A FEW REMARKS CONCERNING THE STRONG LAW OF LARGE NUMBERS FOR NON-SEPARABLE BANACH SPACE VALUED FUNCTIONS (*)

by Kazimierz Musiał (in Wrocław)(**)

1. Introduction

Throughout (Ω, Σ, μ) denotes a complete probability space, $\mathcal{M}(\mu)$ is the set of all μ -measurable real-valued functions (functions that are μ -equivalent are not identified) and X is a Banach space. λ always denotes the Lebesgue measure on the real line \mathbb{R} or on an interval and Σ_{μ}^+ denotes the family of all elements of Σ which are of positive μ -measure. μ_k is the direct product of k copies of μ . μ^* is the outer measure induced by μ . The set of natural numbers is denoted by \mathbb{N} . $\mathcal{L}_{\infty}(\Omega, \Sigma, \mu)$ is the Banach space of all bounded real-valued measurable functions defined on (Ω, Σ, μ) (functions that are μ -equivalent are not identified) endowed with the supremum norm and $B_{\infty}(\mu)$ is the closed unit ball in $\mathcal{L}_{\infty}(\Omega, \Sigma, \mu)$. Similarly the space $\mathcal{L}_{\infty}(\Omega, \Sigma)$ is defined if no measure on (Ω, Σ) is taken into account. \mathcal{B} is the algebra of Borel subsets of \mathbb{R} .

The study of laws of large numbers is an important part of probability. The theory of such laws for strongly measurable Banach space valued functions is well known (cf [PT]). It is the aim of these lectures to present a few facts concerning the strong law of large numbers that have been discovered during last few years by Talagrand [T] and Hoffmann-Jørgensen [HJ]. We consider mainly functions that take their values in a non-separable Banach space. The results show, that inside the classical probability theory, the true

E-mail address: musial@math.uni.wroc.pl

^(*) Presentato al "Workshop di Teoria della Misura e Analisi Reale", Grado (Italia), 19 settembre-2 ottobre 1993.

^(**) Indirizzo dell'Autore: Uniwersytet Wrocławski, Instytut Matematyczny, pl. Grunwaldzski $2/4,\,50\text{-}384$ Wrocław (Polonia).

non-separable Pettis integral can be found.

2. Stable Sets.

We begin our considerations with the following well known result, that will be applied several times.

LEMMA 2.1 Let $\Omega_n \subseteq \Omega$ be such that $\mu^*(\Omega_n) = 1$ for all $n \geq 1$. Then

$$(\mu_{\infty})^* (\prod_{n=1}^{\infty} \Omega_n) = 1.$$

A similar equality holds for a finite product too.

Proof. Let $\Sigma_n = \{E \cap \Omega_n : E \in \Sigma\}$ and $\nu_n(E) = \mu^*(E)$ for $E \in \Sigma_n$. Then Σ_n is a σ -algebra on Ω_n and ν_n is a probability measure on (Ω_n, Σ_n) . Let $(\Omega_\infty, \Sigma_\infty, \mu_\infty)$ be the direct product of the spaces $(\Omega_n, \Sigma_n, \nu_n)$, $n \in \mathbb{N}$. Notice then, that for all $E_1, E_2, \ldots \in \Sigma$ we have

$$\mu_{\infty}(\prod_{n=1}^{\infty} E_n \cap \Omega_n) = \prod_{n=1}^{\infty} \nu_n(E_n \cap \Omega_n) = \prod_{n=1}^{\infty} \mu(E_n) = \mu_{\infty}(\prod_{n=1}^{\infty} E_n)$$

and so

$$\mu_{\infty}(E \cap \Omega_{\infty}) = \mu_{\infty}(E)$$

for all $E \in \Sigma_{\infty}$.

In particular, if $E \supseteq \Omega_{\infty}$ and $E \in \Sigma_{\infty}$ then $\mu_{\infty}(E) = 1$. This proves the required equality.

Lemma 2.2. If $f: \Omega \to \mathbb{R}$ is non-measurable then there exist numbers $\alpha < \beta$ and $A \in \Sigma_{\mu}^+$ such that

 \Diamond

$$\mu^*(A \cap \{f < \alpha\}) = \mu^*(A \cap \{f > \beta\}) = \mu(A) .$$

Proof. Choose $\gamma \in \mathbb{R}$ such that $\{f \leq \gamma\} \notin \Sigma$. Let E be a μ -measurable cover of $\{f \leq \gamma\}$. Notice that $\mu^*(E \cap \{f > \gamma\}) > 0$

(otherwise $\{f \leq \gamma\} = E - E \cap \{f > \gamma\} \in \Sigma$). Hence,

$$\mu^*(E \cap \{f > \gamma\}) = \mu^*[E \cap (\bigcup_{n=1}^{\infty} \{f > \gamma + 1/n\})] > 0.$$

In particular there exists $n \in \mathbb{N}$ such that for $\beta = \gamma + 1/n$ we have

$$\mu^*(E \cap \{f > \beta\}) > 0$$
.

Let now F be a measurable cover of the set $E \cap \{f > \beta\}$ and $A = E \cap F$. Since $A \supseteq E \cap \{f > \beta\}$ we have $\mu(A) > 0$. If $\gamma < \alpha < \beta$ then

$$\mu^*(A \cap \{f \ge \alpha\}) \le \mu^*(A \cap \{f > \gamma\}) \le \mu^*(E \cap \{f > \gamma\}) = 0$$

and

$$\mu^*(A \cap \{f \le \beta\}) \le \mu^*(F \setminus E \cap \{f > \beta\}) = 0.$$

Thus

$$\mu^*(A \cap \{f < \alpha\}) = \mu^*(A \cap \{f > \beta\}) = \mu(A) . \qquad \diamondsuit$$

Suppose now that a set \mathcal{H} is pointwise relatively compact as a subset of \mathbb{R}^{Ω} but has a non-measurable pointwise cluster point h. Hence there are numbers $\alpha < \beta$, and $A \in \Sigma_{\mu}^+$ such that the sets

$$U = A \cap \{h < \alpha\} \text{ and } V = A \cap \{h > \beta\}$$

satisfy the equalities $\mu^*(U) = \mu^*(V) = \mu(A)$.

