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1. Introduction

Throughout (€2, ¥, i) denotes a complete probability space, M ()
is the set of all y-measurable real-valued functions (functions that are
p-equivalent are not identified) and X is a Banach space. A always
denotes the Lebesgue measure on the real line R or on an interval
and E: denotes the family of all elements of ¥ which are of positive
(-measure. uy is the direct product of k copies of pu. p* is the outer
measure induced by u. The set of natural numbers is denoted by N.
Loo (2,3, 1) is the Banach space of all bounded real-valued measur-
able functions defined on (€2, %, i) (functions that are p-equivalent
are not identified) endowed with the supremum norm and By, () is
the closed unit ball in £, (2,%, 1). Similarly the space L£..(€2,3)
is defined if no measure on (2,%) is taken into account. B is the
algebra of Borel subsets of R.

The study of laws of large numbers is an important part of prob-
ability. The theory of such laws for strongly measurable Banach
space valued functions is well known (cf [PT]). It is the aim of these
lectures to present a few facts concerning the strong law of large
numbers that have been discovered during last few years by Tala-
grand [T] and Hoffmann-Jgrgensen [HJ]. We consider mainly func-
tions that take their values in a non-separable Banach space. The
results show, that inside the classical probability theory, the true
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non-separable Pettis integral can be found.

2. Stable Sets.

We begin our considerations with the following well known result,
that will be applied several times.

LEMMA 2.1 Let Q, C Q be such that p*(2,) =1 for all n > 1.
Then

(o) (JT ) =1
n=1
A similar equality holds for a finite product too.

Proof. Let ¥, = {ENQ, : ¥ € ¥} and v,(F) = p*(F) for
F € >,. Then 3, is a c-algebra on €, and v, is a probability
measure on (£2,,,3,). Let (Qu, X0, fteo) be the direct product of the
spaces (€2,,,%,,v,), n € N. Notice then, that for all Fy, F3,...€ X
we have

ool TL 20100 = T (B0 00) = T i) = (T B2

and so
foo (F0 Qoo) = poo (E)

for all K € X.
In particular, if £ D Q. and E € ¥, then po (F) = 1.
This proves the required equality. &

LEmMA 2.2, If f: Q — R is non-measurable then there exist
numbers o < f and A € E: such that

WAN{F < a}) = p*(AN{S > 8)) = p(A) .

Proof. Choose v € R such that {f < v} ¢ ¥. Let E be a p-
measurable cover of {f < ~}. Notice that p*(FN{f > ~v}) > 0
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(otherwise {f <y} =F - En{f >~} € ¥). Hence,

B> 41 = @B (1S > 7+ /a0 > 0.

n=1

In particular there exists n € N such that for 3 = v+ 1/n we have

p(EN{f>pB})>0.

Let now F' be a measurable cover of the set K N {f > f} and
A=FEnNF. Since AD EFN{f >/} we have u(A) > 0. lf y <a <
then

p(AN{f > a}) <p (AN{f >} <p(En{f>7})=0

and
p(AN{f <BY <p (F\EN{f>p})=0.
Thus
WANLS < a}) = i (AN TS > 8)) = u(A) . o

Suppose now that a set H is pointwise relatively compact as a
subset of B but has a non-measurable pointwise cluster point A.
Hence there are numbers a < #, and A € Ej such that the sets

U=An{h<a}and V=An{h> 5}

satisfy the equalities p*(U) = p* (V) = p(A).

The definition of pointwise convergence shows that for every k,[ €
N and arbitrary si,sy,...,5; € U, t1,t3,...,t; € V there exists
f € H with

f(s;) <eaand f(t;) > p; i<k, j<I.

So
VeleN UrxViC [ J{f <o} x{f>p}.
fEH

Hence

Vi, lenN UFxVIC [ J{f <o} x{f>p}naktt.
fEH
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and so

Ve EN iy (U{f<a}kx{f>ﬁ}’mAk+l) = (u(A)**.

fEH

DEFINITION. Let H be an arbitrary collection of real valued
functions defined on 2. A set A € EI for which there exist numbers
a < [ such that

Yk, € Nujy, ( U{f <o} x{f>p}n A’““) < (u(A)FH

fEH

is called a critical set for H. A pointwise bounded set H is called
p-stable if there exists no critical set for H. In other words H is
p-stable if for all A € EI and all o < 3 there exist k,l € N such that

Wit ( U{r <o} x{f>p}n A’““) < p(A)H

fEH

It can be easily seen that in the above definition of stability one may
assume k = [.

