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1. Introduction.

In 1936, G. Birkhoff and J. von Neumann gave a basis of the so-
called “logico-algebraic” foundation of quantum mechanics (see [1]).
In this approach, a quantum system is supposed to be associated
with an orthocomplemented set I (“a quantum logic”) such that
the elements of L correspond to the propositions on the system.
The physical states of the system are then modelled by the (gen-
erally noncommutative) probability measures on L (“states”). The
development of ideas in the logico-algebraic foundation of quantum
theories can be seen in the monographs [2], [3], [4], [5], [6], etc.

In this exposition we will give an account of recent results on
states on quantum logics. The motivation for the problems investi-
gated comes from quantum physics, of course. We assume that the
quantum logics be orthomodular posets (this assumption was found
appropriate within quantum theories).

1.1. DEFINITION. An orthomodular poset (abbr. an OMP) is a
triple (L, <,’), where L is a set that is partially ordered by < and
that fulfils the following requirements:

(i) L possesses a least and a greatest element, 0,1,
(ii) if @,b € L and a < b, then b’ < d/,

(iii) the unary operation ': L — L satisfies the following condition:
(¢') = a for any a € L,
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(iv)if @, b € L and if a < ', then the supremum, a V b, exists in L,

(v) if a,b € L and a < b, then b = aV (b A d’) (the orthomodular
law).

Thus, technically speaking, an OMP is a common generalization
of the notion of a Boolean algebra and the lattice of projectors in a
Hilbert space (the lattice condition is dropped and the distributivity
law is relaxed to the orthomodular law). When an OMP is viewed as
an event structure of a quantum experiment, the lattice condition on
L does not seem to be justified and the distributivity law does seem
to be superfluous — its presence could actually bring us outside the
quantum physics. From the mathematical standpoint, too, it seems
restrictive to admit lattices only (we would e. g. loose the OMP
of projections in a C™*-algebra, the OMP of skew projections in a
Hilbert space, the OMP of splitting subspaces in a (noncomplete)
inner product space, many interesting set-representable OMPs, etc.).
In these notes, we shall not require OMPs to be lattices. — Let us
denote by L an OMP throughout the notes.

1.2. DEFINITION. A mapping s: L — (0,1) is called a state on
L if it fulfils the following two conditions:

(i) s(1) =1,
(ii) if @ < b', then s(aV b) = s(a) + s(b).

Thus, by a state we mean a probability measure on L. For the
intuition, one may consider Boolean states (=commutative states),
states on the lattice L(H) of projectors in a Hilbert space, states on
“concrete” (=set-representable) OMPs, some “exotic” states
(Greechie’s pasting constructions), etc. In the sequel, we will deal
with all these categories of states.

Concluding the introduction, let us note that recent lines of re-
search in the noncommutative measure theory comprise several ar-
eas: the states on operator algebras, noncommutative probability
theory, noncommutative measure theory on quantum logics and or-
thoalgebras, state space determination of varieties in universal al-
gebra, special measure-theoretic problems of quantum axiomatics,
nonstandard mathematical logics, combinatorial methods of con-
structing state spaces with preassigned properties, “fuzzy” states,
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etc. The collaboration in these areas of mathematicians, physicists
and philosophers has initiated the foundation of an association (In-
ternational Quantum Structures Association). One of its goals is a
coherent study of physically motivated problems in noncommutative
probability theory and noncommutative measure theory.
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2. Enlargements of orthomodular posets (OMPs with given
state spaces).

With the motivation coming from theoretical physics, we ask if we
can construct OMPs (=“quantum logics”) with given state spaces
and other “attributes” important within the mathematical founda-

tion of quantum mechanics. Let us first introduce basic notions (by
L we denote an OMP).

2.1. The state space, S(L), of L.

By a state on I we mean a mapping s: L — (0, 1) such that

(i) s(1)=1,
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(ii) s(aV b) = s(a) + s(b) provided a < ¥'.
Let us stand S(L) for the set of all states on L and let us con-

sider S(L) with its natural affine and topological structure (S(L) C
(0,1)* ¢ R®, where we regard R” as a topological linear space).

THEOREM [15]. Let S be a set. Then S = S(L) if and only if
S is a compact convex subspace in a locally convex topological linear
space (the symbol = means an affine homeomorphism).