The definition of pointwise convergence shows that for every $k, l \in \mathbb{N}$ and arbitrary $s_1, s_2, \ldots, s_k \in U, t_1, t_2, \ldots, t_l \in V$ there exists $f \in \mathcal{H}$ with

$$f(s_i) < \alpha$$
 and $f(t_j) > \beta$; $i \le k, j \le l$.

So

$$\forall k, l \in \mathbb{N} \quad U^k \times V^l \subseteq \bigcup_{f \in \mathcal{H}} \{f < \alpha\}^k \times \{f > \beta\}^l .$$

Hence

$$\forall k, l \in \mathbb{N} \quad U^k \times V^l \subseteq \bigcup_{f \in \mathcal{H}} \{f < \alpha\}^k \times \{f > \beta\}^l \cap A^{k+l} .$$

and so

$$\forall k, l \in \mathbb{N} \quad \mu_{k+l}^* \left(\bigcup_{f \in \mathcal{H}} \{ f < \alpha \}^k \times \{ f > \beta \}^l \cap A^{k+l} \right) = (\mu(A))^{k+l} .$$

DEFINITION. Let \mathcal{H} be an arbitrary collection of real valued functions defined on Ω . A set $A \in \Sigma_{\mu}^+$ for which there exist numbers $\alpha < \beta$ such that

$$\forall k, l \in \mathbb{N}\mu_{k+l}^* \left(\bigcup_{f \in \mathcal{H}} \{f < \alpha\}^k \times \{f > \beta\}^l \cap A^{k+l} \right) < (\mu(A))^{k+l}$$

is called a *critical set* for \mathcal{H} . A pointwise bounded set \mathcal{H} is called μ -stable if there exists no critical set for \mathcal{H} . In other words \mathcal{H} is μ -stable if for all $A \in \Sigma^+_{\mu}$ and all $\alpha < \beta$ there exist $k, l \in \mathbb{N}$ such that

$$\mu_{k+l}^* \left(\bigcup_{f \in \mathcal{H}} \{ f < \alpha \}^k \times \{ f > \beta \}^l \cap A^{k+l} \right) < \mu(A))^{k+l}.$$

It can be easily seen that in the above definition of stability one may assume k = l.

REMARK 2.3. It is obvious that each subset of a stable set \mathcal{H} is itself stable. In particular single functions being elements of \mathcal{H} are stable. It follows from Lemma 2.2 that they are measurable. Thus a stable set is always a subset of $M(\mu)$. It is also worth to notice that if A is critical then all its subsets of positive measure are critical too.

Proposition 2.4. If \mathcal{H} is stable then it is pointwise relatively compact in $M(\mu)$. Moreover, its pointwise closure is also stable.

Example of a pointwise compact collection of measurable functions that is not stable.

Let \prec be a well ordering of [0,1] and let

$$\mathcal{H} = \{ \chi_A \leq \text{ and } \leq \text{ coincide on } A \}$$
.

Then \mathcal{H} is pointwise compact in $M(\lambda)$. Moreover, since each uncountable subset of [0,1] contains a decreasing (in the sense of ordinary order) sequence, each element of \mathcal{H} is zero outside a countable set. It can be shown that [0,1] is a critical λ -set.

Perhaps more interesting is the following example:

Example of a sequence of measurable functions that is convergent in measure but is not stable.

For each $n \in \mathbb{N}$ let π_n be a partition of [0,1] into 2^{2n} closed intervals of equal length. Let

 $\mathcal{F} = \{ F \subset [0,1] : \exists n \in \mathbb{N} \text{ such that } F \text{ is a union of } 2^n \text{ elements of } \pi_n \}.$

If $\mathcal{F}=(F_n)_{n=1}^{\infty}$ then for each finite $H\subset [0,1]$ there is a sequence (n_k) such that $\chi_{F_{n_k}}\to \chi_H$ pointwise. Hence $\{\chi_F:F\in\mathcal{F}\}$ is pointwise dense in $\{0,1\}^c$ (c is the cardinality of the continuum) and so it is not λ -stable. On the other hand it is clear that $\chi_{F_n}\to 0$ in λ -measure.

It can be shown that if the continuum is real measurable and $\tilde{\lambda}$ is a universal countably additive extension of λ then all pointwise cluster points of \mathcal{F} are measurable but \mathcal{F} is not $\tilde{\lambda}$ -stable.

Fortunately almost everywhere convergence behaves much better.

PROPOSITION 2.5. If (f_n) is a sequence of μ -measurable functions that is μ -a.e. convergent to a μ -a.e. finite function f, then the family $(f_n : n \in \mathbb{N})$ is μ -stable.

Proof. Suppose there is $A \in \Sigma_{\mu}^+$ and $\alpha < \beta$ such that for each $k, l \in \mathbb{N}$

$$\mu_{k+l} \left(\bigcup_{n=1}^{\infty} \left\{ f_n < \alpha \right\}^k \times \left\{ f_n > \beta \right\}^l \cap A^{k+l} \right) = \mu(A)^{k+l}$$

and take $0 < \varepsilon < \min \left(\frac{1}{4}(\beta - \alpha), \ \mu(A)\right)$.

According to the Jegoroff theorem we can find $B \in \Sigma_{\mu}^+$ and $m \in \mathbb{N}$ such that $\mu(B) < \varepsilon$ and $|f_n(\omega) - f(\omega)| < \varepsilon$ for all $\omega \notin B$ and n > m.

Let $C = A \setminus B$. Notice that C is critical for (f_n) , with the same numbers α and β .

On the other hand, if $\alpha' = \alpha + \varepsilon$ and $\beta' = \beta - \varepsilon$ then we have for all k, l

$$\bigcup_{n=1}^{\infty} \{f_n < \alpha\}^k \times \{f_n > \beta\}^l \cap C^{k+l} \subseteq$$

$$\subseteq C^{k+l} \cap \left[\left(\bigcup_{n=1}^{m} \left\{ f_n < \alpha' \right\}^k \times \left\{ f_n > \beta' \right\}^l \right) \cup \left(\left\{ f < \alpha' \right\}^k \times \left\{ f > \beta' \right\}^l \right) \right]$$

because $|f_n(\omega) - f(\omega)| < \varepsilon$ for all $\omega \in C$ and n > m.