REMARK 2.3. It is obvious that each subset of a stable set H is
itself stable. In particular single functions being elements of H are
stable. It follows from Lemma 2.2 that they are measurable. Thus a
stable set is always a subset of M (). It is also worth to notice that
if A is critical then all its subsets of positive measure are critical too.

ProprosITION 2.4. If H is stable then it is pointwise relatively
compact in M(p). Moreover, its pointwise closure is also stable.

EXAMPLE of a pointwise compact collection of measurable func-
tions that is not stable.

Let < be a well ordering of [0,1] and let

H ={xa < and = coincide on A} .
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Then # is pointwise compact in M (X). Moreover, since each un-
countable subset of [0,1] contains a decreasing (in the sense of ordi-
nary order) sequence, each element of H is zero outside a countable
set. It can be shown that [0,1] is a critical A-set.

Perhaps more interesting is the following example:

EXAMPLE of a sequence of measurable functions that is conver-
gent in measure but is not stable.

227 closed

For each n € N let 7, be a partition of [0,1] into
intervals of equal length. Let

F={F C[0,1]:3 n € N such that F'is a union of 2" elements
of m,}.

If F = (F,)2, then for each finite H C [0, 1] there is a sequence
(ng) such that XF,, —* xH pointwise. Hence {xp : FF € F}is
pointwise dense in {0, 1}° (¢ is the cardinality of the continuum) and
so it is not A-stable. On the other hand it is clear that xz, — 0 in
A-measure.

It can be shown that if the continuum is real measurable and A
is a universal countably additive extension of A then all pointwise
cluster points of F are measurable but F is not A-stable.

Fortunately almost everywhere convergence behaves much better.

ProposiTION 2.5. If (f,) is a sequence of p-measurable func-
tions that is p-a.e. convergent to a p-a.e. finite function f, then the
family (f, : n € N) is u-stable.

Proof. Suppose there is A € EI and a < f such that for each
k,leN

[k (@ {fo <o}t x{fo> B3N AkH) = (A

n=1
and take 0 < & < min (i(ﬁ —a), ,u(A)).
According to the Jegoroff theorem we can find B € Ej and m € N
such that u(B) < € and | f,(w) — f(w)| < e for all w ¢ B and n > m.
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Let C' = A\B. Notice that C is critical for (f,), with the same
numbers « and f.

On the other hand, if o/ = o« +¢ and ' = 3 — then we have for
all k,1

Uthe < {5, > Yl cti

n=1

(G{n<dﬁx{n>ﬂw)qu<de{f>ﬂPﬂ

because |f,(w) — f(w)| < e forall w € C' and n > m.

Then notice that for each n at least one of the sets { f,, < o'} and
{fn > '} is of measure < 1/2. The same holds for the sets {f < o'}
and {f > 3'}. As a result we get for k =1

M2k {C% N

(@{n<dﬁx{n>ﬂﬁ)u
}<

For sufficiently large k& we get a contradiction with the critical prop-
erty of the set . This completes the proof. &

U({f < oY x {f > B

m+1

Q—kﬂ(c)% :

Let A € Zj, u, v be two real-valued functions on © and #H be a

family of real-valued functions. Throughout the paper we will use
the following notation:

Bri(H, A u,v) =

={(s1y--, Sk, t1,...11) e AL 3p e Vi<k h(s;) < u(s;),

Vi <l h(t]‘) > ’U(t]‘)} .
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LEMMA 2.6. Let H be a uniformly bounded family of measurable
real-valued functions. Assume that H is not stable, and let A € X7,
and numbers o < 3 be such that

:u;n[Bn,n (H7 A a, ﬁ)] = N(A)Qn

for each n € N. Then there exists a function g € Bu, () such that
for each weak neighbourhood V' of g in Ly(p) the equality

:u;n[Bn,n(,H NV, A e, ﬁ)] = N(A)Qn

holds for all n.