It should be observed that - in view of the theorem above - S(L)
may be empty or §(L) may be a singleton (see also [2], [7] and [10]
for relevant results). In fact, every OMP can be embedded into such
an “exotic” OMP (see [11]).

2.2. The centre, C(L), of L.

Put C(L) = {c € L| for any d € L, the set {c,d} is contained in
a Boolean subalgebra of L}. Let us call C(L) the centre of L.

THEOREM [1], [2]. C(L) is a Boolean subalgebra of L. Moreover,
C(L) = L if and only if L is a Boolean algebra.

2.3. The automorphism group, G(L), of L.

THEOREM [14], [4]. If G is a group, then there is an OMP, L,
such that G = G(L).

It may be noted that the OMP of the latter theorem can be
required concrete (= set-representable) for any G ([8]).

A natural question arises of whether we can construct OMPs
with any given interplay of its state space, its centre and its au-
tomorphism group. The following theorem provides an affirmative
answer to this question. As it turns out, we can even ensure an ar-
bitrary degree of “noncompatibility” (i. e. we may also prescribe
arbitrary subOMPs).



STATES ON ORTHOMODULAR POSETS 269

THEOREM. Suppose that

K is an OMP with S(K) # 0,

S is a compact convex set in a locally convex topological space,
C' is a Boolean algebra, and

G is a group.

Then there is an OMP, L, such that

K — L (i. e. K is a sublogic of L),

S=S8(L),
C=C(L), and
G=gG(L).

Proof. See [7], [9], [10] and [12]. The final result formulated in

the theorem above was proved in [5].

Comments and consequences.

1.

Every OMP can be embedded into an OMP with an arbitrary
centre.

Every OMP which is not stateless can be embedded into an OMP
whose state space is arbitrary.

In the course of proving the theorem above one needed to develop
an advanced “pasting technique” which helped resolve problems
in other areas, too (see e. g. [6] and [13]). (To verify the legit-
imacy of pastings it has sometimes required computer-proving,

see e. g. [7] and [17].)

PROBLEMS.

Can one prove the o-complete version of THEOREM? (In partic-
ular, can every g-complete OMP be embedded into a o-complete
OMP whose centre is preassigned?)

Can we prove THEOREM for lattice OMPs?
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3. Extensions of states (state-universal OMPs).

In this part we prove two results on extensions of states. Recall
([13]) that L is called wunital if for any a € L, a # 0, there is a state
s € S(L) such that s(a) = 1.

3.1. DEFINITION. Let K be an OMP. Let us call K state-
universal if the following condition is satisfied: If K is embedded
into an OMP L (i.e., if L is an enlargement of K) and if L is unital,
then every state on K can be extended over L.

We shall prove that Hilbertian as well as Boolean OMPs are state
universal. We shall need one more definition.

3.2. DEFINITION. Let K be an OMP and let s € S(K). Then s
is called hyperpure if there is an element ¢ € K such that s(a) = 1
and moreover, the state s is the only state with the latter property.

Let us denote by Sp,(K) (resp. Sp(K)) the set of all hyperpure
(resp. pure) states on K. Obviously, every hyperpure state has to
be pure (a state is called pure if it cannot be written as a convex
combination of two distinct states). Thus, Sp,(K) C Sy(K) for
any K. One sees easily that if, for instance, K is a finite Boolean
OMP or if K = L(H) for a Hilbert space H with dimH < oo,
then Sp,(K) = S,(K). According to [11], there are finite OMPs
(even orthomodular lattices) which possess pure states that are not
hyperpure.

Our first result indicates the significance of hyperpure states in
our context. (Recall that if S C S(K), then the symbol convS
denotes the topological closure in S(K) of the convex hull, convS,

of 9).

