REGULARITY AND DECOMPOSABILITY OF
RADON MEASURES (*)

by WasHEK F. PFEFFER (in Davis)(**)

I shall discuss the connection between the regularity and o-finite-
ness of Radon measures, and present topological conditions under
which complete Radon measures are decomposable. These are joint
results of Richard J. Gardner and myself obtained in close collabo-
ration from 1977 to 1984. The principal references are [3] and [4].

The main theme of my lectures is to show that Radon measures
are well-behaved in metacompact spaces, while in metalindel6f spaces
their behavior depends on special set-theoretic axioms and is unde-
cidable within the Zermelo—IFraenkel set theory including the axiom
of choice. Typically, a Radon measure in a metalindel6f space be-
haves well when Martin’s axiom and the negation of the continuum
hypothesis are assumed, and the opposite is true when the continuum
hypothesis is assumed.

I shall not always present the most general results available;
rather, I shall strive to illuminate the ideas and techniques used
in this area of mathematics. In particular, my attention will concen-
trate on three specific questions, which arise naturally in topological
measure theory.

o [s every o-finite Radon measure regular?
e [s every diffused regular Radon measure o-finite?

e Is every Radon measure saturated?
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I show that each of them has an affirmative answer in metacompact
spaces, while in metalindel&f spaces, none can be answered within
the usual axioms of set theory.

These lectures are directed to the audience familiar with the rudi-
ments of measure theory, general topology, and naive set theory. No
a priori knowledge of axiomatic set theory is required.

1. First observations.

If £ is a set, then |F| and P(F) denote, respectively, the cardi-
nality of F and the family of all subsets of E. For sets A and B, we
denote by B4 the family of all maps f: A — B.

Finite or countably infinite sets are called countable. An ordinal
is identified with the set of all smaller ordinals. Thus for ordinals «
and 3, we have

aeEfsa<p and aClBea<p.

Cardinals are the initial ordinals, denoted by 0,1,...,w,wy,..., W,
... As usual, w and wy denote the first infinite and the first uncount-
able cardinals, respectively.

All topological spaces we shall consider are Hausdorff. The clo-
sure and interior of a subset F of a topological space is denoted by
F~ and E°, respectively. Throughout these lectures, we shall assume
that

e X is a nonempty set,
e (G is a Hausdorff topology in X,
e M is a o-algebra in X containing G.

Note that M contains the Borel o-algebra B, i.e., the smallest o-
algebra in X containing the topology G. As usual, the elements of
G, M, and B are called the open, measurable, and Borel subets of
X, respectively. The family of all compact subsets of X is denoted
by K.
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On M we shall consider a fixed Radon measure p, ie., a o-
additive function
g M — [0, +0o0]

such that each z € X has a neighborhood U € M with p(U) < 400,
and

p(A) =sup{u(K): K € K and K C A}
for each A € M. A set A € M is called regular whenever

p(A) =inf{u(G):G € Gand A C G}.

If every set in M is regular, we say that p is regular. Clearly, such
is the case when p(X) < 4o0. Since each compact subset of X is
contained in an open set of finite measure, it follows that all compact
subsets of X are regular. Nonetheless, i need not be regular, as the
following example shows.

ExaMmpPLE 1.1. Give wq the discrete topology, and the unit inter-
val [0, 1] its usual topology. The set Y = wy x [0, 1] equipped with
the product topology is a locally compact metrizable space. If B is
a Borel subset of Y and o € wq, then B, = {t € [0,1] : (e,?) € B}
is a Borel subset of [0, 1]. Thus the function

v:Bw— Z A(Ba),
aEwl
where X is the Lebesgue measure in [0, 1], is defined for each Borel set
B C Y. It is easy to verify that v is a Radon measure on the Borel
o-algebra in Y that is not regular. Indeed, the set £ = wy x {0}
is closed, v(E) = 0, and v(G) = 4oo for every open set G C Y
containing F.

LEmMA 1.2. If Ay, Ao, ... are reqular sets from M, then so is
A=U,2, A,

Proof. We may assume that p(A) < +oo. Choose an ¢ > 0
and open sets G, so that 4, C G, and pu(G, — A,) < /2" for
n=1,2,.... Then A is contained in the open set G = |J,~; GG, and

w(G - A) < | U (G — A2)

< Z,u(Gn —A,) <e.
n=1
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DEFINITION 1.3. The measure p is called o-finite if X = J;2; X,
where X,, € M and pu(X,) < +oo for n = 1,2,.... If, in addition,
each X, is an open set, we say that p is moderated.