Proof. Without loss of generality, we may assume that H C
B (pt). Suppose the theorem does not hold, that is

Vg € Boo (1) 3V In p3,[Bp(HNV, A, a, )] < ,u(A)Z” .

Since By (1) is weakly compact in Ly(p), we can find a finite cover
Vi,..., Vi of Boo () such that

Vi <k 3n; @b, [Buon (KN Vi, Ao, 8)] < (A2

Let n = max{n; : i < k}.
It follows that we have

Vi <k i [Ban(HOVi, A, )] < u(A)?" .

Let p € N be such that [u(A)?"]F < $u(A)*™ and let m = np.
Then

Vi < ki [Bomm (H O Vi, A, a, B)] < pu(A)?™

Since
HC|JVinH
i<k

we get

W [Brmn (H, Ay @, B)] < kp(A)*™ < p(A)*

which gives a contradiction with the initial assumption about H. ¢
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LEMMA 2.7. Let ‘H be a uniformly bounded non-stable family of
measurable functions. Let A € X} and a < 3 be such that for each
n €N

on[Brn(H, A, B)] = p(A)*" .

Then there exist two measurable functions w,v with [v > [u+

(8 — a)u(A)/3 such that for each n

o[ B (H, Q2 u,v)]=1.

Proof. As in the proof of the previous lemma, we assume H C
B (p). Let a = (8 — a)u(A)/3. Moreover let

) h+a onQ\A _J h—a on\A
=3 a on A 3 on A

We have [v > [u+a.
For two subsets I,.J of {I,...,n} let

I(LJ =

= (81,0, Sp b1,y ) EQMis; € A iE t;eAdsjeld}

and
KY[J = {(81, ey Sny by, . .tn) € I(LJ :

dheM YVi<n h(s;) <u(s;), h(t;) >v(t;)} .

We shall prove, that ugn(ﬁ'u) = p2n(Kr1.7).
To do it let us fix I and J. Moreover, take C' C K7 j of pos-

itive pg,-measure. Assuming that card I = k, card J = [, let
2n—k—1
_ (3
o= (1)
Moreover, let B;, ..., By, be measurable sets of positive measure,

with B; C Afor ¢ € IUJ and B; C Q\A whenever ¢ ¢ [ U .J and
such that

2, (C'N H B;) > (1 = 6)pan( H B;) .

1<2n 1<2n

Since the required equality is obvious if k 4+ [ = 2n, we assume that
k4+1<2n,k>0and ! >0.
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For (s1,...,8k41) € ARFL et
c(s1y. vy skyl) = {(t1, - tan—k—1) € (Q\A)M—k—l :

(517-'-75k+17 tlv"-ath—k—l) ed'n H Bz} .
1<2n

Then put
D= {(817 .. '78k+l) € Ak_H :

pian—k-1(C(s1, -y sp41)) > (1= ) pan—r—i( [] Bi)} -
Skt

Clearly
pr1(D) >0

Now let
Trg={(s1,...,sk41) € AP

Th € HY( < k) his;) <, V(k < i< k+D)h(s)) > 3
W(k+1<i<2n) |/ hdu—/ gdu| < Lu(B)} .
B; B; 2

In the above formulae g is the function chosen in Lemma 2.6.
In virtue of Lemmata 2.6 and 2.1

West (Troa) = p(A)

Hence

Dn TLJ 7& 0.
In particular, there exist (s1,...,sk+:) € D and h € #H such that

V(i <k) hisi) <a
Vik<i<k+1) h(s;)>p
V(k—}—l<i§2n)|/ hd,u—/ gdu|<g,u(Bi).
B; B; 2
Fork+1l<i<n+l, let
Di:Biﬂ{h<g+a}.

Similarly, let
Di:Biﬂ{h>g—a}

229
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whenever n 4+ < 1 < 2n.
Since —1 < h, g < 1 and a@ < 1/3 we get in the case k +1 < ¢ <
n 41

/B¢ h= /Bi\Di ht /D¢ hz /Bi\Di(g +a) = p(D;) =
= /Bég—/Dig‘}'aH(Bi\Di)_H(Di) > /Big-FaH(Bi)—(Q‘Fa)H(Di) >

> [ g+ an(B) - gu(D) .