3.3. THEOREM. Let K be a unital OMP. If S,(K) C convSp, (K),
then K is state-universal.

Proof. Suppose that K is a subOMP of L and suppose further
that L is unital. By the Krein-Millman theorem, ¢onvS,(K) = S(K)
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and so €onvSh,(K) = S(K). This implies that if every hyperpure
state in K admits an extension over L, then so does every state of
K. Indeed, if s = ) .., a;s;, where every s; admits an extension
over £, then so does s. Moreover, suppose that s, (a € I) is a net in
S(K) that converges to a t € S(K). Suppose that 5, (o € I) is a net
in S(L) of extensions of s,. Since S(L) is compact, we obtain that a
subset of 5, converges to a state ¢ € S(L). Since the convergence in
S(K) is pointwise, we infer that #{K = ¢ which we wanted to check.
What remains to show is that every hyperpure state of K admits
an extension over L. To do this, let s € S,(K). Then there is an
element a € K such that s(a) = 1 and, moreover, s is the only state
of S(K) with the latter property. Since L is unital, there is a state
t € S(L) such that t(a) = 1. Put w = ¢|K. Since u is a state on K
with u(a) = 1, we see that u = s. Thus, s = {|K and this completes
the proof of Th. 3.3.

3.4. THEOREM. [7]. Let K = L(H), where H is a complex
Hilbert space and dim H # 2. Then K is state-universal.

Proof. Let us first prove the following auxiliary result.

3.5 LEMMA. Let H be a complex Hilbert space and let x be a
unit vector of H. Let s, denote the state on L(H) determined by the
formula s, (P) = ||P(z)||* where P € L(H). Then s, € Sp,(L(H)).

Proof. Let P, denote the orthogonal projection onto the linear
span of z in H and let s be a state in S(L(H)) such that s(P;) = 1.
By the theorem of Aarnes (see [1]), we can write s = s1 + sz, where
s1 is a completely additive measure on L(H) and sy is a measure
on L(H) which vanishes on every finite-dimensional projection. We
see therefore that so(P;) < s(PF) = 0 and, also, sy(P:) = 0. This
means that sq(1) = s2(Py U X 1) = s2(P:) + s2(P) = 0 (I denotes
the identity operator). This implies that sy(P) = 0 for any P €
L(H). We infer that s = sy and therefore s is completely additive.
By a generalized version of Gleason’s theorem ([4] and [5]), we see
that s = 7| @,S,, where the states s,’s (n € N) live on mutually
orthogonal one-dimensional projections of H. Since s(F,) = 1 and
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since 37, o, = 1, we conclude that for all but one n € N we have
oy, = 0. There is a single ng € N such that a,, = 1 and it follows
that s,, = s;. This completes the proof of Lemma 3.5.

Let us return to the proof of Th. 3.4. We shall make use of the
results of [4] again: The states on L(H) are in a “true” one-to-one
correspondence with the “functional” states on the von Neumann
algebra B(H) of all bounded linear operators on H. (Here we have
used the word true to indicate that the correspondence preserves
the natural algebraic and topological properties.) In particular, the
pure states on L(H),S,(L(H)), are in a one-to-one correspondence
with pure states on B(H),S,(B(H)), and the hyperpure state on
L(H),Shp(L(H)), are in a one-to-one correspondence with the func-
tional hyperpure states on B(H), Sp,(B(H)). Since A € B(H) is
nonnegative if and only if s, (4) > 0 for all z € H (||z]| = 1), we have
S(B(H)) = conv{sz|z € H,||z|| = 1} = convSy,(B(H)) (see e. g.
[10, Th. 4.3.9, p. 262]). It follows that S,(L(H)) C convS,(L(H))
and the proof is finished by applying Th. 3.3. This completes the
proof of Th. 3.4.

It should be noted that the latter theorem has been further gen-
eralized in [6] for the von Neumann algebra projection OMPs.

Let us now take up another basic case of OMPs — the case of K
being a Boolean OMP. Obviously, if K is atomistic, then K is state-
universal by Th. 3.3 (Indeed, if K is Boolean, then S,(K) consists of
two-valued states (see e. g. [13]). If K is atomistic, we immediately
obtain that S,(K) = Sip(K)). However, the following fully general
result is here in force.

3.6. THEOREM. [12]. Let K be a Boolean OMP. Then K is
state-universal.

Proof. Suppose that K is Boolean and suppose further that K
is a subOMP of a unital OMP L. Put § = {s € S(K)|s admits an
extension over L}. We are going to show that & = S(K). We will
do that by proving that § is both closed and dense in S(K).

Obviously, S is closed in S(K). Indeed, if s, € S(K) is a net in
S that converges to s and if £, € S(L) is an extension of s,, then
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the compactness of S(L) ensures that a subnet of ¢, converges to a
state. If t € S(L) is this state, it is evident that ¢ extends s and
therefore S is closed in S(K).