PrROPOSITION 1.4. Let p be o-finite. Then p is moderated if and
only if it is regular.

Proof. As the converse is obvious, assume that p is moderated,
and choose an A € M. By our assumption, X is the union of open
sets X1, X5, ... whose measures are finite. The measure p restricted
to M, ={B € M:BC X,} is a finite Radon measure, and hence
regular. Thus AN X, is a regular subset of X,,, and hence of X, as
X, is open in X. The regularity of A follows from Lemma 1.2.

The next example shows that, in general, a o-finite Radon mea-
sure is not regular.

ExaMPLE 1.5. For nonegative integers k£ and n, let
Gkn = (kQ_nv 2—n) ) Qn = {Qk,n k= 07 .- .72n} 3

and Q@ = U2 Qs In Y = [0,1]U Q, we define a locally compact
Hausdorff topology as follows: the points of () are isolated, and a
neighborhood base at t € [0, 1] is given by the sets

Ult,e) ={t}U{qrn € Q:2[k27" —t| < 27" < e}

where € > 0. Thus U(t,¢) consists of ¢ and the points of @ that lie
inside the open wedge in [0, 1]? with the vertex (t,0), height , and
the slopes of the sides equal to £2.

Foraset A CY, we let

v(A) = E 27 ANQ, -
n=1
Since |U(t,e) NQn| < 1forn=1,2,..., it is easy to see that v is a
o-finite Radon measure on P(Y'). We show, however, that the closed
set [0, 1] is not regular.
To this end, choose an open set G C Y containing [0, 1], and
for each ¢t € [0, 1] select an ¢, > 0 with U(t,e;) C G. By the Baire
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category theorem (Theorem 3.1 below) applied to the interval [0, 1]
with its usual topology, there is an open interval J C [0, 1] and
an € > 0 such that {t € J : &, > £} is a dense subset of .J. Thus
QN(Jx[0,¢]) C G. Choose an integer N > 1 with |QnN(J x[0,€])| >
2, and observe that |Qnyn N (J X [0,€])] > 2" for n = 0,1,.... It
follows that

v(G) > Z 2~ (N+7) 97 — oo,
n=0
Since v([0, 1]) = 0, this establishes our claim.

The support of u is the closed set

S=Y -G eg:uG)=0}.

Since p is a Radon measure, it is easy to verify that u(X — S) = 0.
From the definition of S it follows that p(G'N.S) > 0 for each open
set G with GN S # 0.

2. Covering properties.

Let £ be a family of subsets of a topological space Z. If for each
z € Z, the collection {F € £ : z € '} is finite or countable, then £ is
called poini-finite or point-countable, respectively. If each z € Z has
a neighborhood U such that the collection {F € £: ENU # 0} is
finite or countable, then &£ is called locally finite or locally contable,
respectively. A family C of sets refines & whenever each C' € C is
contained in an K € £. If Z =J &, we say that £ is a cover of Z.

A space 7 is called metacompact or paracompact or metalindeléf
or paralindeldf if each open cover of Z is refined by an open cover
that is, respectively, point-finite or locally finite or point-countable
or locally countable. Clearly, each paracompact space is metacom-
pact, and each paralindel6f space is metalindeldf. We shall not use
paralindel6f spaces; their definition has been included only for com-
pleteness.
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THEOREM 2.1. Let X be metacompact. If p is o-finite, then it
is reqular.

The proof of Theorem 2.1 is based on the following measure-
theoretic lemma, which is independent of the topology of X.

LEMMA 2.2, Let p be o-finite, and let £ be a point-finite (in
particular, disjoint) family of measurable sets. Then the collection

Er={F €& u(k) > 0} is countable.

Proof. By our assumption, X = [J;2,; X,, where X,, € M and

p(X,) < 400 for n = 1,2,.... Suppose that &£ is uncountable.
Since
> 1
&= {EEE:M(Ean) > —} ,
n,p=1 p

there are positive integers N and P and distinct sets £ € £ such
that p(Ex N Xy) > 1/Pfor k=1,2,.... Now let

A= m U Ek7
j=1k=j
and observe that u(A) > 1/P. In particular, A # @, contrary to the
point-finiteness of the family £.

Proof of Theorem 2.1. For each z € X let V,; be an open neigh-
borhood of z with u(V,) < 400, and let & be a point-finite open
cover of X that refines the cover {V, : 2 € X}. Let

Up ={U U :p(U) >0} and  Up=JU -Uy).