Then notice that for each n at least one of the sets $\{f_n < \alpha'\}$ and $\{f_n > \beta'\}$ is of measure $\leq 1/2$. The same holds for the sets $\{f < \alpha'\}$ and $\{f > \beta'\}$. As a result we get for k = l

$$\mu_{2k} \left\{ C^{2k} \cap \left[\left(\bigcup_{n=1}^{m} \{ f_n < \alpha' \}^k \times \{ f_n > \beta' \}^k \right) \cup \left(\{ f < \alpha' \}^k \times \{ f > \beta' \}^k \right) \right] \right\} <$$

$$< \frac{m+1}{2^k} \mu(C)^{2k} .$$

For sufficiently large k we get a contradiction with the critical property of the set C. This completes the proof. \diamondsuit

Let $A \in \Sigma_{\mu}^+$, u, v be two real-valued functions on Ω and \mathcal{H} be a family of real-valued functions. Throughout the paper we will use the following notation:

$$B_{k,l}(\mathcal{H}, A, u, v) =$$

$$= \{(s_1, \dots, s_k, t_l, \dots t_l) \in A^{k+l}; \exists h \in \mathcal{H} \ \forall i \le k \ h(s_i) < u(s_i), \\ \forall j \le l \ h(t_j) > v(t_j)\} .$$

LEMMA 2.6. Let \mathcal{H} be a uniformly bounded family of measurable real-valued functions. Assume that \mathcal{H} is not stable, and let $A \in \Sigma_{\mu}^*$ and numbers $\alpha < \beta$ be such that

$$\mu_{2n}^*[B_{n,n}(\mathcal{H},A,\alpha,\beta)] = \mu(A)^{2n}$$

for each $n \in \mathbb{N}$. Then there exists a function $g \in B_{\infty}(\mu)$ such that for each weak neighbourhood V of g in $L_2(\mu)$ the equality

$$\mu_{2n}^*[B_{n,n}(\mathcal{H}\cap V,A,\alpha,\beta)]=\mu(A)^{2n}$$

holds for all n.

Proof. Without loss of generality, we may assume that $\mathcal{H} \subseteq B_{\infty}(\mu)$. Suppose the theorem does not hold, that is

$$\forall g \in B_{\infty}(\mu) \; \exists V \; \exists n \; \mu_{2n}^* [B_{n,n}(\mathcal{H} \cap V, A, \alpha, \beta)] < \mu(A)^{2n} \; .$$

Since $B_{\infty}(\mu)$ is weakly compact in $L_2(\mu)$, we can find a finite cover V_1, \ldots, V_k of $B_{\infty}(\mu)$ such that

$$\forall i \leq k \ \exists n_i \ \mu_{2n_i}^* [B_{n_i,n_i}(\mathcal{H} \cap V_i, A, \alpha, \beta)] < \mu(A)^{2n_i}.$$

Let $n = \max\{n_i : i \leq k\}$.

It follows that we have

$$\forall i \leq k \ \mu_{2n}^*[B_{n,n}(\mathcal{H} \cap V_i, A, \alpha, \beta)] < \mu(A)^{2n} \ .$$

Let $p \in \mathbb{N}$ be such that $[\mu(A)^{2n}]^p < \frac{1}{k}\mu(A)^{2n}$ and let m=np. Then

$$\forall i \leq k \mu_{2m}^* [B_{m,m}(\mathcal{H} \cap V_i, A, \alpha, \beta)] < \mu(A)^{2m}.$$

Since

$$\mathcal{H}\subseteq\bigcup_{i\leq k}V_i\cap\mathcal{H}$$

we get

$$\mu_{2m}^*[B_{m,m}(\mathcal{H}, A, \alpha, \beta)] < k\mu(A)^{2m} < \mu(A)^{2n}$$

which gives a contradiction with the initial assumption about \mathcal{H} . \diamondsuit

LEMMA 2.7. Let \mathcal{H} be a uniformly bounded non-stable family of measurable functions. Let $A \in \Sigma_{\mu}^*$ and $\alpha < \beta$ be such that for each $n \in \mathbb{N}$

$$\mu_{2n}^*[B_{n,n}(\mathcal{H}, A, \alpha, \beta)] = \mu(A)^{2n}$$
.

Then there exist two measurable functions u, v with $\int v > \int u + (\beta - \alpha)\mu(A)/3$ such that for each n

$$\mu_{2n}^*[B_{n,n}(\mathcal{H},\Omega,u,v)]=1.$$

Proof. As in the proof of the previous lemma, we assume $\mathcal{H} \subseteq B_{\infty}(\mu)$. Let $a = (\beta - \alpha)\mu(A)/3$. Moreover let

$$u = \left\{ \begin{array}{ll} h + a & \text{on } \Omega \backslash A \\ \alpha & \text{on } A \end{array} \right. \quad v = \left\{ \begin{array}{ll} h - a & \text{on } \Omega \backslash A \\ \beta & \text{on } A \end{array} \right..$$

We have $\int v \geq \int u + a$.

For two subsets I, J of $\{I, \ldots, n\}$ let

$$K_{I,J} =$$

$$= \{(s_1, \ldots, s_n, t_1, \ldots, t_n) \in \Omega^{2n} : s_i \in A \Leftrightarrow i \in I, \ t_j \in A \Leftrightarrow j \in J\}$$

and

$$\tilde{K}_{I,J} = \{(s_1, \ldots, s_n, t_1, \ldots t_n) \in K_{I,J} :$$

$$\exists h \in \mathcal{H} \ \forall i \leq n \ h(s_i) < u(s_i), \ h(t_i) > v(t_i) \} .$$

We shall prove, that $\mu_{2n}^*(\tilde{K}_{I,J}) = \mu_{2n}(K_{I,J})$.

To do it let us fix I and J. Moreover, take $C \subseteq K_{I,J}$ of positive μ_{2n} -measure. Assuming that $card\ I=k,\ card\ J=l,$ let $\delta=\left(\frac{3a}{14}\right)^{2n-k-1}$.

