in R?, each of length 1, of distance ¢ apart,

e
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then p(K) < d(K)=(1+ 52)%, so for € small, y(K) is considerably
less than the desired value of 2. Worse, if A =[0,1] x {1 : n € N},
then u(A) < d(A) = V2, whereas A is a disjoint union of denumer-
ably many disjoint isometric images I,, of the unit interval, so the
measure h! to be constructed would have h'(A) = 3", hl(I,) = +oo.

This difficulty is overcome by covering only with small sets.

For each § > 0, call a family C of sets a §-cover of Aif JC D A
and d(C) < ¢, for all C' € C and put

hi(A) = inf { Z d(C) : C a countable é-cover of A} .
cecC

As § decreases to 0, h}(A) increases to a limit, denoted h'(A), the
1-dimensional Hausdorff measure of A.

This set function is definable in every metric space, and of course,
depends on the metric space; this, however, is not a weakness but
a strength. The various outer measures h' are preserved under
isometries. Indeed, if f is an isometry between metric spaces then
d(C) = d(f(C)) for all C and hence h'(A) = h!(f(A)). (If f is not
surjective, the argument is slightly more complicated. See Lemma
below.)

The process used to construct h' is called Carathéodory’s second
construction (or Method II). (See the appendix.) It always produces
an outer measure for which Borel sets are measurable. And we shall
see that h! is also Borel regular.

Thus, we have solved the problem for dimension 1: If X is R™,
or any metric space, and 7 : R — X is an isometry, then h'(T'A) =
h'(A) = A'(A), for all A C R.

Since the volume of a cube in R™ is proportional to the nth power
of its diameter, we guess that to solve the problem for n dimensional
objects in a metric space X we should involve d(A)™ instead of d(A).
Put

H5(A) = inf { Z d(C)" : C a countable d-cover of A} ,
cec
H*(A) = lim HF(A)

§—0

h"(A) = e, H"(A)
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where ¢, is a positive finite constant, to be chosen. For many pur-
poses it is convenient to choose ¢, = 1. [Bandt, Graf, Edgar, Fal-
coner].

Here, instead, we wish to choose ¢, so that in R”, h” will equal
A" [Federer, Billingsley, Evans and Gariepy].

1.3. LEMMA. If A C Xo C X, then to calculate H}(A), H"(A),
h"(A), it is enough to use covers consisting of subsets of Xj.

Proof. Indeed, if C is a é-cover of A, then sois {C'N Xy :C €C}
and d(C' N Xg) <d(C), for all C' € C. %

1.4. THEOREM. The outer measures H", hence also h", are
invariant under isometries from one metric space to another and are
Borel reqular. The constant ¢, may be chosen so that for A C R",

h"(A) = A" (A).

With this choice, we call h® n-dimensional Hausdorff mea-
sure. Since h” is invariant under isometries, no confusion arises
from using the same letter for this measure in different spaces.

Proof. Let X and Y be metric spaces, f : X — Y an isometry
and A C X. We prove that #§(A) = H}(f(A)). Since f(A) C f(X),
by the previous lemma, we may assume f(X) = Y. Then, since
d(f(C))=4d(C),C < {f(C):C € C}is aone-to-one correspondence
between the §-covers of A and of f(A), and the sums in the definitions
remain invariant.

The closure of any set has the same diameter. Thus, in the
definition of H"(A), one may restrict the §-covers to consist of closed
sets. For each k € N, let Ci be a countable %—cover of A by closed
sets with 3-qcc d(C)" < 7—[% (A) 4+ 1. Then B := N, UCy is a Borel
set containing A with #7 (A) < H% (B) < H% (A) + 1. In the limit,
we have H"(A) = H" (B)k Thus, Hr is Borelkregular.

Let @) be the unit cube. Since H" is translation invariant it will,
by the basic theorem, be a multiple of A" if H"(Q) < oo.

Now, () can be divided into a finite number of disjoint cubes

C' of diameter < ¢, and for each C, d(C)" = (v/n)"AX"(C); hence,
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HE(Q) < (y/n)™, and in the limit H"(Q) < (v/n)" < oc.

Thus, H"(A) = cA"(A), ¢ = H"(Q) < oo, for all Borel sets
A. Since both H" and A™ are Borel regular, this is true also for
non-Borel sets.