By Lemma 2.2, the family ¢/, is countable. As p is a Radon measure,
u(Ug) = 0, and we see that p is moderated. An application of
Proposition 1.4 completes the argument.

It follows from Theorem 2.1 that the space Y of Example 1.5 is
not metacompact. We show by a topological argument that it is not
metalindel6f.

ProprosITION 2.3. A separable metalindelof space Z is Lindeldf.
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Proof. Choose an open cover U of Z, and find a point-countable
cover V of Z that refines U. If D is a countable dense subset of 7,
then V ={V € V: DNV # 0}, and we conclude that V is countable.
Now for each V € V, select a Uy € U with V C Uy, and observe
that {Uy : V € V} is a countable subcover of U.

COROLLARY 2.4. The space Y of Fxample 1.5 is not metalin-
deldf.

Proof. Suppose that Y is metalindel6f. Since @ is a countable
dense subset of Y, it follows from Proposition 2.3 that Y is Lindelof,
and so is the closed subspace [0, 1]. As [0, 1] in the topology of Y is
an uncountable discrete space, we have a contradiction.

In view of Corollary 2.4, it is natural to pose the following ques-
tion, which will be shown undecidable within the usual axioms of set
theory.

QUESTION 2.5. If X is metalindeldf, is a o-finite Radon measure
i reqular?

3. The continuum hypothesis and Martin’s axiom.

Throughout these lectures we work in the Zermelo—Fraenkel set
theory including the aziom of choice (abbreviated as ZFC). The
Zermelo-Fraenkel axioms reflect the most fundamental properties of
sets agreed upon by the vast majority of mathematicians. Their
actual statements are immaterial for our considerations: no errors
will be made by approaching sets from the naive point of view. We
must keep in mind, however, that ZFC is a certain set of axioms
that codify the mathematical universe in which we work. At places,
we shall restrict this universe by assuming the continuum hypothesis
(abbreviated as CH) or Martin’s aziom (abbreviated as MA) and
the negation of the continuum hypothesis. While CH is the famil-
iar statement CH: |2¥| = w;, some motivation is needed before
introducing MA. We begin by recalling the Baire category theorem,
whose proof can be found in [1, 3.9.4].
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THEOREM 3.1. In a nonempty compact space the intersection of
countably many open dense sets is nonempty.

A stronger version of Theorem 3.1 is a topological equivalent of

CH.

PROPOSITION 3.2. In a nonempty compact space the intersection
of fewer than |2“| open dense sets is nonempty if and only if CH
holds.

Proof. Let wy < |2¥|. Giving wy + 1 the order topology, and
7 = (w1 + 1)¥ the product topology, we see that Z is a compact
space. Let A be the set of all isolated ordinals in wq, and for each
o € A set

G, = U{ZGZ:z(n):a}.
new

Clearly, each GG, is an open and dense subset of Z. If z € ,c4 Ga,
then z : w — A is a surjective map. As |A| = wy, this is impossible,
and we conclude that ,c4 Go = 0.

Conversely, if CH holds, then fewer than |2*| means countably
many, and an application of Theorem 3.1 completes the proof.

We say that a space 7 satisfies the countable chain condition (ab-
breviated as ccc) when each disjoint family of open sets is countable.
The following are examples of spaces that satisfy the ccc.

o A separable space. Indeed, in each nonempty open set GG of
the disjoint family £ we can select a point zg from a countable
dense set D. Since the map G' — zg is injective, & is countable.

o A space that is a support of a o-finite Radon measure. This
follows directly from Lemma 2.2.

The space Z from the proof of Proposition 3.2 does not satisfy the
cce; indeed, the sets H, = {z € 7 : 2(0) = a}, where a € A, are
open and disjoint.

Usually, MA is formulated in terms of partially ordered sets (see
[5, Section 23]), however, for our purposes, it will be more convenient
to use an equivalent topological formulation:
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MA: In a nonempty compact space that satisfies the ccc, the
intersection of fewer than |2¥| open dense sets is nonempty.

It follows immediately from Proposition 3.2 that CH implies MA.
Moreover, the assumptions that CH or MA + =CH holds are con-
sistent with ZFC; more precisely, if ZFFC is consistent, then so are

ZFC+CH and ZFC4+MA + —CH (see [5]).
We shall need a consequence of MA + —CH due to F.D. Tall
([10]).