Moreover, let B_i, \ldots, B_{2n} be measurable sets of positive measure, with $B_i \subseteq A$ for $i \in I \cup J$ and $B_i \subseteq \Omega \setminus A$ whenever $i \notin I \cup J$ and such that

$$\mu_{2n}(C \cap \prod_{i < 2n} B_i) > (1 - \delta)\mu_{2n}(\prod_{i < 2n} B_i)$$
.

Since the required equality is obvious if k + l = 2n, we assume that k + l < 2n, k > 0 and l > 0.

For
$$(s_1, ..., s_{k+l}) \in A^{k+l}$$
, let
$$c(s_1, ..., s_{k+l}) = \{(t_1, ..., t_{2n-k-l}) \in (\Omega \setminus A)^{2n-k-l} : (s_1, ..., s_{k+l}, t_1, ..., t_{2n-k-l}) \in C \cap \prod_{i \le 2n} B_i \}.$$

Then put

$$D = \{(s_1, \dots, s_{k+l}) \in A^{k+l} : \mu_{2n-k-l}(C(s_1, \dots, s_{k+l})) > (1-\delta)\mu_{2n-k-l}(\prod_{i>k+l} B_i)\}.$$

Clearly

$$\mu_{k+l}(D) > 0$$

Now let

$$T_{I,J} = \{ (s_1, \dots, s_{k+l}) \in A^{k+l} : \\ \exists h \in \mathcal{H} \ \forall (i \le k) \ h(s_i) < \alpha, \ \forall (k < i \le k+l)h(s_i) > \beta \\ \forall (k+l < i \le 2n) \ | \int_{B_i} h d\mu - \int_{B_i} g d\mu | < \frac{a}{2} \mu(B_i) \} .$$

In the above formulae g is the function chosen in Lemma 2.6. In virtue of Lemmata 2.6 and 2.1

$$\mu_{k+l}^*(T_{I,J}) = \mu(A)^{k+l}$$
.

Hence

$$D \cap T_{I,J} \neq \emptyset$$
.

In particular, there exist $(s_1, \ldots, s_{k+l}) \in D$ and $h \in \mathcal{H}$ such that

$$\forall (i \le k) \quad h(s_i) < \alpha$$

$$\forall (k < i \le k+l) \quad h(s_i) > \beta$$

$$\forall (k+l < i \le 2n) |\int_{B_i} h d\mu - \int_{B_i} g d\mu| < \frac{a}{2} \mu(B_i) .$$

For $k + l < i \le n + l$, let

$$D_i = B_i \cap \{h < g + a\} .$$

Similarly, let

$$D_i = B_i \cap \{h > q - a\}$$

whenever $n + l < i \le 2n$.

Since $-1 \le h, g \le 1$ and $a \le 1/3$ we get in the case $k+l < i \le n+l$

$$\begin{split} \int_{B_i} h &= \int_{B_i \backslash D_i} h + \int_{D_i} h \geq \int_{B_i \backslash D_i} (g+a) - \mu(D_i) = \\ &= \int_{B_i} g - \int_{D_i} g + a\mu(B_i \backslash D_i) - \mu(D_i) \geq \int_{B_i} g + a\mu(B_i) - (2+a)\mu(D_i) \geq \\ &\geq \int_{B_i} g + a\mu(B_i) - \frac{7}{3}\mu(D_i) \ . \end{split}$$

Since

$$\int_{B_i} h \le \int_{B_i} g + \frac{1}{2} a \mu(B_i)$$

we have

$$a\mu(B_i) - \frac{7}{3}\mu(D_i) \le \frac{1}{2}a\mu(B_i)$$

and so

$$\mu(D_i) \ge \frac{3a}{14}\mu(B_i) .$$

In a similar way, using the inequalities $h \le 1$, $g \ge -1$ and $a \le 1/3$, we get the same inequality for $n+l < i \le 2n$. Thus

$$\mu(D_i) \ge \frac{3a}{14}\mu(B_i)$$

for every $i \in \{k+l+1, \ldots, 2n\}$, and so

$$\mu_{2n-k-l}\left(\prod_{i=k+l+1}^{2n}D_i\right) > \delta\mu_{2n-k-l}\left(\prod_{i=k+l+1}^{2n}B_i\right).$$

But

$$\mu_{2n-k-l}(C(s_1,\ldots,s_{k+l})) > (1-\delta)\mu_{2n-k-l}\left(\prod_{i=k+l+1}^{2n} B_i\right)$$

and so

$$C(s_1,\ldots,s_{k+l})\cap\prod_{i=k+l+1}^{2n}D_i\neq\emptyset$$
.

This yields the existence of $(t_1, \ldots, t_{2n-k-l}) \in C(s_1, \ldots, s_{k+l})$ such that

$$f(t_i) < g(t_i) + a$$

for each $i \in \{k+l+1, \ldots, n+l\}$ and

$$f(t_i) > q(t_i) - a$$

for each $i \in \{n + l + 1, ..., 2n\}$.

But $(s_1, \ldots, s_{k+l}, t_1, \ldots, t_{2n-k-l}) \in C$ and so we get $C \cap \tilde{K}_{I,J} \neq \emptyset$.

This proves the equality $\mu_{2n}^*(\tilde{K}_{I,J}) = \mu_{2n}(K_{I,J})$ for positive k and l satisfying the condition k + l < 2n.

Assume now that k = l = 0.

Applying Lemma 2.6 we get a function $h \in \mathcal{H}$ satisfying for each $i \leq 2n$ the inequality

$$\left| \int_{B_i} h d\mu - \int_{B_i} g d\mu \right| < \frac{a}{2} \mu(B_i) .$$

With the sets D_i defined in the same way as before we obtain the inequality

$$\mu_{2n}(\prod_{i=1}^{2n} D_i) > \delta \mu_{2n}(\prod_{i=1}^{2n} B_i)$$
.

that yields

$$\prod_{i=1}^{2n} D_i \cap (\Omega \backslash A)^{2n} \neq \emptyset$$

proving again the required equality.

We leave to the reader to prove by the same method the remaining cases with only one of the numbers k, l equal zero.