To show that S is dense in S(K), let us assume that s € S(K).

Let Of ., ..., be a standard neighbourhood of s in S(K) (here
e > 0 and ay,ag,...,a, € K). We shall prove that there is a state
sin OF 4,4, Which belongs to §. As one obtains easily from the

definition of a subOMP, the set {ay,as,...,a,} generates a finite
subOMP in L that is Boolean. Let us denote the latter finite Boolean
subOMP of L by B and let {by,bs,...,b,} be its atoms. Since L is
unital, there are states ¢; € S(L) (¢ < m) such that ¢;(b;) = 1.
Obviously, 3., s(b;) = 1 and therefore t = 3, ., s(b;) - t; is a
state on L. Moreover, a simple computation yields that t(a;) =
s(a;) for any i (¢ < m). Thus, ¢ restricted to K is a state on K
which is “near to s” within OF, ,. . (whatever ¢ may be!). By the
construction, ¢ € §. We have thus shown that S is dense in S(K)
and this completes the proof of Th. 3.6.

Let us note in concluding this section that an analogous problem
can be pursued for vector-valued states, too (see [2], [6], [8], [9], etc.).
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4. Jauch—Piron property in noncommutative measure the-
ory.

4.0.1. DEFINITION. A mapping s: L — (0,1) is called a state
on L if it fulfils the following two conditions:

(i) s(1) =1,
(i) if @ < b’, then s(a Vv b) = s(a) + s(b).

Further, a state s: L — (0, 1) is called Jauch—Piron (abbr. a J.-P.
state) if the following condition holds true: If s(a) = s(b) = 1 for
a,b € L, then there is an element ¢ € L such that ¢ < a,¢ < b and
s(c) = 1. If every state on L is Jauch—Piron, we call L a Jauch-
Piron OMP (abbr. a J.-P. OMP).

Unlike the “ordinary” commutative (= Boolean) case, an OMP
may not possess any state at all (see [10]), or — provided it does —
none (or most) of them may not be Jauch—Piron (see e. g. [21]). Note
that the Jauch—Piron condition may be thought of probabilisticly
— one requires that the pairs of “almost sure” events in a given
state admit a subordinated “almost sure” event. Technically, the
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presence of the Jauch—Piron property may often move us nearer to
the “classical” (=Boolean) mathematical areas.

As regards examples of J.—P. OMPs, such are Boolean algebras
(we put ¢ = a A b) and the lattices L(C),) of all projections in an n-
dimensional Hilbert spaces (n > 3). The former statement is obvious
and the latter derives as a direct consequence of the famous Gleason’s
theorem (see [9]). Typically, an OMP possesses both the J.-P. and
the non-J.—P. states.

4.0.2. EXAMPLE. Put Q = (0,1)? and take for L the collection of
all subsets of 2 whose Lebesgue measure is rational. Thus, L = {A C
Q| 1(A) is a rational + number}. Then L is a (non-Boolean) OMP
(we understand L endowed with the inclusion partial ordering and
with the set-theoretic orthocomplementation operation (A" = Q— A).
We claim that L is not a J.—P. OMP. Indeed, take a measurable
subset of 2, some B, with p(B) > 0 and define a state s: L — (0, 1)
by putting s(A4) = S(:EEJ)B) (A € L). Then s is Jauch—Piron if and
only if p(B) is a rational number.

Let us now examine miscellaneous aspects of Jauch—Pironness.

4.1. “Discrete” Jauch—Piron OMPs.

Let us start with finite OMPs. Even in this class we have the
“Greechie phenomenon” to be aware of - there are finite OMPs with-
out any state at all (see [10]). Obviously, a stateless OMP is also
Jauch—Piron by our definition but we are naturally more interested
in OMPs whose states spaces are reasonably rich. Recall that an
OMP L is said to be unital (see [12]) if the following condition is
fulfilled: If @ € L and if @ # 0, then there is a state s on L such that
s(a) = 1. We now have the following result.

4.1.1. THEOREM. [29]. Let L be a finite unital Jauch-Piron
OMP. Then L is Boolean.

4.1.2. THEOREM. [28]. Let L be a unital Jauch—Piron OMP. Let
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L contains only finitely many mazximal Boolean subalgebras. Then L
s Boolean.