On the other hand, each set C in R™ is contained in a cube of

side d(C'), so if C is a cover of ), then

(@) < Y d(O)"

cecC

so that 1 < H"(Q) = c.
Thus, we may choose ¢, = ¢™! to obtain h”(A) = A"(A) for all
A CR™ ¢

It happens that this value ¢, = H"(Q)™! is just the Lebesgue
measure of a ball of diameter 1. (See the Appendix.) But we won’t
need this fact.

1.5 PROPOSITION. If Ay and Ay are subsets of R™ contained
in orthogonal vector subspaces Xy and Xy of dimension n and k

respectively, then h™tF(A; @ Ay) = h™(A;)h*(A,).

Proof. There is an isometry U mapping X; @ X, onto R™ X R* of
the form, U(z+y) = (Uyz, Uyy). Since Uj; restricted to X is an isom-
etry and A; C X;, we have h"tF(A; @ Ay) = h"tF (U1 A) x UyAy) =
An—l—k(UlAl X UQAQ) = An(UlAl)Ak(UQAQ) = hn(UlAl)hk(UgAg) =
h” (A;)h*(A,). &

2. The Area Formula — Change of Variable

Fix n € N, and let h™ denote n-dimensional measure in whatever
space we are in. If f:R"™ — R™, we wish to find how to calculate
h"(f(A)) in terms of h™ = A" on R”, and to integrate over f(A).

The formula h™f(A) = h™(f(A)) clearly defines an outer mea-
sure, though without further conditions, one cannot say much about
its measurable sets.
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If fis an isometry, then as we have seen, h” f(A) = h"(A). If f
is Lipshitz with Lipshitz constant ¢, then h" f(A) < ¢"h™(A). More
generally:

2.1. LEMMA. Let f and g be map a set A into (possibly different)
metric spaces such that d(f(z), f(y)) < cd(g(z),9(y)), for all z,y €
A. Then h" f(A) < c"h™g(A).

Proof. 1f C is a d-cover of g(A), then the fg=1(B), for B € C
cover f(A) and have diameter d(fg~'(B)) < cf(B),

S(F(A) < X d(B).

Taking inf over such covers gives
s (FA) < "HE (g(A)).
Now pass to the limit and multiply by the normalizing constant. {

Consider first a linear map 7 : R® — R™. Its smallest Lipshitz
constant is |||, the operator norm. Thus, h"T'(A) < ||T||*h"(A) =
[|T]|* A" (A) < oo, for all A C R™

Let |T| be h™(T[Q]) where @ is the unit cube in R™

2.2. PROPOSITION. Let T : R" — R™ be a linear transforma-
tion. Then,
BT(4) = ITIR"(4),

for all A C R™. T is injective iff |T| # 0.

Proof. 1f T is not one-to-one, then its range is a vector sub-
space of dimension k£ < n. Thus, there is an isometry f mapping
the range of T to a k dimensional subspace of R”, and as such has
Lebesgue n-dimensional measure 0. Hence, h"T(A) = h"(f(TA)) =
A (f(TA)}) = 0. In particular, |T| = h"T(Q) = 0, so the formula
holds in this case.

In the case T is one-to-one, {A : T'A is Borel } is a o-ring S.
Since T is continuous, T A is compact for each compact A C R".
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Thus, & contains the compacts of R™, hence all Borel sets of R™.
Since all the Borel sets of R™ are measurable for the version of h”
in R™, this shows that the restriction of h™T to the Borel sets is a
measure which is translation invariant, and finite on (). Therefore,
by the basic theorem,

h"7'(B) = |T|h"(B),

for B Borel. Since h™ is Borel regular, this will hold for non-Borel
sets if h™7T is also Borel regular.

If A is arbitrary, there is a Borel subset C' D T A of R™, with
h"(C) = h™(TA). Then B = T~'[C] is Borel, B D A, and C' D
TB D TA. Thus, hT(B) = hT(A), as required.

Finally, if T is injective, TR”™ is isometric with R”. Thus,
h™(TR™) = h"(R") = o0, so |T| # 0. &

The scale factor |T'] can be calculated in terms of determinants
(and we will do this in section 3), but this is irrelevant to the main
result.