LEMMA 3.3. Let Z be a space that satisfies the ccc, and let {H,, :
a € wy} be a family of open sets such that Hg C H, for each o <
B < wy. Then there is a v € wy such that H; = HS whenever
T<a<w.

Proof. If the lemma does not hold, then for each o € w; there is
a f(a) € wy with f(e) > avand Hy — Hy 5 0. We let ag = 3(0),
and proceed by transfinite induction. Assuming that o, € w; has
been defined for each ordinal v < & < wyq, let a, = B(r) where
7 = sup{a, : v < k}. Then {H, — H/;(av)} is an uncountable
disjoint family of open sets, a contradiction.

ProposiTION 3.4. (MA 4+ —CH) Let Z be a compact space
satisfying the ccc. Then each point-countable family of open sets is
countable.

Proof. Let {G, : @ € wi} be an enumeration of an uncountable
point-countable family of open sets, and let H, = Ua§ﬁ<w1 Gg for
each countable ordinal @. By Lemma 3.3, there is a v € w; such
that H, = HZ whenever v < @ < wy. In particular, the sets H,
with v < @ < w; are open dense subsets of a compact set H.J. Since
H., is an open subset of 7, its closure H satisfies the ccc. Thus
by MA + =CH, the intersection D = (1, .,<,, Ha is nonempty. As
each z € D is contained in uncountably many sets (G, this is a
contradiction.

Proposition 3.4 cannot be proved in ZFC alone; indeed, we have
the following example of K. Kunen ([6]).
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ExaMpLE 3.5. (CH) Recall that a space is called zero dimen-
sional if each of its points has a neighborhood base consisting of
clopen sets, i.e., the sets that are simultaneosly closed and open.

There is a zero dimensional compact hereditarily Lindelof space Z
without isolated points, which is the support of a finite Radon mea-
sure x on the Borel o-algebra in 7 such that x(B) = 0 for each
nowhere dense Borel set B C Z. In particular, Z satisfies the ccc,
and x(B) = x(B~) = x(B°) for each Borel set B C Z.

We omit the intricate proof of the above statement; the inter-
ested reader is referred to [4, 5.10]. Instead, we derive from it some
important consequences.

1. If C C Z is countable, then x(C) = 0. In particular, 7 is not
separable. Indeed, as Z has no isolated points, x({z}) = 0 for
each z € Z.

2. |Z] < wy. Observe that 7 is first countable, since it is compact
and hereditarily Lindel&f ([1, 3.1.F(a)]). By [1, 3.1.30] and CH,
we have |Z| < |2¥|] = w;. Since Z is not separable, the claim
follows.

3. There is an uncountable point-countable family of open subsets
of Z. To see this, let {z, : @ € w1} be an enumeration of 7, and
for each € wy let Hg = Z — {z, : « € §}~. Then Hz C H,
whenever a < § < wi, and ¢, Ho = 0. Since Z is not
separable, no H, is empty. It follows that #H = {H, : @ € wy } is
the desired family.

The space Z is an example of a compact L-space, i.e., a hereditarily
Lindel6f space which is not separable (cf. with an S-space defined
prior to Proposition 5.6).
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4. Metalindelof spaces.

This section is devoted to the proof of the following theorem,
which is a consequence of Theorem 4.4 and Example 4.5 below.

THEOREM 4.1. The answer to Question 2.5 is affirmative under
MA + -CH and negative under CH. In particular, the question is
undecidable within ZFC.

Since the space X is neither compact nor does it satisfy the ccc, a
direct application of MA is not possible. Nonetheless, the following
lemma enables us to apply Proposition 3.4.

LEMMA 4.2. There is a disjoint family D of nonempty compact
subsets of X such that

1. u(DNG) >0 for each D € D and each G € G with DNG # 0;
2. u(A)=>pepn(AND) for each A € M.

Proof. By Zorn’s lemma there is a maximal family D of disjoint
nonempty compact subsets of X satisfying the first condition of the
lemma. In three steps, we show that D satisfies also the second
condition.

Let A € M be such that ANJD = 0, and suppose that u(A) > 0.
Then there is a compact set K C A with p(K) > 0, and we denote
by S the support of u restricted to the family {B € M : B C K}.
Adding S to the family D contradicts to the maximality of D, and
consequently p(A) = 0.