4.1.3. THEOREM. [22]. There is a unital countable Jauch—Piron
OMP that is not Boolean. Moreover, the latter OMP can be required
a subOMP of the projection OMP L(C3).

To complete the schema here, it seems desirable to know if one
can construct Greechie OMPs fulfilling the properties of Th. 4.1.3.
(Let us call an OMP Greechie if it is atomic and every two maximal
Boolean subalgebras in it meet in at most one atom.) This question
seems to be open.

In the conclusion of this paragraph, let us note the following
strengthening of the J.—P. condition (see [7], [18] and [27]). Let us
say that a state s on L is strongly Jauch—Piron if for any couple
a,b € L there is an element ¢ € L such that ¢ > a, ¢ > b and s(c) <
s(a)+s(b). Obviously, if s is strongly Jauch—Piron, then it is Jauch-
Piron. The “vice versa” statement does not hold: Every lattice OMP
that is unital with respect to strongly Jauch—Piron states has to be
Boolean (see [27] and [30]).

4.2. The Jauch—Piron property in concrete OMPs.

An OMP is called concrete if it can be represented by a collec-
tion of subsets of a set. In other words, L is concrete if L C exp .S,
where exp S is the collection of all subsets of a set S, and if the
following conditions are satisfied:

(i) 0eL,
(ii)if Ae L (ACS), then S—Ae€lL,
(ifi)if A, B € L (A, BC S)and if ANB =0, then AUB € L.

Thus, the concrete OMPs are in a sense “nearly Boolean”. (It
should be noted that such (or very similar) structures appeared al-
ready in the classics of the descriptive theory of sets and mathemat-
ical analysis many years ago (see e.g. [17]).) The conceptual value
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of concrete OMPs for quantum axiomatics seems first to be pointed
out by S. Gudder (see e. g. [11] and [12]).

When does a concrete Jauch—Piron OMP have to be Boolean?
The next result (one of the first results in this line) says that it is so
quite often and that it is always “nearly” so.

4.2.1. THEOREM. [20]. Let L be a concrete Jauch—Piron OMP.
Then the following statements hold true:

(i) If L is a lattice, then L is Boolean.

(i1) If L lives on an at most countable set (i.e., if L = (S, Lg), where
S is at most countable), then L is Boolean,

(1ii)If L C exp S for a set S and if A,B € L (A, B CS), then there
is a finite collection {C1,Cy,...,Cy,} C exp S such that C; € L
for any i(i < n) and AN B =, Ci.

Let us consider the condition (iii) for a moment to acquire better
insight of the kind of the problems that are pursued here. The proof
of the condition (iii) goes approximately as follows: If ANB # @, then
there is a state, s, on L such that s(A) = s(B) = 1. Thus, the set
Sap = {tisastateon L|t(A) = ¢(B) = 1} is non-void. Moreover,
S84, is compact in the pointwise topology. For any C' € L with
C C AN B, put S¢ = {t € S4|s(C) > 0}. Since L is Jauch—
Piron, we have S4B = [JSc, where C' varies over all sets C' € L
such that C' C AN B. Since every S¢ is open in §4 g, we let the
compactness of S4 p work for us to get a finite family C; (i < n)
with S48 = U;<, S¢;. Obviously, U;<,, C; = AN B.

Let us return to the question which was asked prior the latter
theorem. This question appeared to be fairly nontrivial. However,

4.2.2. THEOREM. [19]. There is a concrete Jauch-Piron OMP
that is not Boolean.

In fact, the technique utilized in the latter result guarantees a
proper class of Jauch—Piron OMPs that are not Boolean. The follow-
ing question then announces itself immediately: Can every concrete
OMP be embedded (in a compatibility preserving manner) into a
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concrete Jauch—Piron OMP? The answer to this question seems to
be unknown for the time being.

4.2.3. REMARK. In [5], the authors succeeded in solving the
o-complete version of the question posed above. They solved it
in the affirmative under the set-theoretic assumption —RM of the
nonexistence of real-measurable cardinals. (Can this set theoretic
assumption be omitted?).

4.3. Jauch—Pironness in OMPs of projections.

The study of the J.—P. condition in the OMPs of projections in
von Neumann algebras started with the paper [1] and was further
deepened in [6] and [13]. Let us only state here two results which
are directly related to the contents of this survey.