For a map f:V C R" — R™, put Jf(x) = |f'(x)], whevever
the (total) derivative f'(z) exists. We will call Jf the Jacobian of
f, because it turns out in the case n = m to be the absolute value of
the Jacobian determinant. Notice, by the way that f’(z) is injective
iff Jf(x) # 0.

Let L(R™ R™) denote the normed space of linear transformations
from R" to R™.

2.3. LEMMA. Let Ty € L(R",R™).

(1) If Ty is injective, then for each r > 1, there exists ¢ > 0 such
that for all 7" € L(R"™ R™) with ||T — Tp|| < 6,

1
—|Toz| < |Tz| < r|Tyz|
r

for all z € R™, so that L |To]| < |T] < r|To].
(2) If Ty is not injective (i.e. |Zo] = 0), then || T — Ty|| < 6 implies

171 < 6(IToll + 6)"".
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(3) Hence, the scale factor |7'] is a continuous function of 7".

Proof. (1) Since Ty is continuous, |Tyz| takes a minimum value
¢ = cr, on the (compact) sphere {z € R” : |z| = 1}, and since Ty is
injective, ¢ # 0. Thus, for all z € R", |Tpz| > c|z|. For any other
T € L(R™,R™),

(T = To)2| < ||IT" = To|llz| < ™ H|T" = To||Toz].

Thus,

|Tz| < |Toz| + |Tz — Toz|
|Tz| > |Toz| — [Tz — Toz|

< (14 eTNT = o)) Toz| < r|Tozl,

> (1= YT = Tol)[Toc] > 1 Tocl,
for || T — Tp|| < 4, small enough. By Lemma 2.1, |T']| = h"T(Q) <
r"h"To(Q) = r" | To| and similarly |To] < " |T].

(2) If Ty is not injective, let v; be a unit vector with Tov, = 0.
Extend this to an orthonormal basis {vy,...,v,}. Let 1 be the unit
cube determined by this basis. And let ()7 be the n — 1 dimensional
cube determined by {vq,...,v,}.

Suppose ||T — Tp|| < 6. Then

|T’U1| = |(T— To)’U1| < 5,

and |IT]| < |1 Toll + 5.

Let P be the projection onto the subspace orthogonal to Tw;.
Then || PT]| < ||T|| < ||To|] + 9. And T'Q); is contained in [0, 1]7'v &
PTQ,, so that by Proposition 1.5, h”(TQ) < hl([0,1]Tv;)h"!
(PTQa) = ITolllPTI" < 6(IToll + 8)"

(3) follows immediately from (1) and (2). &

2.4. LEMMA. Let f be differentiable at © € R”, with f'(z)
injective. Then, for each r > 1, there exist § > 0 and k € N such
that for T € L(R™ R™) with ||T — f'(z)|| < ¢,

[f(z) = f) < r[Te=Tyl, [Tz =Tyl <r|f(z) = fy)]

for all z,y with |z — y| < ¢.
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Proof. Let r > 1 and choose rq with r > rq > 1. Apply the
previous lemma to rg and Ty = f’(z), obtaining a § > 0 with

1
—|Toz| < |Tz| < ro|Toz]
To

for ||T"— f'(z)|| < . In particular, such 7 is also injective. Thus,
there is ep > 0 with |Tz] > er|z| for all z € R™ Fix ¢ > 0. By
definition of differentiable, there exists & € N such that |y — z| < %
implies
1f(w) = f(2) = f(2)(y = 2)| < eexly — 2],

17 (y) = f(2)] |f'(2)(y — )| +ecrly — 2|
rolT(y — 2)| + [T (y — 2)|
= (ro+e)[Ty—Tx|,

<
<

and similarly, |f(y) — f(z)] > (+ — &)|Ty — Tz|. The conclusion

0

follows, by choosing € so that ro +¢ < r and % —e> %

2.5. LEMMA. Let f :V C R® — R™ be continuously dif-
ferentiable, V an open set and r > 1. Then Vy := {z € V :
f(x) is injective } is a disjoint union of a sequence Borel sets B;
for which there exists T = T; such that for all x,y € B;

T2 <rlf @)z, 1f@: <rT],  forallzeR" ()
and

[f(z) = fW)l <rlTe=Tyl,  [Te =Tyl <r[f(z) = fy)]. ()

Proof. Since f is continuously differentiable, and the set of injec-
tive T is open, Vj is open, hence Borel. !