; 3
Since )
/ hS/ 9+ sap(B)
B; B; 2
we have -
a:u(Bz) - g:u(Dz) < _a:u(Bz)
and so 3
a
D;) > —u(B;
p(D) > 4u(By)

In a similar way, using the inequalities A < 1, g > —1 and a < 1/3,
we get the same inequality for n 4+ < 7 < 2n. Thus

w(D) > 2u(B)

for every 1 € {k+1+4+1,...,2n}, and so

2n 2n
Mzn—k—z( 1 Di) >5N2n—k—z( II Bi) .

i=k141 i=k+1+1
But
2n
pian—k-1(C(s1, -y s64)) > (L= 8pamsz— | [] Bi
and so

2n
C(Sl,...,sk+l)ﬂ H DZ#Q)
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This yields the existence of (¢1,...,t2n—k—1) € C(S1,...,Sk+1) such
that
flt:) <glti) +a
foreach i € {k+[4+1,...,n+1}
and
f(ti) > g(t:) —a
foreach i € {n+{+1,...,2n}.
But (s1,...,Sk+1s t1, - -, t2n—k—1) € C and so we get COKLJ # 0.
This proves the equality ugn(ﬁ’w) = p2,(Kr,y) for positive k
and [ satisfying the condition k& + [ < 2n.
Assume now that £ =1 = 0.
Applying Lemma 2.6 we get a function h € H satisfying for each
1 < 2n the inequality

a
/ hdu—/ gdu‘ < Zu(Bi) -
B; B;

With the sets D; defined in the same way as before we obtain the
inequality

pan([[ D2) > dpaan ([ B -

=1 =1
that yields
2n
1D @\A)> 20
=1

proving again the required equality.

We leave to the reader to prove by the same method the remain-
ing cases with only one of the numbers k, [ equal zero.

The summation over all I,.J gives p3, [B, .(H,Q,u,v)]=1. &

3. The law of large numbers for Banach space valued func-
tions.

DEFINITION. We say that a function f:Q — X satisfies the law
of large numbers if there exists ay € X such that

n—oo

lim Haf — %zn:lf(wj)H =0 for pio, —a.a. (w;) € Q™.
i=
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We denote the linear space of all X-valued functions satisfying
the law of large numbers on (2, %, ) by LLN (i, X).

LEMMA 3.1. If f satisfies the law of large numbers, then
[ Nl < oo
Q

Proof. By the assumption

1 n+1
Jim lag =~ Z; Flwy)
]:

=0 for oo —a.a. (w,) € Q% .

But
1 n 1R n+1
'af—EZ:f(wj) = anx1 ;Z:f(wj)— )
71=1 71=1
and so
1 n+1
li — N — =0 f o — a2, (W) € Q.
Jim_ n;f(wy) ——ay OF flog — a.a. (Wn) €
Hence
| 1 ,
nh_l)rgo ;f(wn-u)—gaf =0 for fieo — a.a. (wy,) € 2

and further
1
_f (wn)

n

lim

=0 — a.e.

Let
Q= {w € Q|| f(@)]| = n}

and let W, be a measurable cover of Q,,.
Put

o0
g=1+ Z XW, -
n=1
g is measurable and [|f|| < g. It is enough to show that g is u-
integrable. Observe that such a conclusion follows at once from the
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inequality > o2, u(W,,) < oo so we shall prove it. Suppose it does not
hold, i.e. Y 02, p(W,) = co. Then there is an increasing sequence

(ky,) such that

Poo{w € Q¥ 1Ak, <i<kppy, w; e W;}>1-27".
Since J;<, Wi is a measurable cover of J;,, £2; we get

pr{w e Q3 ky, <i<kppp, w €Q;p>1-27".
Hence, setting

W={weQ® :Vni k, <i<kpp, wi €}
we obtain X, (W) > [Tp2,(1 —27") > 0.
In particular lim sup || f(w),|| > 1 for each w € W. This con-

tradiction proves th::t g is integrable. &

It is well known that a real-valued measurable f € LLN (u,R) if
and only if f € Lq(p) but in the case of a general real-valued function
more can be said.

LEMMA 3.2. LLN (p,R) C Ly(p).