The summation over all I, J gives $\mu_{2n}^*[B_{n,n}(\mathcal{H}, \Omega, u, v)] = 1$. \diamondsuit

3. The law of large numbers for Banach space valued functions.

Definition. We say that a function $f:\Omega\to X$ satisfies the law of large numbers if there exists $a_f\in X$ such that

$$\lim_{n\to\infty} \left\| a_f - \frac{1}{n} \sum_{j=1}^n f(\omega_j) \right\| = 0 \quad \text{for } \mu_\infty - \text{a.a.} \quad (\omega_j) \in \Omega^\infty.$$

We denote the linear space of all X-valued functions satisfying the law of large numbers on (Ω, Σ, μ) by $LLN(\mu, X)$.

Lemma 3.1. If f satisfies the law of large numbers, then $\int_{\Omega}^{*} \lVert f \rVert d\mu < \infty$.

Proof. By the assumption

$$\lim_{n \to \infty} \left\| a_f - \frac{1}{n} \sum_{j=1}^{n+1} f(\omega_j) \right\| = 0 \quad \text{for } \mu_{\infty} - \text{a.a. } (\omega_n) \in \Omega^{\infty}.$$

But

$$\left\| a_f - \frac{1}{n} \sum_{j=1}^{n+1} f(\omega_j) \right\| = \frac{n}{n+1} \left\| \frac{1}{n} \sum_{j=1}^{n+1} f(\omega_j) - \frac{n+1}{n} a_f \right\|$$

and so

$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{j=1}^{n+1} f(\omega_j) - \frac{n+1}{n} a_f \right\| = 0 \text{ for } \mu_{\infty} - \text{a.a. } (\omega_n) \in \Omega^{\infty}.$$

Hence

$$\lim_{n\to\infty} \left\| \frac{1}{n} f(\omega_{n+1}) - \frac{1}{n} a_f \right\| = 0 \text{ for } \mu_{\infty} - \text{a.a. } (\omega_n) \in \Omega^{\infty}$$

and further

$$\lim_{n\to\infty}\left\|\frac{1}{n}f(\omega_n)\right\|=0\quad\mu_\infty-\text{ a.e.}$$

Let

$$\Omega_n = \{ \omega \in \Omega : ||f(\omega)|| \ge n \}$$

and let W_n be a measurable cover of Ω_n .

Put

$$g = 1 + \sum_{n=1}^{\infty} \chi_{W_n} .$$

g is measurable and $||f|| \leq g$. It is enough to show that g is μ -integrable. Observe that such a conclusion follows at once from the

inequality $\sum_{n=1}^{\infty} \mu(W_n) < \infty$ so we shall prove it. Suppose it does not hold, i.e. $\sum_{n=1}^{\infty} \mu(W_n) = \infty$. Then there is an increasing sequence (k_n) such that

$$\mu_{\infty} \{ \omega \in \Omega^{\infty} : \exists i \quad k_n < i \leq k_{n+1}, \ \omega_i \in W_i \} \geq 1 - 2^{-n}$$
.

Since $\bigcup_{i < n} W_i$ is a measurable cover of $\bigcup_{i < n} \Omega_i$ we get

$$\mu_{\infty}^* \{ \omega \in \Omega^{\infty} : \exists i \quad k_n < i \le k_{n+1}, \ \omega_i \in \Omega_i \} \ge 1 - 2^{-n}$$
.

Hence, setting

$$W = \{ \omega \in \Omega^{\infty} : \forall n \exists i \ k_n < i \le k_{n+1}, \ \omega_i \in \Omega_i \}$$

we obtain $\mu_{\infty}^*(W) \ge \prod_{n=1}^{\infty} (1-2^{-n}) > 0$. In particular $\limsup_{n} \left\| \frac{1}{n} f(\omega)_n \right\| \ge 1$ for each $\omega \in W$. This contradiction proves that q is integrable.

It is well known that a real-valued measurable $f \in LLN(\mu, \mathbb{R})$ if and only if $f \in L_1(\mu)$ but in the case of a general real-valued function more can be said.

LEMMA 3.2.
$$LLN(\mu, \mathbb{R}) \subseteq L_1(\mu)$$
.

Proof. Let f be a real-valued function satisfying the law of large numbers. As it has been shown in Lemma 3.1, there is $g \in L_1(\mu)$ such that $||f(\omega)|| \leq g(\omega)$ for each $\omega \in \Omega$. So to prove the integrability of f it is enough to show that f is measurable.

Let f^* and f_* be μ -upper and μ -lower measurable envelopes of f and suppose that $f^* \neq f_*$ on a set of positive measure. Then take arbitrary measurable functions h_0 and h_1 satisfying the following conditions:

$$|h_0|, |h_1| \le g + 1$$

 $f_*(\omega) = h_0(\omega) = h_1(\omega) = f^*(\omega) \text{ if } f_*(\omega) = f^*(\omega)$
 $f_*(\omega) < h_0(\omega) < h_1(\omega) < f^*(\omega) \text{ if } f_*(\omega) < f^*(\omega)$.

Then we have

$$\mu_*\{\omega : h_0(\omega) < f(\omega)\} \le \mu_*\{\omega : f_*(\omega) < h_0(\omega) \le f(\omega)\} = 0$$

$$\mu^* \{ \omega : f(\omega) < h_1(\omega) \} \le \mu^* \{ \omega : f(\omega) \le h_1(\omega) < f^*(\omega) \} = 0$$
.

Hence, if

$$A = \{\omega : f(\omega) \le h_0(\omega)\}\$$
and $B = \{\omega : h_1(\omega) \le f(\omega)\}\$

then

$$\mu^*(A) = \mu^*(B) = 1$$
.

Let (n(k)) be an increasing sequence of natural numbers with $\lim_k n(k)/n(k+1) = 0$. Then let

$$C_n = A \text{ for } n(2k+1) < n \le n(2k+2)$$

and

$$C_n = B \text{ for } n(2k) < n \le n(2k+1) .$$

If $C = \prod_{n=1}^{\infty} C_n$, then $\mu_{\infty}^*(C) = 1$ in view of Lemma 2.1. Since h_0 , h_1 and g are integrable they satisfy the law of large numbers. Let

$$\tilde{C} = \{ \omega \in C : \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} h_0(\omega_j) = \int h_0 d\mu; \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} h_1(\omega_j) = 0 \}$$

$$= \int h_1 d\mu; \quad \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n g(\omega_i) = \int g d\mu \}.$$

Clearly $\mu_{\infty}^*(\tilde{C}) = 1$.