Fix a countable dense subset 7 of L(R", R™). For each z € Vg,
we may choose by the previous two lemmas, a 1" € 7 and £ € N
satisfying () and satisfying (+*) for y such that |z — y| < 7. Turn

1 Actually, V; is a Borel set even if f is just continuous [Fed, p 211].
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this around: for fixed T, k let E/(T, k) be the set of those & for which
these inequalities hold. Then the E(T, k) cover V.

Each E(T,k) is a Borel set. Indeed, z € E(T, k) iff the inequal-
ities hold for all z in a countable dense subset of R™ and for all y
in a countable dense subset of {y : |z — y| < £}. Moreover, E(T, k)
is a countable union of Borel sets F(T,k, j) of diameter < % The
required countable set of B; comes from disjointifying the countable

family {Vo N E(T,k,§): T € T, k, j}. ¢

2.6. MaIN ResurLT. Let f be a 1-1 continously differentiable
map of an open set V of R™ to R™. Then for all Borel subsets A of
v,

[ 35(@) 3 (d2) = b (1),
and hence,
[ 9r@nIs@ N ) = [ o) dy).
A f1A]
for all Borel maps g : f[V] — R for which one side exists.

On the left side the integration is with respect to Lebesgue mea-
sure A" = h”™; on the right side, with respect to Hausdorff n-dimen-
sional measure in R™.

Proof. The second equation (the change of variable formula)
comes follows from the first (the area formula) by the usual argument
envolving approximation by simple functions, so we omit it.

Suppose first that A C Vp = {z : f'(z) is injective }. Fix r > 1
and choose sets B; and linear maps 7; as in the previous lemma. Put
A; = AN B;. From (%) and Lemma 2.1,

W(TQ) < B (F(2)Q),  W(F(2)Q) < "B (T1:Q)

that is,
172 <r"Jf(z),  If(z) <" |T5]

for 2 € A;. Integrating over A; yields

Lpr(a) g/ 3/ dh" < r"hT(A;).
r A;
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Let us work on the right side. From (*%) and 2.1 again,
h"T;(A;) < r"h”f(A;).
Thus,
[ aran <),
A

and after summation over 1,
/AJf dh™ < r?"h" f(A).
Now A no longer depends on r, so we may let r — 1, to obtain
/Adeh” < W f(A).

The reverse inequality is similar.

We now consider the case A C {z : f/(z)is not 1-1 }. Since
Jf=0on A, [,Jfdh™ =0. Thus, we are to show that h” f(A) is
also 0.

Since f'(z) is continuous in z and R™ is o-compact, we may
assume X" (A) < oo and ||f/(z)]| is bounded by some K € R. Factor
f as Po f; where

fi:R" — R™"XR": 2w (fz,dz)
and P(y,z) =y. Then f is injective and continuously differentiable

with
fi(@)v = (f(z)v,dv), for all v € R™.

We see that f{(z) is injective. The difference between T' = f{(z) and
the linear map 7y : v — (f'(z)v,0) is v — (0, dv), which has norm 6,
and |To] = | f(2)]| < K, so0

Jfi(z) <6(K+6)",

by Lemma 2.3(2). The previous case applies to fi, so
b F(4) S B fiA) = [ 3fidbn < 60+ )
A

and hence h” f(A) = 0. &
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REMARKS.

(1) This result was proved without actual evaluation of Jf. In
applications, one may need actual values. This is the topic of the
next section.

(2) Federer[Fed] and [EvGa] state this theorem, not for C! func-
tions on an open set, but for Lipschitz functions f : R®* — R™.
By Rademacher’s Theorem [Fed, 3.1.6] such an f is differentiable at
A”-almost all points.

(3) The hypothesis that f be one-to-one may be removed (and
is so in [Fed] and [EvGal) if one counts the multiplicity of f, that
is, the number of times f takes a given value y in A. In this regard,
note that the proof divided A into a sequence of disjoint pieces, on
each of which f was one-to-one.

(4) The measurability assumptions on A and g can also be re-
laxed.

3. Evaluating the scale factor and Jacobian

First notice that if T : R® — R™ and S : R” — R™, linear,
|ST| = A*(STQ) = |SIN*(TQ) = |SIIT], where @ as before

denotes a unit cube.

Case n = m.