Proof. Let f be a real-valued function satisfying the law of large
numbers. As it has been shown in Lemma 3.1, there is ¢ € Ly (p)
such that || f(w)]| < g(w) for each w € Q. So to prove the integrability
of f it is enough to show that f is measurable.

Let f* and f, be p-upper and p-lower measurable envelopes of
f and suppose that f* # f. on a set of positive measure. Then take
arbitrary measurable functions hg and h; satisfying the following
conditions:

lhol, 1] < g+1
fiw) = ho(w) = hi(w) = [H(w) i fulw) = (@)
felw) < ho(w) < by(w) < ff(w) if fulw) < fH(w) .

Then we have

poiw + ho(w) < f(w)} < pafw s fulw) < ho(w) < f(w)} =0
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priw: flw) <)) <p{w: flw) Shi(w) < fH0)) =0

Hence, if
A=H{w: f(w) < hp(w)} and B=Hw : h(w) < f(w)}

then
W) = (B) = 1.
Let (n(k)) be an increasing sequence of natural numbers with

limgn(k)/n(k+ 1) = 0. Then let
Cp,=Aforn(2k+1) <n < n(2k+ 2)

and

C, = Bforn(2k) <n<n(2k+1) .

If C =112, Cp, then % (C)=1in view of Lemma 2.1. Since hy,
hy and g are integrable they satisfy the law of large numbers. Let

~ . 12 . 12
J= J=

N
:/hldu; 7}1—13052:1!](%) = /gd,u} .
]:
Clearly p* (C) =1
Take w € C'. We’ll prove that in spite of the assumption the

sequence
n
1 k

= ——~ wi) k=1,2,...
k n(k) Z f( ]) y <
J=1
is not convergent.
Suppose it is convergent to some c¢. We have

n(2k) 1
Copp1 2 ey f Y hi(wi) >
n(2k + 1) n(2k+1) n(2k)<i<n(2k+1)

n(2k) 1 1
> h ) )+1].
* e e g M e, 2, B
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This shows that ¢ > [hydp. Similarly it can be shown that
¢ < [ hodp. This gives a contradiction and so f is measurable.

Let us consider now the case of functions that take their values in
a separable subset of a Banach space. We assume for the simplicity
that X is separable.

THEOREM 3.3. Let X be a separable Banach space and f be an
X -valued function. Then [ satisfies the law of large numbers if and
only if f is Bochner integrable. In such a case ay = [ fdp.

Proof. Assume that f € LLN(u, X) and observe that our as-
sumption yields z*f € LLN(u,R) for each functional z* from X*.
It is a consequence of the two previous lemmata that f is scalarly
measurable and pointwise bounded by an integrable function. Hence
it is Bochner integrable.

Assume now the Bochner integrability of f. Without loss of
generality, we may assume that [ f = 0. Moreover, let ¢ be a positive
number and A : X — X be a simple function, measurable with
respect to the norm Borel algebras of sets in X and satisfying the
inequality

[ Nz = b@lids @) < &
X

and

/ h(z)dpf~" (z) = 0 .
X

Let g = ho f. We have [ g = 0 and since the range of g is contained
in the finite dimensional subspace of X spanned by A(X), we may
apply the finite dimensional strong law of large number to get the

convergence
n

1
=Y g(wi) =0 pe—ace.
n =1

If €= ||f — g||, then again

%;H(f—g)(wi)\!—>/Q|!f—g|!du§e o — e,
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Hence
n

%Zf(wi)

=1

lim sup <

n—oo

< lim sup
n—roo

%ig(wi)

[ioo-a.e. This proves the theorem. &

1 n
li = —g) ()]l <
+ 1zn_>igpni:1|’(f gwi)l| <e

Consider now a sequence (&;) of independent identically distributed
real random variables defined on (,%,u). Let F(t) = p(& < t}
be their common distribution function, and let F),, be the empirical
distribution function based on &i,...,&,, i.e.

1 n
Fo(t,w) = p D X< (W)
=1

According to the Glivenko-Cantelli Theorem, we have

sup |F(t,w) — F(t)| = 0 p—a.e.
t
This result can be reformulated in the following way: Let

Xi(w,t) = X(ei<y (@)

and

Xz(w) = Xi(w7 ) € 'COO(RNB) .
The Glivenko-Cantelli Theorem says now that

1 n
E;XZ'%F

p-a.e. in the norm of L, (R, B).