If K C X is a compact set, find an open set G C X such that
K C G and p(G) < 4o00. By Lemma 2.2, the family Dy ={D € D :
D NG # 0} is countable. Since (K — Do) NUD = 0, we have

p(K)=pEKn|JDo)= > w(KnD)= > u(KnD).
DeDy DeD
Finally, if A C X is an arbitrary measurable set, then

wK) = 3 w(KnD)< Y u(AnD)

DeD DeD
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for each compact set K C A. Thus p(A) < Y pep (AN D), and as
D is a disjoint family, the reverse inequality is obvious.

Any family D that satisfies the conditions of Lemma 4.2 is called
a concassage of . As each member of the concassage has a positive
measure, the next proposition follows from Lemma 2.2.

PropPoOSITION 4.3. The measure p is o-finite if and only if it
has a countable concassage; in which case, each concassage of u is
countable.

THEOREM 4.4. (MA + —CH) Let X be metalindelof. If p is
o-finite, then it is reqular.

Proof. For each z € X let V, be an open neighborhood of z
with p(Vy) < 400, and let & be a point-countable open cover of X
that refines the cover {V, : € X}. By Proposition 4.3, there is a
countable concassage D of u. Let

U ={UeclU:UN{JD#0} and Up=]J U -Uy).

According to Lemma 4.2, we have u(Up) = 0. Now each D € D is
compact and satisfies the ccc; for D is the support of p restricted to
{A e M:AC D}. AslU is a point countable family of open sets,
Proposition 3.4 implies that the collection {U € U : UN D # 0} is
countable for each D € D. Thus

Up = [ J{Ueu:unD+0}
DeD

is a countable family, and we see that p is moderated. The theorem
follows from Proposition 1.4.

REMARK 4.5. Without any set-theoretic assumptions, F.D. Tall
([10]) showed that in a compact space satisfying the ccc, every point-
finite family of open sets is countable. In view of this, the proof of
Theorem 4.4 provides an alternative way of proving Theorem 2.1,
which does not depend on Lemma 2.2.

ExaMPLE 4.6. (CH) The main idea of this example is to destroy
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the separability of the space Y of Example 1.5 by replacing the points
of ) with copies of the space Z introduced in Example 3.5.

By Example 3.5, 3, there is a point-countable family H of open
subsets of Z with |H| = w;. Since Z is a zero dimensional compact
space, we may assume that #H consists of compact sets. Indeed,
choosing a nonempty clopen set H* C H for each H € H, the family
H* ={H*: H € H} is point-countable and |H#*| = wy; for the map
H +— H* is countable-to-one. We may also assume that x(H) > r
for an r > 0 and each H € #. By CH, there is a bijection ¢ — H'!
between [0, 1] and H.

Adhering to the notation of Example 1.5, let X = [0, 1]U(Q X 7).
Give ) the discrete topology, and let the neighborhoods of z €  x 7
be determined by the product topology of ) X Z. A neighborhood
base at t € [0, 1] is given by the sets

Vit,e) = {1} U <[U(t,5) )] % Hf)

where £ > 0. It follows immediately from Examples 1.5 and metalin-
deldf.

Since () X Z is o-compact, it is Lindel6f. Thus each open cover of
X is refined by an open cover V=UU{V (t,&) : t € [0,1]} where U
is a countable open cover of @ x Z. If a point (g, z) € ) X Z belongs
to uncountably many V' (¢,&;), then z belongs to uncountably many
H', contrary to the choice of #. Consequently, the cover V is point-
countable.

If B is a Borel subset of X, then B, = {2 € Z :(¢q,2) € B} is a
Borel subset of Z for each ¢ € ). Thus the function

M:B»—>§:2_” Z X(By)

q€EQn

is defined for each Borel set B C X. As y is a finite Radon measure
on Borel subsets of Z, it is easy to verify that p is a o-finite Radon
measure on Borel subsets of X; we only need to observe that |{q €
Qn:V(te)y, #0} <1forn=1,2,.... Since x(H") > r > 0 for all
t € [0,1], the same argument we used in Example 1.5 reveals that
the closed set [0, 1] is not regular.
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5. Regular Radon measures.

We call a Radon measure diffused if all singletons have measure
zero, and pose a question that is a nontrivial converse of Question 2.5.

QUESTION 5.1. Is a diffused regular Radon measure o-finite?

The next example shows that for nondiffused measures, the an-
swer to Question 5.1 is trivially negative.

ExaMmpPLE 5.2. Give w; the discrete topology, and for each A C
w1, let
|A| if A is finite,
v(A) =
+oo if A is infinite.