Here we will show that |T'| = |det?|, so that Jf(z) is the
absolute value of the usual Jacobian determinant.

QuickK PROOF. T may be factored as U; DUy where Uy, Uy are
orthogonal and D is diagonal with entries dy,...,d, > 0 on the
diagonal of its standard matrix. (See A.7.) Then, since |D| =
A™([0,dy]x...x[0,d,]) =dy...d, =det D, |T| = | D] = |det D| =
| det T']. &

FElementary proof. 1f T is not invertible, we already know |7'] =
0 =|detT].
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Every invertible linear transformation 7" on R™ can be factored
as a product (composition) 7" = Ej...F;, where the E; are “ele-
mentary” linear tranformations of the forms:

F; interchanges two coordinates;

F; multiplies a co-ordinate by —1;

F; multiplies the first co-ordinate by ¢ > 0;

F; adds the second co-ordinate to the first.

Since T+ |T| and T +— |detT| are both multiplicative, it is
enough to establish the equality for T of one of these types. The
first two are isometries (scale factor 1) and have determinant 1
and —1; and if T is of the multiplication type: (z1,z32,...,2,) —
(cx1,29,...,2,), ¢ > 0, then detT = ¢ and |T]| = A (TQ) =
A™([0,¢] x [0,1] x ... x [0,1]) = ¢. Finally, if T : (21,22,...,2,) —

(1 + 22, 29,...,2,), let S : (z1,22,...,2,) = (21,—22,...,Zy).
Then STST is the identity and | S| =1,s0 1= |S|IT11S117] =
I7]?. Hence |T] =1=detT. O

Casen=1

Here T : B! — R™ is of the form Tz = zv, v € R™ and
TQ = TI[0,1] is isometric with [0,[v|], so |T] = A ([0, [v]]) = |v].
Thus, h'(f(A)) = [4|f'(»)| dz, extending the usual formula for arc
length of a 1-1 differentiable curve.

Casen=m-—1

Let {e1,...,e,} be the standard basis in R™ and {€,... el }
the standard basis in R™. View the elements of R™ and of R™ as
column vectors. Let T : R™ — R™ be linear with standard ma-
trix [T] = (a;;) = [a1]aq|...|a,], a; = Te;. The map z € R™ —
det[z|ay] ...|a,] is linear, so there exists a vector v € R such that
v-z = det[z|aq]...|a,]. For each i, v; = v - e} = det[e}|ay|...|a,] is
(—1)'*'times the determinant obtained by deleting the jth row. We
may denote v by a1 X ... X a,, since for n = 2, this is the ordinary
cross product of two vectors in R>.
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3.1. THEOREM. If T : R"™ — R"™*! is linear, then |T| =
[Ter x ...x Tey|.

If vis not 0, let « be a unit vector in the same direction; otherwise,
let w be any unit vector orthogonal to the ay,...,a,. Then, |v| =
|v - u| the absolute value of the determinant of [u|ay|...a,]. This
latter is the matrix of a linear transformation on S : R™ — R™

Sel = uy,Sel =a;_y, fori=2,...,m.
Let C' be the unit cube of R™. Then
SC=0,1]udpTQ,
80

151 = W™([0,1]usTQ)
= h'([0,1]u)h™"(TQ)
= h*(1Q) =TI,

and by the case n = m, |S| =|det S| = |v|, as promised.
Thus to obtain J f(z), one finds the matrix of partials

of1 9f1
(@)= o
BES dzn

and finds the square root of the sum of the squares of the submatrices

of size n X n.

The general case n < m

The last paragraph of the preceding case is really the general
case.

3.2. THEOREM. IfT : R™ — R™ is linear then |T|* =
det(T*T) and is the sum of the squares of the n X n sub-determinants
of the matriz of T.
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Here T* : R™ — R"™ is the ajoint map: for z € R", y € R™,
Tzr-y=x-T*y. The matrix of T* is the transpose of the matrix of
T.

Proof. According to the Polar Decomposition Theorem (A.4), T
may be factored as US where S is a symmetric transformation on R"
and U is an orthogonal map on R™ to R™. Thus U*U is the identity
on R" and |T)* = |S]? = (det S)? = (det S*)(det S) = det(5*S) =
det(S*U*US) = det(T*T).