This means that a strong law of large numbers holds for the
sequence (X,) of L. (R, B)-valued functions, in spite of the non-
measurability of X, in the sense of Bochner (To see it one can take
for & such random variables that for some A € X7 the sets &(A\N)
are uncountable for each set NV of measure zero. The functions X,
are essentially non-separably valued).
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Still the G-C theorem can be reformulated in a different way:
Define f: R — L. (R,B) by the formulae

f(T‘) = X(—oo,r] .

Then
Xiei<t3 (@) = X(—oo6 ()] () = F(&i(w)) ()

and so the transformed form of the Glivenko-Cantelli Theorem looks
as follows:

n—oo

. 1&
lim ||F - E Zf(fi(w))H/;oo(Rﬁ) =0 p—a.e.
=1

or

1 i3
fim 17— t; =0 forv,—ae. (t;)€R™
im_ | n;f( )H.COO(JR,B) 0 forve—ae. ()€

n—oo

where v is the distribution of & on (R,B). This means that f €
LLN (v, X).

We shall prove now that f is Pettis integrable with respect to
v (in fact f is Pettis integrable with respect to an arbitrary finite
measure defined on Borel subsets of the real line R).

According to Theorem 8.2 of [M] it is enough to find a bounded
sequence of simple functions f, : R — L. (R, B) such that for each
functional n € L (R, B)* the sequence ((n, f,)) is v-a.e. convergent
to (n, f). We leave to the reader the case of purely atomic v and we
assume that v is non-atomic.

Let us notice first that for each n € L, (R, B)* the function (5, f)
is of bounded variation and hence it is Borel measurable.

Denote now for each n € N by 7, the partition of the interval
(—n, n] consisting of the intervals ((¢ — 1)/2",¢/2"], —n2" +1 < i <
n2" and let

0 ift<-m
fult) = X(=o00,i/27] if ¢t €((ze—1)/2"% /2"
1 ifn<t

Clearly f, : R = Lo (R, B) and || f,||z. (R, B) < 1.
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Each 7 can be identified with an additive real-valued set function
of bounded variation defined on B (cf. [DS]). Hence

(n, £(8)) = n((=o0,1])

for each t € R, and

(m, fa()) = n((=00,i/2"])

foreach t € ((1 —1)/2", ¢/2"], —n24+1<i<n2".
If £, € m, is that element which contains ¢, then we have

[, fu(8)) = (0, S| < [0l (B n) -

It follows from the boundedness of 5 that
lim 9] (E,) = 0

for all but countably many ¢t € R.

Thus, lim(n, f,) = (, f) v-a.e. and f is Pettis integrable with
respect to I/n

In fact a more general result holds:

THEOREM 3.4. If f € LLN(u, X), then f is u-Pettis integrable.

Proof. The equality nh—>moo lay — L3577 f(w;) = 0 for po-a.a.

n

(wn) € Q% implies the relation

7}1_>rréo|$ af—;z;m fwj)| =0 for po—a.a. (w,) € Q% .
]:

Since moreover [ ||f||dp < oo, we see that each function z*f is
integrable. It is the consequence of the scalar law of large numbers
that

n—o0

1 n
lim |/.r*fd.,u — gZx*f(w]H =0 for pioo—a.a. (w,) € Q.
7=1
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This gives the equality
/ " fdu = z"ay for each z™.
Q

Applying similar consideration to an arbitrary set E/ € 3 we get the
Pettis integrability of f. &

The Pettis integrability of f is however a too weak condition to
guarantee f € LLN (u, X). f has to behave better. To formulate
the main result we need yet some new notions.

DEFINITION. A function f:Q — X is said to be properly mea-
surable if the set {z*f : ||z*|| < 1} is p-stable.

DEFINITION. [ is an X-valued function, then the Glivenko-
Cantelli norm of f is given by

Ifllae = tim sup [ sup {;E:W Fp] : 27| < 1} oo () -

It is clear that for each x* from the unit ball of X*, we have

1 & 1 &
LS o )] < sup {;Z 2" )] 12"l < 1}
j=1 7=1

and so

[l st < [ sup {%Z 2" )]+ el < 1} dioe ()

i=1

In particular, if f is Pettis integrable then we get || f||lp < || fllac,
where

17 = sup{ [ 12" Fldu 12" < 1

is the ordinary norm in the space of Pettis integrable functions.
For technical reasons we introduce yet for each real-valued
function h the following notation:

h(w;)

Qu)(h) =

n

J
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for each w = (w;) € Q.