A moment’s reflection shows that v is a regular Radon measure on
P(w1), which is not o-finite.

A set £ C X is called locally countable if each x € X has a
neighborhood U with |[ENU| < w. The word “ample” in the next
definition refers to the size of the Borel o-algebra.

DEFINITION 5.3. We say that X is ample if each uncountable

locally countable set F¥ C X contains an uncountable Borel subset
of X.

THEOREM 5.4. In an ample space, the answer to Question 5.1
is affirmative.

Proof. Let X be ample, and let p be regular and diffused. Pro-
ceeding towards a contradiction, assume that g has an uncountable
concassage D. In each D € D select a point zp, and observe that
E ={zp : D € D} is an uncountable locally countable set. Thus ¥
contains an uncountable Borel set B, and we obtain a contradiction
by calculating p(B). Since compact subsets of B are countable and
p is a diffused Radon measure, p(B) = 0. If G C X is an open sub-
set containing B, then {GN D : D € D} is an uncountable disjoint
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family. It follows from Lemmas 4.2 and 2.2 that p(G) = +oc0. Since
1t is regular, this is impossible. Now the theorem is a consequence of
Proposition 4.3.

The following result shows that ample spaces abound.

ProrosiTION 5.5. If X is metalindeldf, then each locally count-
able set ¥ C X is Borel.

Proof. For each z € X choose an open neighborhood V. of z so
that | NV;| < w, and let ¢ be a point-countable open cover of X
that refines {V, : z € X}. Now the family E = {ENU £0:U € U}
is a relatively open cover of E, which is star-countable, i.e., {B € & :
AN B # D} is countable for each A € £.

For A, B € £, write A ~ B if there are sets Cp, ..., (), in &£ such
that Co = A, C,, = B, and C;_1 N C; # 0 for i = 1,...,n. Clearly,
~ is an equivalence relation on &, and we denote by {& : ¢t € T}
the disjoint family of the corresponding equivalence classes. If &
contains a set A € £, then & = J,¢,, A, Where

Aoz{BGE:AOB;é@}andAn:{BEE:BQUAn_l75@}

forn =1,2,.... Since & is star countable, we see that & is countable,
and hence so is E' = |J&. Now {FE': ¢ € T} is a relatively open
cover of F/, which is disjoint by the choice of ~. As the set E? are
nonempty, for each ¢ € T', we can define a map n — 2!, from w onto
E'. Then the sets E,, = {z!, : t € T'} are discrete, and F = J,¢,, Fn.
We complete the proof by showing that each discrete set D C X is
Borel.

Indeed, for each © € D there is an open set G, C X such that
D NG, ={z}. Thus D is a relatively closed subset of the open set
G = Uyep Gz, which means that it is a Borel subset of X.

Ample spaces are closely connected with so called S-spaces, i.e.,
hereditarily separable spaces which are not Lindel6f (cf. with L-
spaces defined in Example 3.5).

ProposITION 5.6. If X is not ample, then it contains an S-space.
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Proof. By definition, there is a uncountable locally contable set
F C X which contains no Borel subset of X. Clearly, F is not
Lindelof, and it suffices to show that F is separable; for then it is
clear that F is hereditarily separable. By Zorn’s lemma, there is
a maximal disjoint family U of relatively open nonempty countable
subsets of F/. As F is locally countable, the maximality of & implies
that [J & is dense in E. In each U € U select a point z,, and observe
that the set B = {z, : U € U} is discrete, and hence a Borel subset
of X. According to our assumption B is countable. It follows that
UJU is countable, and the separability of F is established.

THEOREM b.7. [t is consistent with ZFC that in a regular space
the answer to Question 5.1 is affirmative.

Proof. S. Todorcevi¢ proved that it is consistent with ZFC to
assume that no regular S-spaces exist (see [8, 7.2.1]). In view of this,
the theorem follows from Proposition 5.6 and Theorem 5.4.

REMARK 5.8. Question 5.1 is actually undecidable in ZF'C; the
highly technical example which shows this has been constructed in
[3, 13.14].

6. Large Radon measures.

For the sake of brevity, we say that a Radon measure is large if
it is not o-finite. To facilitate the study of large Radon measures,
we let

Mp={AeM:p(A) < +oo} and Mo={AC M :pu(A) =0},
and recall that the measure p is

e complete if A € M whenever A C B for a B € M;

o saturated if A € M whenever A C X and AN B € M for each
B e Mf.
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DEFINITION 6.1. A decomposition of u is a disjoint family H C
M such that

1. A€ M whenever A C X and AN H € M for each H € H;
2. w(A) =Y gen m(AN H) for each A € M.

If a decomposition of p exists, the measure p is called decomposable.