Let C'(m, n) be the set of all increasing maps 7 from {1, ..., m} to
{1,...,n} and S,, be the set of permutations ¢ of {1,...,n}. Every
injective map on {1,...,n} to {1,..., m} may be uniquely factored
as 7o.

Now, let the matrix of 7" be A = (a;;). For each 7 € C(m, n), let
A, be the matrix obtained from A by selecting the rows 7(1),...,7(n).
Then, since a determinant is linear in each of its columns, and van-
ishes if two columns coincide,

Dbl QR1AET ) gy Gk1Gkn
det T*T = det :
Y ohe1 Chn@k1 Do ey GhnGhn
L0770 T /7' |

Qpyp * 0 Ak
Uro(1),1 "7 Qro(n),1
= Z aTa’(l),l 'aﬂ'a( ),n det
T7€C(m,n) 0€Sy aTcr(l),n e a’rcr(n),l

aT(l),l e aT(n),l

= Z det(A;) det(A,),

as required. &
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The 7 € C(m, n) determine the (") subspaces E; = Span{e’T(l),
...,e;(n)}, spanned by subsets of the standard basis of R™. Let P-:

be the corresponding projection. Then the A, of the previous proof
is just the matrix of P,T with respect to the bases {ey,...,e,} and

{62_(1), . .76’7(1)}.

3.3. COROLLARY. IfT : R® —s R™ is linear, then |T|* =
Yrccimm V2T that is h"T(A)2 = 3 h" P T(A)?.

Proof. Since FE; is isometric with R™ under the map U, which

sends e’T(i) to e, | P:T| = U P;T| = |det(U, P T)| = |det A;|. &

Appendix

An outer measure (sometimes called simply “measure”) in a
space X is a countably subadditive function ¢ on all subsets of X to
[0, 400] with ¢(0) = 0. A C X is called ¢y-measurable if u(7) =
p(T'NA)+p(TNA?), forall T C X. The set M, of all ¢p-measurable
sets is a g-algebra of subsets of X on which ¢ is g-additive.

If 7 is any function defined on a family A of subsets of a space
X with values in [0, co], and

(A) =inf{>_ 7(C):C C A, Cis countable, and | JC D> A},
cec
for all A C X, then 7" is an outer measure, the Carathéodory
(Method I) outer measure generated by 7 and C. (7*(0) is
automatically 0, since empty sums are considered 0.)

A.1. CARATHEODORY’S CRITERION. If u is an outer mea-
sure in a metric space X, all Borel sets are p-measurable iff pu(A U
B) = p(A) + p(B) whenever A and B are of positive distance apart:
d(A,B) =inf{d(z,y) :z € A, y € B} > 0.

Such a p is called a metric outer measure. Proof. Let GG be
open, T"C X. We have to show

p(T) Z p(TNG) +u(T\G)
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Let A=TNG, and for each 1 € N put 4; = {z € A :d(z,G°) > +}.
Then A; /A and d(A;, T\ G) > 0, so

u(T) > u(Ai U (T\ G)) = p(A) + pu(T\ G).

Also, d(A;, A\ Ait1) > 0, so the result will follow from:

A.2. LEMMA. If p is an outer measure A; /* A and p(E) =
p(ENA) 4+ p(E\ Aigr), whenever £ C A; U (A\ Ajqq), i € N, then
p(As) — u(A).

Proof of the Lemma. Since u(A) > lim; u(A;), we may assume
the right side is finite.

Write By = Ay, and B;y; = Ajpq \ A4;, for all i € N. Then
Uk<m Bak—1 C A2m—3 U (A \ Azm—2), 50 ft(Ug<p Bak—1) =
#(Uk<m—1 Bak—1) + pt(B2m—1) and by induction

p(J Bar-1) = Y iw(Bag-).

Since lim; pt(A;) majorizes this, the series Y, p(Bar—1) converges.
Similarly, the series of even terms converges, so the entire series
> 1(B;) converges. Thus

n(A) < p(Aj) + ZM(B]‘) — lim p(As),

as required. &

CARATHEODORY’S SECOND CONSTRUCTION. “Method II”, (of
which the construction of Hausdorff measure is a special case) goes
as follows. Given 7 a function on a family A of subsets of X, a metric
space, for each & > 0, let us be the Carathéodory outer measure
generated by the restricion of 7 to A; = {C € A : d(C) < 6}.
Then for all A C X, § > ¢ implies ps(A) < ps(A) and p(A) =
lims_—0 ps(A) = supssg ps(A) defines an outer measure.