Take $\omega \in \tilde{C}$. We'll prove that in spite of the assumption the sequence

$$c_k = \frac{1}{n(k)} \sum_{j=1}^{n_k} f(\omega_j)$$
 $k = 1, 2, ...$

is not convergent.

Suppose it is convergent to some c. We have

$$c_{2k+1} \ge \frac{n(2k)}{n(2k+1)}c_{2k} + \frac{1}{n(2k+1)} \sum_{n(2k) < i < n(2k+1)} h_1(\omega_i) \ge$$

$$\geq \frac{n(2k)}{n(2k+1)}c_{2k} + \frac{1}{n(2k+1)}\sum_{i\leq n(2k+1)}h_1(\omega_i) - \frac{1}{n(2k+1)}\sum_{i\leq n(2k)}[g(\omega_i)+1].$$

This shows that $c \geq \int h_1 d\mu$. Similarly it can be shown that $c \leq \int h_0 d\mu$. This gives a contradiction and so f is measurable. \diamondsuit

Let us consider now the case of functions that take their values in a separable subset of a Banach space. We assume for the simplicity that X is separable.

Theorem 3.3. Let X be a separable Banach space and f be an X-valued function. Then f satisfies the law of large numbers if and only if f is Bochner integrable. In such a case $a_f = \int_{\Omega} f d\mu$.

Proof. Assume that $f \in LLN(\mu, X)$ and observe that our assumption yields $x^*f \in LLN(\mu, \mathbb{R})$ for each functional x^* from X^* . It is a consequence of the two previous lemmata that f is scalarly measurable and pointwise bounded by an integrable function. Hence it is Bochner integrable.

Assume now the Bochner integrability of f. Without loss of generality, we may assume that $\int f = 0$. Moreover, let ε be a positive number and $h: X \to X$ be a simple function, measurable with respect to the norm Borel algebras of sets in X and satisfying the inequality

$$\int_X \|x - h(x)\| d\mu f^{-1}(x) < \varepsilon$$

and

$$\int_{X} h(x) d\mu f^{-1}(x) = 0 .$$

Let $g = h \circ f$. We have $\int g = 0$ and since the range of g is contained in the finite dimensional subspace of X spanned by h(X), we may apply the finite dimensional strong law of large number to get the convergence

$$\frac{1}{n}\sum_{i=1}^n g(\omega_i) \to 0 \quad \mu_{\infty}$$
 -a.e.

If $\xi = ||f - g||$, then again

$$\frac{1}{n}\sum_{i=1}^{n}\|(f-g)(\omega_i)\|\to \int_{\Omega}\|f-g\|d\mu\le \varepsilon\quad \mu_{\infty}-\text{a.e.}$$

Hence

$$\lim_{n \to \infty} \sup \left\| \frac{1}{n} \sum_{i=1}^{n} f(\omega_i) \right\| \le$$

$$\le \lim_{n \to \infty} \sup \left\| \frac{1}{n} \sum_{i=1}^{n} g(\omega_i) \right\| + \lim_{n \to \infty} \sup \frac{1}{n} \sum_{i=1}^{n} \|(f - g)(\omega_i)\| \le \varepsilon$$

 μ_{∞} -a.e. This proves the theorem.

Consider now a sequence (ξ_i) of independent identically distributed real random variables defined on (Ω, Σ, μ) . Let $F(t) = \mu(\xi_i \leq t)$ be their common distribution function, and let F_n be the empirical distribution function based on ξ_1, \ldots, ξ_n , i.e.

 \Diamond

$$F_n(t,\omega) = \frac{1}{n} \sum_{i=1}^n \chi_{\{\xi_i \le t\}}(\omega) .$$

According to the Glivenko-Cantelli Theorem, we have

$$\sup_{t} |F_n(t,\omega) - F(t)| \to 0 \quad \mu - \text{a.e.}$$

This result can be reformulated in the following way: Let

$$X_i(\omega, t) = \chi_{\{\xi_i < t\}}(\omega)$$

and

$$X_i(\omega) = X_i(\omega, \cdot) \in \mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})$$
.

The Glivenko-Cantelli Theorem says now that

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to F$$

 μ -a.e. in the norm of $\mathcal{L}_{\infty}(\mathbb{R},\mathcal{B})$.

This means that a strong law of large numbers holds for the sequence (X_n) of $\mathcal{L}_{\infty}(\mathbb{R},\mathcal{B})$ -valued functions, in spite of the non-measurability of X_n in the sense of Bochner (To see it one can take for ξ_i such random variables that for some $A \in \Sigma_{\mu}^+$ the sets $\xi_i(A \setminus N)$ are uncountable for each set N of measure zero. The functions X_i are essentially non-separably valued).

Still the G-C theorem can be reformulated in a different way: Define $f: \mathbb{R} \to \mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})$ by the formulae

$$f(r) = \chi_{(-\infty,r]} .$$

Then

$$\chi_{\{\xi_i < t\}}(\omega) = \chi_{(-\infty,\xi_i(\omega)]}(t) = f(\xi_i(\omega))(t)$$

and so the transformed form of the Glivenko-Cantelli Theorem looks as follows:

$$\lim_{n\to\infty} \|F - \frac{1}{n} \sum_{i=1}^n f(\xi_i(\omega))\|_{\mathcal{L}_{\infty}(\mathbb{R},\mathcal{B})} = 0 \quad \mu\text{-a.e.}$$

or

$$\lim_{n \to \infty} \|F - \frac{1}{n} \sum_{i=1}^{n} f(t_i)\|_{\mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})} = 0 \quad \text{for } \nu_{\infty} - \text{a.e.} \quad (t_i) \in \mathbb{R}^{\infty}$$

where ν is the distribution of ξ_i on $(\mathbb{R}, \mathcal{B})$. This means that $f \in LLN(\nu, X)$.

We shall prove now that f is Pettis integrable with respect to ν (in fact f is Pettis integrable with respect to an arbitrary finite measure defined on Borel subsets of the real line \mathbb{R}).

According to Theorem 8.2 of [M] it is enough to find a bounded sequence of simple functions $f_n : \mathbb{R} \to \mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})$ such that for each functional $\eta \in \mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})^*$ the sequence $(\langle \eta, f_n \rangle)$ is ν -a.e. convergent to $\langle \eta, f \rangle$. We leave to the reader the case of purely atomic ν and we assume that ν is non-atomic.