Although closely related, a decomposition and a concassage of
i are different concepts, which coincide only under special circum-
stances (see the proofs of Propositions 6.2 and 6.3 below). In general,
a decomposition of u (if it exists) provides more information about
it than a concassage; mainly because the union of a concassage need
not be measurable. Impressive examples demonstrating pathologi-
cal behavior of large Radon measures can be found in [2]. Our goal
is to show that no pathologies occur when X is metacompact, or

metalindel6f and MA + —CH holds.

PRrROPOSITION 6.2. If u is o-finite, it is decomposable and hence
saturated.

Proof. If D is a concassage of pu, then it follows from Proposi-
tion 4.3 that X = D U{UD} is a decomposition of .

ProrosiTIiON 6.3. If p is complete, then it is decomposable if
and only if it is saturated.

Proof. As the converse is obvious, let ¢ be complete and satu-
rated, and let D be a concassage of u. We show that D is also a de-
composition of y. To this end, choose an A C X such that AND € M
for each D € D. If B € My, find a o-compact set C' C B with
u(B—C) =0. By Lemma 2.2, the family D* = {D € D : CnND # (}
is countable. Since u is complete and p(C' — |JD*) = 0, the set

ANC = [Aﬂ (C—UD*)] u J [(AnD)nC]

DeD*
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belongs to M. Using the completeness of y again, we see that AN
(B—-C) € M, and consequently AN B € M. As pu is saturated,
Ae M.

Example 6.6 below shows that a saturated Radon measure p
which is not complete need not be decomposable. On the other
hand, recall that by a standard process of completion (see [9, 1.36])
the Radon measure g on M can be extended to a complete Radon
measure ™~ on the o-algebra M"™ containing M. Moreover, if y is
saturated, then so is p~. Thus up to the completion, the question
of decomposability of p is reduced to that whether p is saturated.
This, in turn, depends on how well we can disentangle a concassage
of .

LEMMA 6.4. Assume either that X is metacompact, or that X is
metalindelof and MA + -CH holds. Given a concassage D of p, we
can find a concassage £ of p which satisfies the following conditions.

1. Fach E € £ is a relatively clopen subset of a D € D.

2. & is the union of a collection {&; : t € T'} of countable families
such that the sets |J & form a disjoint relatively clopen cover

of UD.

Proof. By the hypothesis, we can find a point-finite or point-
countable open cover U of X such that p(U) < +oo for each U €
U. In view of Lemma 2.2, the family Dy = {D € D : DnU #
(¢} is countable for each U € U. Moreover, for every D € D, the
family Up = {U e U : DNU # B} is also countable. This follows
from Lemma 2.2 or Remark 4.5 when U/ is point-finite, and from
Proposition 3.4 when U is point-countable. If Y =D and U € U,
then UNY =UNJDy. Thus

{VAY:Veland (VNY)NU#0} C
{VﬂY:VEUand VQUDU;«E@}

= U {vny:Veup}
DeDy
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for every U € U. We infer that the family * = {UNY # 0 : U € U},
which is a relatively open cover of Y, is star-countable (see the proof
of Proposition 5.5). Proceeding as in the proof of Proposition 5.5,
it is easy to show that there is a disjoint collection {U; : ¢t € T} of
nonempty countable subfamilies of &/* such that the sets Y; = YU}
form a disjoint relatively open, and hence clopen, cover of Y. Now
set & ={DNY, #0:D € D}and & = Usjer & As Y, = U&
for each ¢t € T, it suffices to demonstrate that the families &; are
countable.

To this end, fix a t € T, and observe that |&| = [{D € D :
DNY; # 0} and

{DeD:DNY, #0y= |J {DeD:DNUNY)}.
Uny eu;

Since U/ is countable and {D € D : DN (UNY)} = Dy for each
U € U, the countability of & follows.

THEOREM 6.5. Assume either that X is metacompact, or that
X is metalindelof and MA + —CH holds. Then p is saturated, and
each concassage D of p satisfies the following conditions.

1. The space Y = |JD is the union of disjoint relatively clopen
o-compact subsets; in particular, Y is paracompact whenever
it is reqular.