4.3.1. THEOREM. [13]. Let A be a von Neumann algebra. Then
the OMP P(A) of all projections of A is Jauch—Piron if and only
if A is a direct sum of a commutative von Neumann algebra and a
finite dimensional von Neumann algebra.

In the projection OMPs, an interesting line of investigations
presents also the “individual” Jauch—Piron condition. For instance,
the following elegant result is in force (the result has a direct inter-
pretation in quantum foundations — see e.g. [4] and [8]):

4.3.2. THEOREM. [6]. Let A be a von Neumann algebra which

does not contain a central Abelian part. Let s be a pure state on
P(A). Then s is Jauch-Piron if and only if s is o-additive.

4.4. A link of Jauch—Piron property with topological rep-
resentations of OMPs.

In an analogy with Boolean algebras, a natural project is to look
for set or topological representations of OMPs. Obviously, the stan-
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dard Stone representation technique cannot be adopted here — the
set of two-valued states on an OMP may be too poor (see e.g. [10]).
Several attempts have been made to obtain at least some weaker rep-
resentations of OMPs (or orthomodular lattices) — see e.g. [3], [15],
[24], [31], [32], [33] etc. An interesting topological representation was
found in [31] and, to certain surprise, the Jauch—Piron condition is
again involved (see [32] for a precise definition of all notions; see also
[31] for relevant comments and open problems).

4.4.1. THEOREM. [31]. Let L be an OMP. Then there is
a 0-dimensional closure space, (S,—), such that L can be order-
orthoembedded in the orthomodular lattice of clopen subsets of S.
Moreover, S can be taken a topological space if and only if L pos-
sesses a unital set of weakly additive Jauch—Piron states.

4.5. Can the Jauch—Piron condition help in extending states?

We call an OMP K state-universal if the following implication
holds true: Whenever K is embedded in L, where L is a unital
OMP, then every state on K can be extended over L. We do not
know whether every Jauch-Piron OMP is state universal (though in
the “most natural” cases to be tested it is so — see [14] and [25]). It
should be observed that, on the other hand, there are state universal
OMPs which are not Jauch—Piron (e.g. L(H) for dim H = c0).
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5. Inner product spaces (algebraic and measure-theoretic
conditions for completeness).

Let S be a real inner product space and let (.,.) stand for scalar
product of S. Let us denote by E(S) (resp. F(S)) the set of all
(closed) subspaces of S which fulfil the following condition: A €
E(S) & Ad At = S (resp. A € F(S) & (A1)t = A). The
symbol AL denotes the set {b € S|{a,b) = 0 for any a € A}, and &
denotes the direct sum. Let us now view E(S) (the splitting subspaces
set) and F'(S) (the exact subspaces set) with the ordering given by
inclusion and with the orthocomplementation A — AL,

ProrosiTION [12].

(i) E(S)is an OMP (thus, F(S) is always orthomodular).
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(i) £(S) is a complete orthocomplemented poset (F'(S) does not
have to be orthomodular).

Due to the distinguished position of Hilbert space OMPs in “non-
commutative” investigations, a natural question occurs of how one
can characterize the (topological) completeness of S in terms of F(5)

(resp. F'(9)).

THEOREM [1]. S is complete (= Hilbert) if and only if F'(S) is
orthomodular.

It would be nice if we had the following duality (we however have
not been able to establish it for the time being).

CoNJECTURE [10]. S is complete if and only if E(S) is a lattice.

It may be noted that in [14] the authors showed (with the help of
the method of [9]) that E(coo(V)) is not a lattice (coo(V) is the sub-
space of [?(N) consisting of sequences that are 0 almost everywhere).
Observe on passing that this result answers a question posed in [12].

If E(S) satisfies a mild o-completeness condition, then this is
sometimes sufficient to bring about the completeness of S. The fol-
lowing result based on the Amemia-Araki procedure [1] came into
existence as a generalization of [3] and [4]. (Recall that an OMP L
is said to have the atomic subsequential completeness property (the
ASCP) if for every sequence {¢;|¢ € N} of mutually orthogonal atoms
in L there is an infinite set M, M C N such that the supremum
Viear @i exists in L. See also [2] and [11] for more information on

ASCP.)