Let us notice first that for each $\eta \in \mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})^*$ the function $\langle \eta, f \rangle$ is of bounded variation and hence it is Borel measurable.

Denote now for each $n \in \mathbb{N}$ by π_n the partition of the interval (-n, n] consisting of the intervals $((i-1)/2^n, i/2^n], -n2^n + 1 < i \le n2^n$ and let

$$f_n(t) = \begin{cases} 0 & \text{if } t \le -n \\ \chi_{(-\infty, i/2^n]} & \text{if } t \in ((i-1)/2^n, i/2^n] \\ 1 & \text{if } n < t \end{cases}.$$

Clearly $f_n : \mathbb{R} \to \mathcal{L}_{\infty}(\mathbb{R}, \mathcal{B})$ and $||f_n||_{\mathcal{L}_{\infty}}(\mathbb{R}, \mathcal{B}) \leq 1$.

Each η can be identified with an additive real-valued set function of bounded variation defined on \mathcal{B} (cf. [DS]). Hence

$$\langle \eta, f(t) \rangle = \eta((-\infty, t])$$

for each $t \in \mathbb{R}$, and

$$\langle \eta, f_n(t) \rangle = \eta((-\infty, i/2^n])$$

for each $t \in ((i-1)/2^n, i/2^n], -n2+1 < i \le n2^n$.

If $E_{t,n} \in \pi_n$ is that element which contains t, then we have

$$|\langle \eta, f_n(t) \rangle - \langle \eta, f(t) \rangle| \leq |\eta|(E_{t,n})$$
.

It follows from the boundedness of η that

$$\lim_{n} |\eta|(E_{t,n}) = 0$$

for all but countably many $t \in \mathbb{R}$.

Thus, $\lim_{n} \langle \eta, f_n \rangle = \langle \eta, f \rangle \nu$ -a.e. and f is Pettis integrable with respect to ν .

In fact a more general result holds:

Theorem 3.4. If $f \in LLN(\mu, X)$, then f is μ -Pettis integrable.

Proof. The equality $\lim_{n\to\infty}\|a_f-\frac{1}{n}\sum_{j=1}^n f(\omega_j)=0$ for μ_∞ -a.a. $(\omega_n)\in\Omega^\infty$ implies the relation

$$\lim_{n\to\infty}|x^*a_f-\frac{1}{n}\sum_{i=1}^nx^*f(\omega_j)|=0 \text{ for } \mu_\infty-\text{a.a. } (\omega_n)\in\Omega^\infty \ .$$

Since moreover $\int_{\Omega}^{*} ||f|| d\mu < \infty$, we see that each function x^*f is integrable. It is the consequence of the scalar law of large numbers that

$$\lim_{n\to\infty} |\int x^* f d\mu - \frac{1}{n} \sum_{j=1}^n x^* f(\omega_j)| = 0 \text{ for } \mu_\infty - \text{a.a. } (\omega_n) \in \Omega^\infty.$$

This gives the equality

$$\int_{\Omega} x^* f d\mu = x^* a_f \quad \text{for each} \quad x^* \ .$$

Applying similar consideration to an arbitrary set $E \in \Sigma$ we get the Pettis integrability of f.

The Pettis integrability of f is however a too weak condition to guarantee $f \in LLN(\mu, X)$. f has to behave better. To formulate the main result we need yet some new notions.

Definition. A function $f: \Omega \to X$ is said to be properly measurable if the set $\{x^*f: ||x^*|| \leq 1\}$ is μ -stable.

Definition. f is an X-valued function, then the Glivenko-Cantelli norm of f is given by

$$||f||_{GC} = \limsup_{n} \int_{0}^{\infty} \sup \left\{ \frac{1}{n} \sum_{j=1}^{n} |x^* f(\omega_j)| : ||x^*|| \le 1 \right\} d\mu_{\infty}(\omega) .$$

It is clear that for each x^* from the unit ball of X^* , we have

$$\frac{1}{n} \sum_{j=1}^{n} |x^*(\omega_j)| \le \sup \left\{ \frac{1}{n} \sum_{j=1}^{n} |x^*f(\omega_j)| : ||x^*|| \le 1 \right\}$$

and so

$$\int_{-\infty}^{\infty} |x^* f| d\mu \le \int_{-\infty}^{\infty} \sup \left\{ \frac{1}{n} \sum_{j=1}^{n} |x^* f(\omega_j)| : ||x||^* \le 1 \right\} d\mu_{\infty}(\omega) .$$

In particular, if f is Pettis integrable then we get $||f||_P \le ||f||_{GC}$, where

$$||f||_P = \sup \left\{ \int |x^*f| d\mu : ||x^*|| \le 1 \right\}$$

is the ordinary norm in the space of Pettis integrable functions.

For technical reasons we introduce yet for each real-valued function h the following notation:

$$Q_n(\omega)(h) = \frac{1}{n} \sum_{j=1}^n h(\omega_j)$$

for each $\omega = (\omega_i) \in \Omega^{\infty}$.

Theorem 3.5. For a function $f:\Omega\to X$ the following conditions are equivalent:

- (i) f satisfies the law of large numbers;
- (ii) f is properly measurable and $\int_{\Omega}^{*} ||f|| d\mu < \infty$.

Proof (i) \Rightarrow (ii). We have already proved that if $f \in LLN(\mu, X)$ then $\int_{\Omega}^{*} ||f|| d\mu < \infty$ and f is weakly measurable. We shall prove that f is properly measurable.