2. For every D* C D, the set |JD* is a Borel subset of X; in
particular, Y is a Borel subset of X and u(X —Y) =0.

Proof. Choose a concassage & = |J;er & of p according to
Lemma 6.4, and let Y; = [J&; for each t € T'. Since {Y; : ¢t € T} is
a disjoint clopen cover of Y consisting of og-compact sets, the first
condition of the theorem follows from [1, 5.1.30].

Both families D and & are disjoint, & refines D, and P = |J¢€.
Hence given a D* C D there is an £* C £ with J&* = JD*. The
set * = [J&* is the union of a disjoint collection {E*NY; : t €
T} consisting of relatively open subsets of E*. Moreover, each set
E*nY, = U(E* n&) is o-compact. Thus for each t € T, we can
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find an open set U; C X and a collection {K, : n € w} of compact
subsets of X so that

E*NY,=E"nU; =) Kin.
new
Now it is easy to see that for each n € w, the set L, = U;er Kin
is relatively closed in the open set {J;c7 U;. Consequently, E* =
Unew Ln is a Borel subset of X. In particular, Y is a Borel subset
of X, and by Lemma 4.2, we have u(X —Y) = 0. Consequently, in
proving that p is saturated, we may assume that X =Y.

Let A C X be such that AN B € M for every B € My. Then
ANY; € M for each t € T. Since Y; is o-compact and open, it is a
countable union of open sets of finite measure. Using this, construct
G5 sets Gy and Hy with p(H¢) = 0 so that

ANY;, C Gy CYs and Gi—ANY;CH; CY;.

As the sets Y; are disjoint, the unions G = {J;c7 Gy and H = J;er Hy
are still G5 subsets of X. Moreover, AC G, G— A C H, and

w(H) = 3" p(HAE) =3 u(HAY) =3 u(H,) = 0.

EeE teT teT

By the assumption, the set A N H is measurable. Hence so is
G-A=(G-ANH=GNH-ANH,

and the measurability of A follows.

EXAMPLE 6.6. Let Y and v be as in Example 1.1. Being metriz-
able, Y is paracompact by [1, 5.1.3]. Theorem 6.5 thus implies that
v is a saturated Radon measure. Clearly, v is not complete, and we
show that it is not decomposable. Proceeding towards a contradic-
tion, suppose that H is a decomposition of v. For each a € wy, the
set I* = {a} x [0, 1] is a Borel subset of Y, and

S v(I*n H) = v(I%) = A([0,1]) = 1.
HeH

Since v Radon, there is an H € H and a compact set K* C HNI”
with v(K®) > 0. As v is diffused, K is uncountable. According
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to [7, §30, XIV and §36, V, Corollary 2], K contains a Borel set
B® which is not of Borel class a (see [7, §30, II]). It follows that
B = U,e., B” is not a Borel set. On the other hand, each H € H
contains only countably many sets K, and so BN H is a Borel set
for every H € H; a contradiction.

The next two examples show that the assumptions of Theo-
rem 6.5 are essential for the validity of the first condition of this
theorem.

EXAMPLE 6.7. Let Y and v be as in Example 1.5. Setting
(4) = { v(A)+|AnN[o0,1]| if AN[0,1]is finite,
+0o0 if ANJ0,1] is infinite,
defines a Radon measure g on P(Y), and the family D = {{y} : y €

Y} is a concassage of p. Since Y is not metalindel6f (Corollary 2.4),
the union |JD =Y is not paracompact.

ExaMPLE 6.8. (CH) Let X and p be asin Example 4.5. Setting

o(B) w(B)+|BnN[0,1]| if BNJ0,1]is finite,
| 4o if BN[0,1]is infinite,

for each Borel set B C X defines a Radon measure ¢ on the Borel
o-algebra B in X, and the family

D:{{q}xZ:qEQ}U{{t}:tE[0,1]}

is a concassage of ¢. The space X is metalindel6f but not metacom-
pact. This follows from Theorem 2.1, since p is a o-finite Radon
measure on B which is not regular. We conclude that the union
UD = X is not paracompact.

Finally, very technical examples in [4, 4.5 and 4.6] show that
under CH, there is an nonsaturated diffused Radon measure pu de-
fined on the Borel g-algebra in a metalindel6f space X; moreover,
it has a concassage whose union is not a Borel set. This implies, in
particular, that our last question is undecidable in ZFC.
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QUESTION 6.9. If X is a metalindeldf space, is a Radon measure

i saturated?
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