THEOREM [10]. If F(S) has the ASCP, then S is complete.

Let us now return to the lattice F'(S). The following result initi-
ated a series of measure-theoretic characterizations of completeness
of S (see e. g. [5], [7] and the survey in [5]).

THEOREM [8]. If F'(S) possesses a o-additive state, then S is
complete. (Thus, S is complete if and only if S(F(S)) #0.)

ProBLEM [13]. Does S have to be complete if F'(S) possesses a
finitely additive state?
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6. Observables as OMP-valued measures.

Let M be a separable Banach space and let L be a o-complete
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OMP. An observable is a o-additive mapping from the o-algebra
B(M) of Borel sets on M into L. This notion is a quantum version
of random variable. Since observables are not, in general, “point-
wise” mappings, the question that arises first is how (when) we can
endow sets of observables with the structure of a Banach space. We
show that certain sets of compatible observables can be indeed made
a Banach space. (We also discuss other topical questions on observ-

ables.)

6.1. DEFINITION. A mapping z: B(M) — L is called an observ-
able (on M and L) if

(i) =(M) =1,
(ii) z(M — A) = z(A)' for any A € B(M),

(iii) if {An|n € N} is a countable set of Borel sets then (|, ey 4n) =

6.2. DEFINITION. Let P = {z,|a € I} be a set of observables.
Then we call P compatible if the set | J,c; R(z,), where R(z,) is the
range of z,, admits a Boolean subalgebra of L, some B, such that

User R(zas) C B.

6.3. THEOREM. (“on simultaneous testability”). There are
Borel measurable mappings f,: M — M(n € N) such that the fol-
lowing statement holds true: If x,: B(M) — L is a sequence of com-
patible observables, then there is an observable, z: B(M) — L, such
that x, = z- f71 for anyn € N.

6.4. DEFINITION. The spectrum of an observable z: B(M) — L
is the least closed subset F’ of M such that z(F) = 1. If the spectrum
of z is bounded then z is called bounded (in this case we set ||z| =
sup{|m||m € F, Fis the spectrum of z}.

6.5. THEOREM. Let P be a set of bounded compatible observ-
ables. Then P can be extended to a set () (of observables) such that
) may be converted to a Banach space (with the norm z — ||z||

defined above).
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Proof. See [9]; for relevant results, see also [1], [2], [4], [5], [10]
and [12].

PROBLEMS.

1. Finitely additive observables. Give a coherent account of
finitely additive observables.

2. (Uniqueness problem) Let us restrict ourselves to the real
observables (M = R) and to the rich OMPs (an OMP is called
rich if for any couple a,b € L with @ £ b we can find a (o-
additive) state s € S(L) such that s(e) = 1 and s(b) # 1). If
z:B(R) — L is an observable and s € §(L), s o-additive, then
the composition s, = s -z is a probability measure on B(R).
Moreover, if z is bounded then the integral s(z) = [Rts,(dt) is
finite (¢ denotes the identity function). The uniqueness problem
now reads as follows: Is it true that z = y if and only if s(z) =
s(y) for any s € §(L)? The problem was posed and given partial
solutions in [3]. Another contributions were given in [13], [14]
and [15]. Recently M.Navara ([8]) showed that for general OMPs
the answer to the uniqueness problem is in the negative. Since
the uniqueness property is quite important for quantum theories
it seems desirable to find the extent of the class of OMPs for
which the uniqueness problem answers positively.

3. Integration on concrete OMPs. Let L = (22, A) be a con-
crete o-complete OMP (thus, A C exp and A forms an OMP
when we regard A with the partial ordering given by the set-
theoretic inclusion and the orthocomplementation given by the
set-theoretic complementation). Let z,y: B(R) — L be two ob-
servables. In this case, z,y are carried by point mappings, i.e.
there exist measurable functions f,g: Q2 — R such that z = f~!
and y = g~!. Suppose that f + ¢:Q — R is again a measurable
function. When does the equality [(f+g)ds= [ fds+ [gds
hold true for any s € S(L)7 The paper [6] brings a large class of
functions f, g for which the latter equality holds (an important
breakthrough was [17], see also [9]). A characterization does not
seem to be known. A similar “monotony” problem (does f < ¢

imply [ fds < [gds?) has been fully solved (see [7] and [16]).
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