For the simplicity, we shall denote the set $\{x^*f: ||x^*|| \leq 1\}$ by \mathcal{H} . We have to prove the stability of \mathcal{H} . If \mathcal{H} is not stable, then there exist $A \in \Sigma_{\mu}^+$ and $\alpha < \beta$ with $\mu_{2n}^*[B_{n,n}(\mathcal{H},A,\alpha,\beta)] = \mu(A)^{2n}$ for each n. Let $a = (\beta - \alpha)\mu(A)/9$ and $b > \max(|\alpha|,|\beta|)$ be such that $\int g' < a$, where $g' = g\chi_{\{g>b\}}$. For each $h \in \mathcal{H}$ denote by h' its truncation at -b and b. If $\mathcal{H}' = \{h' : h \in \mathcal{H}\}$ then we also have $\mu_{2n}^*[B_{n,n}(\mathcal{H}',A,\alpha,\beta)] = \mu(A)^{2n}$ for all n. Applying Lemma 2.7 we get two bounded measurable functions u and v and v on Ω , with

$$\int v \ge \int u + 3a \quad \text{and} \quad \mu_{k+1}^* C(k, l) = 1 ,$$

for each k, l, where

$$C(k,l) = \{(s_1, \ldots, s_k, t_1, \ldots, t_l) \in \Omega^{k+l} :$$

$$\exists h \in \mathcal{H} \ \forall (i \leq k) \ h'(s_i) < u(s_i), \ \forall (j \leq l) \ h'(t_j) > v(t_j) \} \ .$$

We can assume $u \leq g+1$ and $v \geq -g-1$.

Now let (n(p)) be a sequence with $\lim_{p} n(p)/n(p+1) = 0$ and let

$$C = \{ \omega \in \Omega^{\infty} : \forall p(\omega_{n(2p)+1}, \dots, \omega_{n(2p+2)}) \}$$

$$\in C(n(2p+1) - n(2p), n(2p+2) - n(2p+1)) \}.$$

It follows that $\mu_{\infty}^*(C) = 1$. Let

 \Diamond

$$C' = \{ \omega \in C : \lim_{n} Q_n(\omega)(g) = \int g; \lim_{n} Q_n(\omega)(g') = \int g';$$
$$\lim_{n} Q_n(\omega)(u) = \int u; \lim_{n} Q_n(\omega)(v) = \int v \}.$$

It follows from the scalar law of large numbers that $\mu_{\infty}^*(C') = 1$. Fix $\omega \in C'$. For each p let $h_p \in \mathcal{H}$ be such that

$$h'_p(\omega_i) < u(\omega_i) \text{ for } n(2p) < i \le n(2p+1) ,$$

 $h'_p(\omega_i) > v(\omega_i) \text{ for } n(2p+1) < i \le n(2p+2) .$

We have

$$Q_{n(2p+1)}(\omega)(h_p) \le \frac{1}{n(2p+1)} \sum_{i \le n(2p+1)} u(\omega_i) + \frac{2}{n(2p+1)} \sum_{i \le n(2p+1)} (g(\omega_i) + 1) + \frac{1}{n(2p+1)} \sum_{i \le n(2p+1)} g'(\omega_i)$$
$$Q_{n(2p+2)}(\omega)(h_p) \ge \frac{1}{n(2p+2)} \sum_{i \le n(2p+2)} v(\omega_i) - \frac{2}{n(2p+2)} \sum_{i \le n(2p+1)} (g(\omega_i) + 1) - \frac{1}{n(2p+2)} \sum_{i \le n(2p+2)} g'(\omega_i)$$

and so

$$2\lim_{n} \sup ||a_{f} - \frac{1}{n} \sum_{j=1}^{n} f(\omega_{j})| \ge$$

$$\lim_{n} \sup (|Q_{n(2n+1)}(\omega)(h_{n}) - a_{h_{n}} - a_{h_{n}}| + |Q_{n(2n+2)}(\omega)(h_{n}) - a_{h_{n}}|) \le 1$$

$$\geq \lim\sup_{p} \Bigl(|Q_{n(2p+1)}(\omega)(h_p) - a_{h_p} - a_{h_p}| + |Q_{n(2p+2)}(\omega)(h_p) - a_{h_p}| \Bigr) \geq$$

$$\geq \lim \sup_{p} |Q_{n(2p+2)}(\omega)(h_p) - Q_{n(2p+1)}(\omega)(h_p)| \geq \int v - \int u - 2a > 0 \ .$$

This contradiction shows that \mathcal{H} is stable.

(ii) \Rightarrow (i). Assume that f is properly measurable and $\int_{-\infty}^{\infty} ||f|| d\mu <$ ∞ . According to [T2]¹, for each $k \in \mathbb{N}$ there exists a simple function

The proof of this fact is quite long and technically complicated so we decide to omit it hoping that somebody will give a shorter and simpler one.

 $f_k: \Omega \to X$ with the property $||f - f_k||_{GC} \leq 2^{-k}$. Hence

$$\limsup_{n\to\infty} \left\| \frac{1}{n} \sum_{i=1}^{n} [f(\omega_i) - f_k(\omega_i)] \right\| \le 2^{-k} \mu_{\infty} - \text{a.e.}$$

Since f_k takes only finitely many values, the finite dimensional law of large numbers yields

$$\limsup_{n\to\infty} \left\| \frac{1}{n} \sum_{i=1}^n f_k(\omega_i) - \int f_k \right\| = 0 \quad \mu_\infty - \text{a.e.}$$

and so

$$\limsup_{n\to\infty} \left\| \frac{1}{n} \sum_{i=1}^n f(\omega_i) - \int f_k \right\| \le 2^{-k} \quad \mu_\infty - \text{ a.e.}$$

Now it is easy to see that

$$\|\int f_k - \int f_{k+1}\| \le 2^{-k+1}$$

and so the sequence $(\int f_k)$ is convergent in norm of X to an element a_f satisfying (i). \diamondsuit

REFERENCES

- [DS] DUNFORD N. and SCHWARTZ J.T., *Linear Operators I*, Interscience Publ. Inc., New York (1958).
- [HJ] HOFFMANN-JØRGENSEN J., The law of large numbers for non-measurable and non-separable random elements, Asterisque, Vol. 131 (1985) pp. 299-356.
- [M] Musial K., Topics in the theory of Pettis integration, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, Vol. XXIII (1991). 177-262.
- [PT] PADGETT W.J. and TAYLOR R.L., Laws of Large Numbers for Normed Linear Spaces and Certain Frechet Space, Lecture Notes in Math., Vol. 360 (1973).
- [T1] TALAGRAND M., Pettis Integral and Measure Theory, Memoirs AMS, Vol. 307 (1984).
- [T2] TALAGRAND M., The Glivenko-Cantelli problem, Annals of Probability (1987), 15, no. 3, 837-870.