A.3. THEOREM. Carathéodory’s second construction produces
only metric outer measures.
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Proof. Indeed, if A and B have distance > ¢ apart and a count-
able C C As covers of AU B, then C4 = {C € C:CNA# 0} and
Ceg ={C €C:CNB # (0} are covers of A and B respectively, which
have no C' in common. Thus,

Y.T@) = D 1O+ Y T(C) > ps(A) + ps(B).

ceC CeCy CelCp
Taking infimum over all such covers C gives ps(AU B) > ps(A) +
ps(B). Thus equality holds, and in the limit g(AUB) = p(A)+p(B).

DETERMINATION OF THE NORMALIZING CONSTANT

If % is a unit vector of R™, A C R", the Steiner symmetrization
of A with respect to the hyperplane u* = {z :z - u = 0} is S,A =
{z +tu:|t| < Ih'(AN (2 + Ru)}). Here z + Ru is the line through
z in the direction of v.

A.4. LEMMA.
(1) d(S.A) < d(A)
(2) If A is A"-measurable then so is S, (A) with A" (S5,A4) = A"(A).

(3) S, is symmetric with respect to u'.

This depends upon Fubini’s Theorem in the form of Cavalieri’s
Principle. We omit the details. (See [Fed, 2.10.30], [Bil, p.211],
[EvGa, p.67].)

A.5. ISODIAMETRIC INEQUALITY. For each A C R" of diameter
2r, A" (A) < N (B(0,r)).

That is, even though A may not be contained in a ball of the
same diameter, its measure is at most the measure of such a ball.
Proof. We may assume A is closed, hence measurable. Let

{€1,...,en} be the standard basis of R™ and A" = S, ---S., S5, A.
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Then A’ is symmetric about the origin, has diameter < d(A) = 2r,
and measure A" (A") = A"(A). The symmetry implies A’ is contained
in the closed ball about 0 radius r so A"(A) = A"(A") < A*(B(0,r)),

as required. &

A.6. THEOREM. For all A C R", X*(A) = ¢, H"(A), where ¢,
is the Lebesgue measure of a ball diameter 1.

Proof. By 1.4, there exists a ¢, > 0 with this property; it is a
matter of determining its value. Let & be the measure of an open ball
of diameter 1. Then the measure of every other ball B is A"(B) =
kd(B)™; and by the isodiametric inequality, every set C' has A" (C') <
kd(C)™.

Let U be an open set, § > 0. By the Vitali covering theorem
there exists a sequence of disjoint balls B; of diameter < § with

HE(U\U; Bi) < ;" A*(U\U; B;) =0. Thus
kHG(U) = UB <kzd Z,\n A(U),

so also kH"(U) < A™(U).
On the other hand, if U C U;C; A*(U) < Y, A(Ch) <
< Y kd(C)®, which shows that kH™(U) > A*(U). Thus, ¢, = k.{

A.7. POLAR DECOMPOSITION. LetT : R" — R™, then there
exist orthogonal linear U : R®™ — R™ and symmelric positive S :
R"™ — R™ with T = US, hence also orthogonal Uy, Uy and D positive
diagonal with T = U, DUs,.

Diagonal means D(zy,...,z,) = (diz1,...,dyz,).

Proof. The operator T*7T is positive: T*Txz-z > 0, for all . Thus,
there exist aq,...,@, > 0, and an orthonomal basis uy, ..., u, with
T*Tu; = ayu;. Put d; = /oy, Since Tu;-Tuj; = T*Tu;-uj = au;-uy,
the Tu; are orthogonal of norm d;. Put v; = d;lTui, for those ¢
with d; > 0, and extend this to an orthonormal basis {vy,...,v,}
of R™. Define a linear S : R® — R™, by setting Su; = d;u;
then U : R" — R™ by setting Uu; = v;, for ¢ = 1,...,n. Then
USu; = Ul(dyu;) = dyv; = Tu;, so US = T. Finally, a further
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orthogonal change of basis Pe; = u;, gives us the P~1SP diagonal
yielding the last statement: 7"= UP(P~'SP)P~L.
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