THEOREM 3.5. For a function f : Q — X the following condi-
tions are equivalent:

(i) f satisfies the law of large numbers;

(ii) f is properly measurable and/ | fldp < oco.
Q

Proof (i) = (ii). We have already proved that if f € LLN (u, X)
then / [|flldp < oo and f is weakly measurable. We shall prove
Q

that f is properly measurable.

For the simplicity, we shall denote the set {z*f : [|[z*|| < 1} by
H. We have to prove the stability of H. If H is not stable, then
there exist A € Ej and o < 3 with u3,[Bnn(H, A, o, 8)] = p(A)*"
for each n. Let @ = (8 — a)u(A)/9 and b > max(|a|, |3|) be such
that [¢' < a, where ¢’ = gx{,>5. For each h € H denote by A’
its truncation at —b and b. If %' = {h’ : h € #H} then we also have
15, [Brn(H'y Ao, 3)] = p(A)?" for all n. Applying Lemma 2.7 we
get two bounded measurable functions » and v and v on €2, with

/vz /u—l—Sa and  prp C(k1)=1,
for each k, [, where
Ck, ) = {(S1y. 8k, t1,..-, ;) € QFFL:
dh e H V(Z < k) h’(si) < ‘U(Si), V(J < l) hl(t]’) > U(t]’)} .

We can assume u < g+ 1 and v > —g — 1.
Now let (n(p)) be a sequence with lim n(p)/n(p+ 1) = 0 and let
P

C= {w € Q> : vp(“*"n(?p)—l—h SRR wn(?p-}—?))
€ C(n(2p+1) —n(2p),n(2p+2) —n(2p+1))} .

It follows that % (C') = 1. Let
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C'={w e C:limQn(w)(9) = [g; imQn(w)(9) = [ ¢';

lim Qu(e)(w) = [ 5 lim; Qu(w)(v) = [0}

It follows from the scalar law of large numbers that p (C') = 1.
Fix w € C’. For each p let h, € H be such that

b (wi) < u(w;) for n(2p) <i < n(2p+1),

ho(wi) > v(w;) for n(2p+1) <1 < n(2p+2) .

We have
1
Cniapsn (@) (h) < Ty -
(2p+1)( )( p) n(2p+ 1) Z’gn(%;—l—l) ( )
_1_# Z (g(w')-l-l)"‘# Z g'(w;)
n(2p+1) i<n(2p) nerty e
1
Cniapr) (W) (hy) 2 T mss o
(2p+2)( ) () n(2p + 2) Z»Sn(zz;-m) )
_L E (g(w') n 1) _ # Z g’(w»)
n(2p+2) i<n(2p+1) nere?) e
and so
. 1 Y
2lim suplay — 3 f(w;)] 2
n =1
> tim sup(1Qn(ap1) () (hy) ~an, = n, 1+ |Qnepsn (@) () —an, ) >
P

> Tim $up [ Qnzps2) () () — Quzpan) () (hp)] > / v / w—2a>0.
P

This contradiction shows that #H is stable. &

(ii) = (i). Assume that f is properly measurable and [ || f||du <
oo. According to [T2]!, for each k € N there exists a simple function

1 The proof of this fact is quite long and technically complicated so we decide
to omit it hoping that somebody will give a shorter and simpler one.
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fr 1 Q — X with the property ||f — fillcc < 27%. Hence

. 1< _
lim sup||=>_[f(wi) = fe(w)]l| € 27% proo—are,
n—oo n i1
Since fi takes only finitely many values, the finite dimensional law
of large numbers yields

. 1 <
fim sup |3 fulw) = [Sill =0 po - ac
n—00 ni:l
and so
) 1 & _
fim sup |3 fw) = [ fill 27 oo — e
n—00 ni:l

Now it is easy to see that

| [ 5= [ fenall <270

and so the sequence ([ fi) is convergent in norm of X to an element
ay satisfying (i). &
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